| author | haftmann | 
| Thu, 15 Sep 2005 08:16:22 +0200 | |
| changeset 17401 | 9147c880ada6 | 
| parent 16417 | 9bc16273c2d4 | 
| child 18193 | 54419506df9e | 
| permissions | -rw-r--r-- | 
| 10148 | 1 | (* Title: HOL/Isar_examples/Hoare.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Markus Wenzel, TU Muenchen | |
| 4 | ||
| 5 | A formulation of Hoare logic suitable for Isar. | |
| 6 | *) | |
| 7 | ||
| 8 | header {* Hoare Logic *}
 | |
| 9 | ||
| 16417 | 10 | theory Hoare imports Main | 
| 11 | uses ("~~/src/HOL/Hoare/hoare.ML") begin
 | |
| 10148 | 12 | |
| 13 | subsection {* Abstract syntax and semantics *}
 | |
| 14 | ||
| 15 | text {*
 | |
| 16 | The following abstract syntax and semantics of Hoare Logic over | |
| 17 |  \texttt{WHILE} programs closely follows the existing tradition in
 | |
| 18 | Isabelle/HOL of formalizing the presentation given in | |
| 19 |  \cite[\S6]{Winskel:1993}.  See also
 | |
| 20 |  \url{http://isabelle.in.tum.de/library/Hoare/} and
 | |
| 21 |  \cite{Nipkow:1998:Winskel}.
 | |
| 22 | *} | |
| 23 | ||
| 24 | types | |
| 25 | 'a bexp = "'a set" | |
| 26 | 'a assn = "'a set" | |
| 27 | ||
| 28 | datatype 'a com = | |
| 29 | Basic "'a => 'a" | |
| 30 |   | Seq "'a com" "'a com"    ("(_;/ _)" [60, 61] 60)
 | |
| 31 | | Cond "'a bexp" "'a com" "'a com" | |
| 32 | | While "'a bexp" "'a assn" "'a com" | |
| 33 | ||
| 34 | syntax | |
| 35 |   "_skip" :: "'a com"    ("SKIP")
 | |
| 36 | translations | |
| 37 | "SKIP" == "Basic id" | |
| 38 | ||
| 39 | types | |
| 40 | 'a sem = "'a => 'a => bool" | |
| 41 | ||
| 42 | consts | |
| 43 | iter :: "nat => 'a bexp => 'a sem => 'a sem" | |
| 44 | primrec | |
| 45 | "iter 0 b S s s' = (s ~: b & s = s')" | |
| 46 | "iter (Suc n) b S s s' = | |
| 47 | (s : b & (EX s''. S s s'' & iter n b S s'' s'))" | |
| 48 | ||
| 49 | consts | |
| 50 | Sem :: "'a com => 'a sem" | |
| 51 | primrec | |
| 52 | "Sem (Basic f) s s' = (s' = f s)" | |
| 53 | "Sem (c1; c2) s s' = (EX s''. Sem c1 s s'' & Sem c2 s'' s')" | |
| 54 | "Sem (Cond b c1 c2) s s' = | |
| 55 | (if s : b then Sem c1 s s' else Sem c2 s s')" | |
| 56 | "Sem (While b x c) s s' = (EX n. iter n b (Sem c) s s')" | |
| 57 | ||
| 58 | constdefs | |
| 59 | Valid :: "'a bexp => 'a com => 'a bexp => bool" | |
| 60 |     ("(3|- _/ (2_)/ _)" [100, 55, 100] 50)
 | |
| 61 | "|- P c Q == ALL s s'. Sem c s s' --> s : P --> s' : Q" | |
| 62 | ||
| 12124 
c4fcdb80c93e
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
11987diff
changeset | 63 | syntax (xsymbols) | 
| 10148 | 64 | Valid :: "'a bexp => 'a com => 'a bexp => bool" | 
| 65 |     ("(3\<turnstile> _/ (2_)/ _)" [100, 55, 100] 50)
 | |
| 66 | ||
| 67 | lemma ValidI [intro?]: | |
| 68 | "(!!s s'. Sem c s s' ==> s : P ==> s' : Q) ==> |- P c Q" | |
| 69 | by (simp add: Valid_def) | |
| 70 | ||
| 71 | lemma ValidD [dest?]: | |
| 72 | "|- P c Q ==> Sem c s s' ==> s : P ==> s' : Q" | |
| 73 | by (simp add: Valid_def) | |
| 74 | ||
| 75 | ||
| 76 | subsection {* Primitive Hoare rules *}
 | |
| 77 | ||
| 78 | text {*
 | |
| 79 | From the semantics defined above, we derive the standard set of | |
| 80 |  primitive Hoare rules; e.g.\ see \cite[\S6]{Winskel:1993}.  Usually,
 | |
| 81 | variant forms of these rules are applied in actual proof, see also | |
| 82 |  \S\ref{sec:hoare-isar} and \S\ref{sec:hoare-vcg}.
