| author | haftmann | 
| Tue, 20 Dec 2005 09:01:48 +0100 | |
| changeset 18444 | 9116ebabf0d5 | 
| parent 17955 | 3b34516662c6 | 
| child 19360 | f47412f922ab | 
| permissions | -rw-r--r-- | 
| 3071 | 1 | (* Title: HOLCF/IOA/meta_theory/CompoScheds.ML | 
| 3275 | 2 | ID: $Id$ | 
| 12218 | 3 | Author: Olaf Müller | 
| 17233 | 4 | *) | 
| 3071 | 5 | |
| 6 | Addsimps [surjective_pairing RS sym]; | |
| 7 | ||
| 8 | ||
| 9 | ||
| 10 | (* ------------------------------------------------------------------------------- *) | |
| 11 | ||
| 12 | section "mkex rewrite rules"; | |
| 13 | ||
| 14 | (* ---------------------------------------------------------------- *) | |
| 15 | (* mkex2 *) | |
| 16 | (* ---------------------------------------------------------------- *) | |
| 17 | ||
| 18 | ||
| 17233 | 19 | bind_thm ("mkex2_unfold", fix_prover2 (the_context ()) mkex2_def
 | 
| 3071 | 20 | "mkex2 A B = (LAM sch exA exB. (%s t. case sch of \ | 
| 21 | \ nil => nil \ | |
| 22 | \ | x##xs => \ | |
| 23 | \ (case x of \ | |
| 12028 | 24 | \ UU => UU \ | 
| 3071 | 25 | \ | Def y => \ | 
| 26 | \ (if y:act A then \ | |
| 27 | \ (if y:act B then \ | |
| 10835 | 28 | \ (case HD$exA of \ | 
| 12028 | 29 | \ UU => UU \ | 
| 10835 | 30 | \ | Def a => (case HD$exB of \ | 
| 12028 | 31 | \ UU => UU \ | 
| 3071 | 32 | \ | Def b => \ | 
| 33 | \ (y,(snd a,snd b))>> \ | |
| 10835 | 34 | \ (mkex2 A B$xs$(TL$exA)$(TL$exB)) (snd a) (snd b))) \ | 
| 3071 | 35 | \ else \ | 
| 10835 | 36 | \ (case HD$exA of \ | 
| 12028 | 37 | \ UU => UU \ | 
| 3071 | 38 | \ | Def a => \ | 
| 10835 | 39 | \ (y,(snd a,t))>>(mkex2 A B$xs$(TL$exA)$exB) (snd a) t) \ | 
| 17233 | 40 | \ ) \ | 
| 3071 | 41 | \ else \ | 
| 42 | \ (if y:act B then \ | |
| 10835 | 43 | \ (case HD$exB of \ | 
| 12028 | 44 | \ UU => UU \ | 
| 3071 | 45 | \ | Def b => \ | 
| 10835 | 46 | \ (y,(s,snd b))>>(mkex2 A B$xs$exA$(TL$exB)) s (snd b)) \ | 
| 3071 | 47 | \ else \ | 
| 48 | \ UU \ | |
| 49 | \ ) \ | |
| 50 | \ ) \ | |
| 51 | \ )))"); | |
| 52 | ||
| 53 | ||
| 10835 | 54 | Goal "(mkex2 A B$UU$exA$exB) s t = UU"; | 
| 3071 | 55 | by (stac mkex2_unfold 1); | 
| 56 | by (Simp_tac 1); | |
| 57 | qed"mkex2_UU"; | |
| 58 | ||
| 10835 | 59 | Goal "(mkex2 A B$nil$exA$exB) s t= nil"; | 
| 3071 | 60 | by (stac mkex2_unfold 1); | 
| 61 | by (Simp_tac 1); | |
| 62 | qed"mkex2_nil"; | |
| 63 | ||
| 10835 | 64 | Goal "[| x:act A; x~:act B; HD$exA=Def a|] \ | 
| 65 | \ ==> (mkex2 A B$(x>>sch)$exA$exB) s t = \ | |
| 66 | \ (x,snd a,t) >> (mkex2 A B$sch$(TL$exA)$exB) (snd a) t"; | |
| 3457 | 67 | by (rtac trans 1); | 
| 3071 | 68 | by (stac mkex2_unfold 1); | 
| 7229 
6773ba0c36d5
renamed Cons to Consq in order to avoid clash with List.Cons;
 wenzelm parents: 
6161diff
changeset | 69 | by (asm_full_simp_tac (simpset() addsimps [Consq_def,If_and_if]) 1); | 
| 
6773ba0c36d5
renamed Cons to Consq in order to avoid clash with List.Cons;
 wenzelm parents: 
6161diff
changeset | 70 | by (asm_full_simp_tac (simpset() addsimps [Consq_def]) 1); | 
| 3071 | 71 | qed"mkex2_cons_1"; | 
| 72 | ||
| 10835 | 73 | Goal "[| x~:act A; x:act B; HD$exB=Def b|] \ | 
| 74 | \ ==> (mkex2 A B$(x>>sch)$exA$exB) s t = \ | |