 | |
| 83 | ||
| 84 |  \medskip The \name{basic} rule represents any kind of atomic access
 | |
| 85 |  to the state space.  This subsumes the common rules of \name{skip}
 | |
| 86 |  and \name{assign}, as formulated in \S\ref{sec:hoare-isar}.
 | |
| 87 | *} | |
| 88 | ||
| 89 | theorem basic: "|- {s. f s : P} (Basic f) P"
 | |
| 90 | proof | |
| 91 |   fix s s' assume s: "s : {s. f s : P}"
 | |
| 92 | assume "Sem (Basic f) s s'" | |
| 93 | hence "s' = f s" by simp | |
| 94 | with s show "s' : P" by simp | |
| 95 | qed | |
| 96 | ||
| 97 | text {*
 | |
| 98 | The rules for sequential commands and semantic consequences are | |
| 99 | established in a straight forward manner as follows. | |
| 100 | *} | |
| 101 | ||
| 102 | theorem seq: "|- P c1 Q ==> |- Q c2 R ==> |- P (c1; c2) R" | |
| 103 | proof | |
| 104 | assume cmd1: "|- P c1 Q" and cmd2: "|- Q c2 R" | |
| 105 | fix s s' assume s: "s : P" | |
| 106 | assume "Sem (c1; c2) s s'" | |
| 107 | then obtain s'' where sem1: "Sem c1 s s''" and sem2: "Sem c2 s'' s'" | |
| 108 | by auto | |
| 109 | from cmd1 sem1 s have "s'' : Q" .. | |
| 110 | with cmd2 sem2 show "s' : R" .. | |
| 111 | qed | |
| 112 | ||
| 113 | theorem conseq: "P' <= P ==> |- P c Q ==> Q <= Q' ==> |- P' c Q'" | |
| 114 | proof | |
| 115 | assume P'P: "P' <= P" and QQ': "Q <= Q'" | |
| 116 | assume cmd: "|- P c Q" | |
| 117 | fix s s' :: 'a | |
| 118 | assume sem: "Sem c s s'" | |
| 119 | assume "s : P'" with P'P have "s : P" .. | |
| 120 | with cmd sem have "s' : Q" .. | |
| 121 | with QQ' show "s' : Q'" .. | |
| 122 | qed | |
| 123 | ||
| 124 | text {*
 | |
| 125 | The rule for conditional commands is directly reflected by the | |
| 126 | corresponding semantics; in the proof we just have to look closely | |
| 127 | which cases apply. | |
| 128 | *} | |
| 129 | ||
| 130 | theorem cond: | |
| 131 | "|- (P Int b) c1 Q ==> |- (P Int -b) c2 Q ==> |- P (Cond b c1 c2) Q" | |
| 132 | proof | |
| 133 | assume case_b: "|- (P Int b) c1 Q" and case_nb: "|- (P Int -b) c2 Q" | |
| 134 | fix s s' assume s: "s : P" | |
| 135 | assume sem: "Sem (Cond b c1 c2) s s'" | |
| 136 | show "s' : Q" | |
| 137 | proof cases | |
| 138 | assume b: "s : b" | |
| 139 | from case_b show ?thesis | |
| 140 | proof | |
| 141 | from sem b show "Sem c1 s s'" by simp | |
| 142 | from s b show "s : P Int b" by simp | |
| 143 | qed | |
| 144 | next | |
| 145 | assume nb: "s ~: b" | |
| 146 | from case_nb show ?thesis | |
| 147 | proof | |
| 148 | from sem nb show "Sem c2 s s'" by simp | |
| 149 | from s nb show "s : P Int -b" by simp | |
| 150 | qed | |
| 151 | qed | |
| 152 | qed | |
| 153 | ||
| 154 | text {*
 | |
| 155 |  The \name{while} rule is slightly less trivial --- it is the only one
 | |
| 156 | based on recursion, which is expressed in the semantics by a | |
| 157 | Kleene-style least fixed-point construction. The auxiliary statement | |
| 158 | below, which is by induction on the number of iterations is the main | |
| 159 | point to be proven; the rest is by routine application of the | |
| 160 |  semantics of \texttt{WHILE}.