| 75 | \ (x,s,snd b) >> (mkex2 A B$sch$exA$(TL$exB)) s (snd b)"; | |
| 3457 | 76 | by (rtac trans 1); | 
| 3071 | 77 | by (stac mkex2_unfold 1); | 
| 7229 
6773ba0c36d5
renamed Cons to Consq in order to avoid clash with List.Cons;
 wenzelm parents: 
6161diff
changeset | 78 | by (asm_full_simp_tac (simpset() addsimps [Consq_def,If_and_if]) 1); | 
| 
6773ba0c36d5
renamed Cons to Consq in order to avoid clash with List.Cons;
 wenzelm parents: 
6161diff
changeset | 79 | by (asm_full_simp_tac (simpset() addsimps [Consq_def]) 1); | 
| 3071 | 80 | qed"mkex2_cons_2"; | 
| 81 | ||
| 10835 | 82 | Goal "[| x:act A; x:act B; HD$exA=Def a;HD$exB=Def b|] \ | 
| 83 | \ ==> (mkex2 A B$(x>>sch)$exA$exB) s t = \ | |
| 3071 | 84 | \ (x,snd a,snd b) >> \ | 
| 10835 | 85 | \ (mkex2 A B$sch$(TL$exA)$(TL$exB)) (snd a) (snd b)"; | 
| 3457 | 86 | by (rtac trans 1); | 
| 3071 | 87 | by (stac mkex2_unfold 1); | 
| 7229 
6773ba0c36d5
renamed Cons to Consq in order to avoid clash with List.Cons;
 wenzelm parents: 
6161diff
changeset | 88 | by (asm_full_simp_tac (simpset() addsimps [Consq_def,If_and_if]) 1); | 
| 
6773ba0c36d5
renamed Cons to Consq in order to avoid clash with List.Cons;
 wenzelm parents: 
6161diff
changeset | 89 | by (asm_full_simp_tac (simpset() addsimps [Consq_def]) 1); | 
| 3071 | 90 | qed"mkex2_cons_3"; | 
| 91 | ||
| 92 | Addsimps [mkex2_UU,mkex2_nil,mkex2_cons_1,mkex2_cons_2,mkex2_cons_3]; | |
| 93 | ||
| 94 | ||
| 95 | (* ---------------------------------------------------------------- *) | |
| 96 | (* mkex *) | |
| 97 | (* ---------------------------------------------------------------- *) | |
| 98 | ||
| 5068 | 99 | Goal "mkex A B UU (s,exA) (t,exB) = ((s,t),UU)"; | 
| 4098 | 100 | by (simp_tac (simpset() addsimps [mkex_def]) 1); | 
| 3071 | 101 | qed"mkex_UU"; | 
| 102 | ||
| 5068 | 103 | Goal "mkex A B nil (s,exA) (t,exB) = ((s,t),nil)"; | 
| 4098 | 104 | by (simp_tac (simpset() addsimps [mkex_def]) 1); | 
| 3071 | 105 | qed"mkex_nil"; | 
| 106 | ||
| 6161 | 107 | Goal "[| x:act A; x~:act B |] \ | 
| 3071 | 108 | \ ==> mkex A B (x>>sch) (s,a>>exA) (t,exB) = \ | 
| 109 | \ ((s,t), (x,snd a,t) >> snd (mkex A B sch (snd a,exA) (t,exB)))"; | |
| 4833 | 110 | by (simp_tac (simpset() addsimps [mkex_def]) 1); | 
| 3071 | 111 | by (cut_inst_tac [("exA","a>>exA")] mkex2_cons_1 1);
 | 
| 4477 
b3e5857d8d99
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
 paulson parents: 
4423diff
changeset | 112 | by Auto_tac; | 
| 3071 | 113 | qed"mkex_cons_1"; | 
| 114 | ||
| 6161 | 115 | Goal "[| x~:act A; x:act B |] \ | 
| 17233 | 116 | \ ==> mkex A B (x>>sch) (s,exA) (t,b>>exB) = \ | 
| 3071 | 117 | \ ((s,t), (x,s,snd b) >> snd (mkex A B sch (s,exA) (snd b,exB)))"; | 
| 4833 | 118 | by (simp_tac (simpset() addsimps [mkex_def]) 1); | 
| 3071 | 119 | by (cut_inst_tac [("exB","b>>exB")] mkex2_cons_2 1);
 | 
| 4477 
b3e5857d8d99
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
 paulson parents: 
4423diff
changeset | 120 | by Auto_tac; | 
| 3071 | 121 | qed"mkex_cons_2"; | 
| 122 | ||
| 6161 | 123 | Goal "[| x:act A; x:act B |] \ | 
| 3071 | 124 | \ ==> mkex A B (x>>sch) (s,a>>exA) (t,b>>exB) = \ | 
| 125 | \ ((s,t), (x,snd a,snd b) >> snd (mkex A B sch (snd a,exA) (snd b,exB)))"; | |
| 4833 | 126 | by (simp_tac (simpset() addsimps [mkex_def]) 1); | 
| 3071 | 127 | by (cut_inst_tac [("exB","b>>exB"),("exA","a>>exA")] mkex2_cons_3 1);
 | 
| 4477 
b3e5857d8d99
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
 paulson parents: 
4423diff
changeset | 128 | by Auto_tac; | 
| 3071 | 129 | qed"mkex_cons_3"; | 
| 130 | ||
| 131 | Delsimps [mkex2_UU,mkex2_nil,mkex2_cons_1,mkex2_cons_2,mkex2_cons_3]; | |
| 132 | ||
| 133 | val composch_simps = [mkex_UU,mkex_nil, | |
| 134 | mkex_cons_1,mkex_cons_2,mkex_cons_3]; | |
| 135 | ||
| 136 | Addsimps composch_simps; | |
| 137 | ||
| 138 | ||
| 139 | ||
| 140 | (* ------------------------------------------------------------------ *) | |
| 141 | (* The following lemmata aim for *) | |
| 142 | (* COMPOSITIONALITY on SCHEDULE Level *) | |
| 143 | (* ------------------------------------------------------------------ *) | |
| 144 | ||
| 145 | (* ---------------------------------------------------------------------- *) | |
| 146 | section "Lemmas for ==>"; | |
| 147 | (* ----------------------------------------------------------------------*) | |
| 148 | ||
| 149 | (* --------------------------------------------------------------------- *) | |
| 150 | (* Lemma_2_1 : tfilter(ex) and filter_act are commutative *) | |
| 151 | (* --------------------------------------------------------------------- *) | |
| 152 | ||
| 5068 | 153 | Goalw [filter_act_def,Filter_ex2_def] | 
| 10835 | 154 | "filter_act$(Filter_ex2 (asig_of A)$xs)=\ | 
| 155 | \ Filter (%a. a:act A)$(filter_act$xs)"; | |
| 3071 | 156 | |
| 4098 | 157 | by (simp_tac (simpset() addsimps [MapFilter,o_def]) 1); | 
| 3071 | 158 | qed"lemma_2_1a"; | 
| 159 | ||
| 160 | ||
| 161 | (* --------------------------------------------------------------------- *) | |
| 162 | (* Lemma_2_2 : State-projections do not affect filter_act *) | |
| 163 | (* --------------------------------------------------------------------- *) | |
| 164 | ||
| 17233 | 165 | Goal | 
| 10835 | 166 | "filter_act$(ProjA2$xs) =filter_act$xs &\ | 
| 167 | \ filter_act$(ProjB2$xs) =filter_act$xs"; | |
| 3071 | 168 | |
| 169 | by (pair_induct_tac "xs" [] 1); | |
| 170 | qed"lemma_2_1b"; | |
| 171 | ||
| 172 | ||
| 173 | (* --------------------------------------------------------------------- *) | |
| 174 | (* Schedules of A||B have only A- or B-actions *) | |
| 175 | (* --------------------------------------------------------------------- *) | |
| 176 | ||
| 17233 | 177 | (* very similar to lemma_1_1c, but it is not checking if every action element of | 
| 3071 | 178 | an ex is in A or B, but after projecting it onto the action schedule. Of course, this | 
| 179 | is the same proposition, but we cannot change this one, when then rather lemma_1_1c *) | |
| 180 | ||
| 5068 | 181 | Goal "!s. is_exec_frag (A||B) (s,xs) \ | 
| 10835 | 182 | \ --> Forall (%x. x:act (A||B)) (filter_act$xs)"; | 
| 3071 | 183 | |
| 3433 
2de17c994071
added deadlock freedom, polished definitions and proofs
 mueller parents: 
3275diff
changeset | 184 | by (pair_induct_tac "xs" [is_exec_frag_def,Forall_def,sforall_def] 1); | 
| 3071 | 185 | (* main case *) | 
| 186 | by (safe_tac set_cs); | |
| 17233 | 187 | by (REPEAT (asm_full_simp_tac (simpset() addsimps trans_of_defs2 @ | 
| 3071 | 188 | [actions_asig_comp,asig_of_par]) 1)); | 
| 189 | qed"sch_actions_in_AorB"; | |
| 190 | ||
| 191 | ||
| 192 | (* --------------------------------------------------------------------------*) | |
| 17233 | 193 | section "Lemmas for <=="; | 
| 3071 | 194 | (* ---------------------------------------------------------------------------*) | 
| 195 | ||
| 196 | (*--------------------------------------------------------------------------- | |
| 197 | Filtering actions out of mkex(sch,exA,exB) yields the oracle sch | |
| 198 | structural induction | |
| 199 | --------------------------------------------------------------------------- *) | |
| 200 | ||
| 5068 | 201 | Goal "! exA exB s t. \ | 
| 3842 | 202 | \ Forall (%x. x:act (A||B)) sch & \ | 
| 10835 | 203 | \ Filter (%a. a:act A)$sch << filter_act$exA &\ | 
| 204 | \ Filter (%a. a:act B)$sch << filter_act$exB \ | |
| 205 | \ --> filter_act$(snd (mkex A B sch (s,exA) (t,exB))) = sch"; | |
| 3071 | 206 | |
| 207 | by (Seq_induct_tac "sch" [Filter_def,Forall_def,sforall_def,mkex_def] 1); | |
| 208 | ||
| 17233 | 209 | (* main case *) | 
| 3071 | 210 | (* splitting into 4 cases according to a:A, a:B *) | 
| 4833 | 211 | by (Asm_full_simp_tac 1); | 
| 3071 | 212 | by (safe_tac set_cs); | 
| 213 | ||
| 214 | (* Case y:A, y:B *) | |
| 215 | by (Seq_case_simp_tac "exA" 1); | |
| 216 | (* Case exA=UU, Case exA=nil*) | |
| 17233 | 217 | (* These UU and nil cases are the only places where the assumption filter A sch<<f_act exA | 
| 218 | is used! --> to generate a contradiction using ~a>>ss<< UU(nil), using theorems | |
| 3071 | 219 | Cons_not_less_UU and Cons_not_less_nil *) | 
| 220 | by (Seq_case_simp_tac "exB" 1); | |
| 221 | (* Case exA=a>>x, exB=b>>y *) | |
| 17233 | 222 | (* here it is important that Seq_case_simp_tac uses no !full!_simp_tac for the cons case, | 
| 223 | as otherwise mkex_cons_3 would not be rewritten without use of rotate_tac: then tactic | |
| 3071 | 224 | would not be generally applicable *) | 
| 225 | by (Asm_full_simp_tac 1); | |
| 226 | ||
| 227 | (* Case y:A, y~:B *) | |
| 4520 | 228 | by (Seq_case_simp_tac "exA" 1); | 
| 3071 | 229 | by (Asm_full_simp_tac 1); | 
| 230 | ||
| 231 | (* Case y~:A, y:B *) | |
| 4520 | 232 | by (Seq_case_simp_tac "exB" 1); | 
| 3071 | 233 | by (Asm_full_simp_tac 1); | 
| 234 | ||
| 235 | (* Case y~:A, y~:B *) | |
| 4098 | 236 | by (asm_full_simp_tac (simpset() addsimps [asig_of_par,actions_asig_comp]) 1); | 
| 3071 | 237 | qed"Mapfst_mkex_is_sch"; | 
| 238 | ||
| 239 | ||
| 240 | (* generalizing the proof above to a tactic *) | |
| 241 | ||
| 17233 | 242 | fun mkex_induct_tac sch exA exB = | 
| 243 | EVERY1[Seq_induct_tac sch [Filter_def,Forall_def,sforall_def,mkex_def,stutter_def], | |
| 4833 | 244 | Asm_full_simp_tac, | 
| 3071 | 245 | SELECT_GOAL (safe_tac set_cs), | 
| 246 | Seq_case_simp_tac exA, | |
| 247 | Seq_case_simp_tac exB, | |
| 248 | Asm_full_simp_tac, | |
| 4520 | 249 | Seq_case_simp_tac exA, | 
| 3071 | 250 | Asm_full_simp_tac, | 
| 4520 | 251 | Seq_case_simp_tac exB, | 
| 3071 | 252 | Asm_full_simp_tac, | 
| 4098 | 253 | asm_full_simp_tac (simpset() addsimps [asig_of_par,actions_asig_comp]) | 
| 3071 | 254 | ]; | 
| 255 | ||
| 256 | ||
| 257 | ||
| 258 | (*--------------------------------------------------------------------------- | |
| 259 | Projection of mkex(sch,exA,exB) onto A stutters on A | |
| 260 | structural induction | |
| 261 | --------------------------------------------------------------------------- *) | |
| 262 | ||
| 263 | ||
| 5068 | 264 | Goal "! exA exB s t. \ | 
| 3842 | 265 | \ Forall (%x. x:act (A||B)) sch & \ | 
| 10835 | 266 | \ Filter (%a. a:act A)$sch << filter_act$exA &\ | 
| 267 | \ Filter (%a. a:act B)$sch << filter_act$exB \ | |
| 268 | \ --> stutter (asig_of A) (s,ProjA2$(snd (mkex A B sch (s,exA) (t,exB))))"; | |
| 3071 | 269 | |
| 270 | by (mkex_induct_tac "sch" "exA" "exB"); | |
| 271 | ||
| 272 | qed"stutterA_mkex"; | |
| 273 | ||
| 274 | ||
| 6161 | 275 | Goal "[| \ | 
| 3842 | 276 | \ Forall (%x. x:act (A||B)) sch ; \ | 
| 10835 | 277 | \ Filter (%a. a:act A)$sch << filter_act$(snd exA) ;\ | 
| 278 | \ Filter (%a. a:act B)$sch << filter_act$(snd exB) |] \ | |
| 3521 | 279 | \ ==> stutter (asig_of A) (ProjA (mkex A B sch exA exB))"; | 
| 3071 | 280 | |
| 281 | by (cut_facts_tac [stutterA_mkex] 1); | |
| 4098 | 282 | by (asm_full_simp_tac (simpset() addsimps [stutter_def,ProjA_def,mkex_def]) 1); | 
| 3071 | 283 | by (REPEAT (etac allE 1)); | 
| 3457 | 284 | by (dtac mp 1); | 
| 285 | by (assume_tac 2); | |
| 3071 | 286 | by (Asm_full_simp_tac 1); | 
| 287 | qed"stutter_mkex_on_A"; | |
| 288 | ||
| 289 | ||
| 290 | (*--------------------------------------------------------------------------- | |
| 291 | Projection of mkex(sch,exA,exB) onto B stutters on B | |
| 292 | structural induction | |
| 293 | --------------------------------------------------------------------------- *) | |
| 294 | ||
| 5068 | 295 | Goal "! exA exB s t. \ | 
| 3842 | 296 | \ Forall (%x. x:act (A||B)) sch & \ | 
| 10835 | 297 | \ Filter (%a. a:act A)$sch << filter_act$exA &\ | 
| 298 | \ Filter (%a. a:act B)$sch << filter_act$exB \ | |
| 299 | \ --> stutter (asig_of B) (t,ProjB2$(snd (mkex A B sch (s,exA) (t,exB))))"; | |
| 3071 | 300 | |
| 301 | by (mkex_induct_tac "sch" "exA" "exB"); | |
| 302 | ||
| 303 | qed"stutterB_mkex"; | |
| 304 | ||
| 305 | ||
| 6161 | 306 | Goal "[| \ | 
| 3842 | 307 | \ Forall (%x. x:act (A||B)) sch ; \ | 
| 10835 | 308 | \ Filter (%a. a:act A)$sch << filter_act$(snd exA) ;\ | 
| 309 | \ Filter (%a. a:act B)$sch << filter_act$(snd exB) |] \ | |
| 3521 | 310 | \ ==> stutter (asig_of B) (ProjB (mkex A B sch exA exB))"; | 
| 3071 | 311 | |
| 312 | by (cut_facts_tac [stutterB_mkex] 1); | |
| 4098 | 313 | by (asm_full_simp_tac (simpset() addsimps [stutter_def,ProjB_def,mkex_def]) 1); | 
| 3071 | 314 | by (REPEAT (etac allE 1)); | 
| 3457 | 315 | by (dtac mp 1); | 
| 316 | by (assume_tac 2); | |
| 3071 | 317 | by (Asm_full_simp_tac 1); | 
| 318 | qed"stutter_mkex_on_B"; | |
| 319 | ||
| 320 | ||
| 321 | (*--------------------------------------------------------------------------- | |
| 17233 | 322 | Filter of mkex(sch,exA,exB) to A after projection onto A is exA | 
| 10835 | 323 | -- using zip$(proj1$exA)$(proj2$exA) instead of exA -- | 
| 3071 | 324 | -- because of admissibility problems -- | 
| 325 | structural induction | |
| 326 | --------------------------------------------------------------------------- *) | |
| 327 | ||
| 5068 | 328 | Goal "! exA exB s t. \ | 
| 3842 | 329 | \ Forall (%x. x:act (A||B)) sch & \ | 
| 10835 | 330 | \ Filter (%a. a:act A)$sch << filter_act$exA &\ | 
| 331 | \ Filter (%a. a:act B)$sch << filter_act$exB \ | |
| 332 | \ --> Filter_ex2 (asig_of A)$(ProjA2$(snd (mkex A B sch (s,exA) (t,exB)))) = \ | |
| 333 | \ Zip$(Filter (%a. a:act A)$sch)$(Map snd$exA)"; | |
| 3071 | 334 | |
| 4520 | 335 | by (mkex_induct_tac "sch" "exB" "exA"); | 
| 3071 | 336 | |
| 337 | qed"filter_mkex_is_exA_tmp"; | |
| 338 | ||
| 339 | (*--------------------------------------------------------------------------- | |
| 10835 | 340 | zip$(proj1$y)$(proj2$y) = y (using the lift operations) | 
| 17233 | 341 | lemma for admissibility problems | 
| 3071 | 342 | --------------------------------------------------------------------------- *) | 
| 343 | ||
| 10835 | 344 | Goal "Zip$(Map fst$y)$(Map snd$y) = y"; | 
| 3071 | 345 | by (Seq_induct_tac "y" [] 1); | 
| 346 | qed"Zip_Map_fst_snd"; | |
| 347 | ||
| 348 | ||
| 349 | (*--------------------------------------------------------------------------- | |
| 17233 | 350 | filter A$sch = proj1$ex --> zip$(filter A$sch)$(proj2$ex) = ex | 
| 351 | lemma for eliminating non admissible equations in assumptions | |
| 3071 | 352 | --------------------------------------------------------------------------- *) | 
| 353 | ||
| 5068 | 354 | Goal "!! sch ex. \ | 
| 10835 | 355 | \ Filter (%a. a:act AB)$sch = filter_act$ex \ | 
| 356 | \ ==> ex = Zip$(Filter (%a. a:act AB)$sch)$(Map snd$ex)"; | |
| 4098 | 357 | by (asm_full_simp_tac (simpset() addsimps [filter_act_def]) 1); | 
| 3071 | 358 | by (rtac (Zip_Map_fst_snd RS sym) 1); | 
| 359 | qed"trick_against_eq_in_ass"; | |
| 360 | ||
| 361 | (*--------------------------------------------------------------------------- | |
| 17233 | 362 | Filter of mkex(sch,exA,exB) to A after projection onto A is exA | 
| 3071 | 363 | using the above trick | 
| 364 | --------------------------------------------------------------------------- *) | |
| 365 | ||
| 366 | ||
| 5068 | 367 | Goal "!!sch exA exB.\ | 
| 3842 | 368 | \ [| Forall (%a. a:act (A||B)) sch ; \ | 
| 10835 | 369 | \ Filter (%a. a:act A)$sch = filter_act$(snd exA) ;\ | 
| 370 | \ Filter (%a. a:act B)$sch = filter_act$(snd exB) |]\ | |
| 3521 | 371 | \ ==> Filter_ex (asig_of A) (ProjA (mkex A B sch exA exB)) = exA"; | 
| 4098 | 372 | by (asm_full_simp_tac (simpset() addsimps [ProjA_def,Filter_ex_def]) 1); | 
| 3071 | 373 | by (pair_tac "exA" 1); | 
| 374 | by (pair_tac "exB" 1); | |
| 3457 | 375 | by (rtac conjI 1); | 
| 4098 | 376 | by (simp_tac (simpset() addsimps [mkex_def]) 1); | 
| 3071 | 377 | by (stac trick_against_eq_in_ass 1); | 
| 378 | back(); | |
| 3457 | 379 | by (assume_tac 1); | 
| 4098 | 380 | by (asm_full_simp_tac (simpset() addsimps [filter_mkex_is_exA_tmp]) 1); | 
| 3071 | 381 | qed"filter_mkex_is_exA"; | 
| 17233 | 382 | |
| 3071 | 383 | |
| 384 | (*--------------------------------------------------------------------------- | |
| 17233 | 385 | Filter of mkex(sch,exA,exB) to B after projection onto B is exB | 
| 10835 | 386 | -- using zip$(proj1$exB)$(proj2$exB) instead of exB -- | 
| 3071 | 387 | -- because of admissibility problems -- | 
| 388 | structural induction | |
| 389 | --------------------------------------------------------------------------- *) | |
| 390 | ||
| 391 | ||
| 5068 | 392 | Goal "! exA exB s t. \ | 
| 3842 | 393 | \ Forall (%x. x:act (A||B)) sch & \ | 
| 10835 | 394 | \ Filter (%a. a:act A)$sch << filter_act$exA &\ | 
| 395 | \ Filter (%a. a:act B)$sch << filter_act$exB \ | |
| 396 | \ --> Filter_ex2 (asig_of B)$(ProjB2$(snd (mkex A B sch (s,exA) (t,exB)))) = \ | |
| 397 | \ Zip$(Filter (%a. a:act B)$sch)$(Map snd$exB)"; | |
| 3071 | 398 | |
| 399 | (* notice necessary change of arguments exA and exB *) | |
| 4520 | 400 | by (mkex_induct_tac "sch" "exA" "exB"); | 
| 3071 | 401 | |
| 402 | qed"filter_mkex_is_exB_tmp"; | |
| 403 | ||
| 404 | ||
| 405 | (*--------------------------------------------------------------------------- | |
| 17233 | 406 | Filter of mkex(sch,exA,exB) to A after projection onto B is exB | 
| 3071 | 407 | using the above trick | 
| 408 | --------------------------------------------------------------------------- *) | |
| 409 | ||
| 410 | ||
| 5068 | 411 | Goal "!!sch exA exB.\ | 
| 3842 | 412 | \ [| Forall (%a. a:act (A||B)) sch ; \ | 
| 10835 | 413 | \ Filter (%a. a:act A)$sch = filter_act$(snd exA) ;\ | 
| 414 | \ Filter (%a. a:act B)$sch = filter_act$(snd exB) |]\ | |
| 3521 | 415 | \ ==> Filter_ex (asig_of B) (ProjB (mkex A B sch exA exB)) = exB"; | 
| 4098 | 416 | by (asm_full_simp_tac (simpset() addsimps [ProjB_def,Filter_ex_def]) 1); | 
| 3071 | 417 | by (pair_tac "exA" 1); | 
| 418 | by (pair_tac "exB" 1); | |
| 3457 | 419 | by (rtac conjI 1); | 
| 4098 | 420 | by (simp_tac (simpset() addsimps [mkex_def]) 1); | 
| 3071 | 421 | by (stac trick_against_eq_in_ass 1); | 
| 422 | back(); | |
| 3457 | 423 | by (assume_tac 1); | 
| 4098 | 424 | by (asm_full_simp_tac (simpset() addsimps [filter_mkex_is_exB_tmp]) 1); | 
| 3071 | 425 | qed"filter_mkex_is_exB"; | 
| 426 | ||
| 427 | (* --------------------------------------------------------------------- *) | |
| 428 | (* mkex has only A- or B-actions *) | |
| 429 | (* --------------------------------------------------------------------- *) | |
| 430 | ||
| 431 | ||
| 5068 | 432 | Goal "!s t exA exB. \ | 
| 3071 | 433 | \ Forall (%x. x : act (A || B)) sch &\ | 
| 10835 | 434 | \ Filter (%a. a:act A)$sch << filter_act$exA &\ | 
| 435 | \ Filter (%a. a:act B)$sch << filter_act$exB \ | |
| 3842 | 436 | \ --> Forall (%x. fst x : act (A ||B)) \ | 
| 3071 | 437 | \ (snd (mkex A B sch (s,exA) (t,exB)))"; | 
| 438 | ||
| 439 | by (mkex_induct_tac "sch" "exA" "exB"); | |
| 440 | ||
| 441 | qed"mkex_actions_in_AorB"; | |
| 442 | ||
| 443 | ||
| 444 | (* ------------------------------------------------------------------ *) | |
| 445 | (* COMPOSITIONALITY on SCHEDULE Level *) | |
| 446 | (* Main Theorem *) | |
| 447 | (* ------------------------------------------------------------------ *) | |
| 448 | ||
| 17233 | 449 | Goal | 
| 11655 | 450 | "(sch : schedules (A||B)) = \ | 
| 10835 | 451 | \ (Filter (%a. a:act A)$sch : schedules A &\ | 
| 452 | \ Filter (%a. a:act B)$sch : schedules B &\ | |
| 3071 | 453 | \ Forall (%x. x:act (A||B)) sch)"; | 
| 454 | ||
| 4098 | 455 | by (simp_tac (simpset() addsimps [schedules_def, has_schedule_def]) 1); | 
| 17233 | 456 | by (safe_tac set_cs); | 
| 457 | (* ==> *) | |
| 3521 | 458 | by (res_inst_tac [("x","Filter_ex (asig_of A) (ProjA ex)")] bexI 1);
 | 
| 4098 | 459 | by (asm_full_simp_tac (simpset() addsimps [compositionality_ex]) 2); | 
| 460 | by (simp_tac (simpset() addsimps [Filter_ex_def,ProjA_def, | |
| 17233 | 461 | lemma_2_1a,lemma_2_1b]) 1); | 
| 3521 | 462 | by (res_inst_tac [("x","Filter_ex (asig_of B) (ProjB ex)")] bexI 1);
 | 
| 4098 | 463 | by (asm_full_simp_tac (simpset() addsimps [compositionality_ex]) 2); | 
| 464 | by (simp_tac (simpset() addsimps [Filter_ex_def,ProjB_def, | |
| 3071 | 465 | lemma_2_1a,lemma_2_1b]) 1); | 
| 4098 | 466 | by (asm_full_simp_tac (simpset() addsimps [executions_def]) 1); | 
| 3071 | 467 | by (pair_tac "ex" 1); | 
| 3457 | 468 | by (etac conjE 1); | 
| 4098 | 469 | by (asm_full_simp_tac (simpset() addsimps [sch_actions_in_AorB]) 1); | 
| 3071 | 470 | |
| 471 | (* <== *) | |
| 472 | ||
| 473 | (* mkex is exactly the construction of exA||B out of exA, exB, and the oracle sch, | |
| 474 | we need here *) | |
| 17955 | 475 | by (rename_tac "exA exB" 1); | 
| 3071 | 476 | by (res_inst_tac [("x","mkex A B sch exA exB")] bexI 1);
 | 
| 477 | (* mkex actions are just the oracle *) | |
| 478 | by (pair_tac "exA" 1); | |
| 479 | by (pair_tac "exB" 1); | |
| 4098 | 480 | by (asm_full_simp_tac (simpset() addsimps [Mapfst_mkex_is_sch]) 1); | 
| 3071 | 481 | |
| 482 | (* mkex is an execution -- use compositionality on ex-level *) | |
| 4098 | 483 | by (asm_full_simp_tac (simpset() addsimps [compositionality_ex]) 1); | 
| 17233 | 484 | by (asm_full_simp_tac (simpset() addsimps | 
| 3071 | 485 | [stutter_mkex_on_A, stutter_mkex_on_B, | 
| 486 | filter_mkex_is_exB,filter_mkex_is_exA]) 1); | |
| 487 | by (pair_tac "exA" 1); | |
| 488 | by (pair_tac "exB" 1); | |
| 4098 | 489 | by (asm_full_simp_tac (simpset() addsimps [mkex_actions_in_AorB]) 1); | 
| 3071 | 490 | qed"compositionality_sch"; | 
| 491 | ||
| 492 | ||
| 3521 | 493 | (* ------------------------------------------------------------------ *) | 
| 494 | (* COMPOSITIONALITY on SCHEDULE Level *) | |
| 495 | (* For Modules *) | |
| 496 | (* ------------------------------------------------------------------ *) | |
| 497 | ||
| 5068 | 498 | Goalw [Scheds_def,par_scheds_def] | 
| 3521 | 499 | |
| 500 | "Scheds (A||B) = par_scheds (Scheds A) (Scheds B)"; | |
| 501 | ||
| 4098 | 502 | by (asm_full_simp_tac (simpset() addsimps [asig_of_par]) 1); | 
| 4423 | 503 | by (rtac set_ext 1); | 
| 4098 | 504 | by (asm_full_simp_tac (simpset() addsimps [compositionality_sch,actions_of_par]) 1); | 
| 3521 | 505 | qed"compositionality_sch_modules"; | 
| 506 | ||
| 3071 | 507 | |
| 508 | Delsimps compoex_simps; | |
| 4520 | 509 | Delsimps composch_simps; |