 | |
| 161 | *} | |
| 162 | ||
| 163 | theorem while: "|- (P Int b) c P ==> |- P (While b X c) (P Int -b)" | |
| 164 | proof | |
| 165 | assume body: "|- (P Int b) c P" | |
| 166 | fix s s' assume s: "s : P" | |
| 167 | assume "Sem (While b X c) s s'" | |
| 168 | then obtain n where iter: "iter n b (Sem c) s s'" by auto | |
| 10408 | 169 | have "!!s. iter n b (Sem c) s s' ==> s : P ==> s' : P Int -b" | 
| 170 | proof (induct n) | |
| 11987 | 171 | case (0 s) | 
| 172 | thus ?case by auto | |
| 173 | next | |
| 174 | case (Suc n s) | |
| 175 | then obtain s'' where b: "s : b" and sem: "Sem c s s''" | |
| 176 | and iter: "iter n b (Sem c) s'' s'" | |
| 177 | by auto | |
| 178 | from Suc and b have "s : P Int b" by simp | |
| 179 | with body sem have "s'' : P" .. | |
| 180 | with iter show ?case by (rule Suc) | |
| 10148 | 181 | qed | 
| 10408 | 182 | from this iter s show "s' : P Int -b" . | 
| 10148 | 183 | qed | 
| 184 | ||
| 185 | ||
| 186 | subsection {* Concrete syntax for assertions *}
 | |
| 187 | ||
| 188 | text {*
 | |
| 189 | We now introduce concrete syntax for describing commands (with | |
| 190 | embedded expressions) and assertions. The basic technique is that of | |
| 191 |  semantic ``quote-antiquote''.  A \emph{quotation} is a syntactic
 | |
| 192 | entity delimited by an implicit abstraction, say over the state | |
| 193 |  space.  An \emph{antiquotation} is a marked expression within a
 | |
| 194 | quotation that refers the implicit argument; a typical antiquotation | |
| 195 | would select (or even update) components from the state. | |
| 196 | ||
| 197 | We will see some examples later in the concrete rules and | |
| 198 | applications. | |
| 199 | *} | |
| 200 | ||
| 201 | text {*
 | |
| 202 | The following specification of syntax and translations is for | |
| 203 | Isabelle experts only; feel free to ignore it. | |
| 204 | ||
| 205 | While the first part is still a somewhat intelligible specification | |
| 206 | of the concrete syntactic representation of our Hoare language, the | |
| 207 | actual ``ML drivers'' is quite involved. Just note that the we | |
| 208 | re-use the basic quote/antiquote translations as already defined in | |
| 209 | Isabelle/Pure (see \verb,Syntax.quote_tr, and | |
| 210 | \verb,Syntax.quote_tr',). | |
| 211 | *} | |
| 212 | ||
| 213 | syntax | |
| 10874 | 214 |   "_quote"       :: "'b => ('a => 'b)"       ("(.'(_').)" [0] 1000)
 | 
| 215 |   "_antiquote"   :: "('a => 'b) => 'b"       ("\<acute>_" [1000] 1000)
 | |
| 216 | "_Subst" :: "'a bexp \<Rightarrow> 'b \<Rightarrow> idt \<Rightarrow> 'a bexp" | |
| 217 |         ("_[_'/\<acute>_]" [1000] 999)
 | |
| 218 |   "_Assert"      :: "'a => 'a set"           ("(.{_}.)" [0] 1000)
 | |
| 219 |   "_Assign"      :: "idt => 'b => 'a com"    ("(\<acute>_ :=/ _)" [70, 65] 61)
 | |
| 10148 | 220 | "_Cond" :: "'a bexp => 'a com => 'a com => 'a com" | 
| 221 |         ("(0IF _/ THEN _/ ELSE _/ FI)" [0, 0, 0] 61)
 | |
| 222 | "_While_inv" :: "'a bexp => 'a assn => 'a com => 'a com" | |
| 223 |         ("(0WHILE _/ INV _ //DO _ /OD)"  [0, 0, 0] 61)
 | |
| 224 | "_While" :: "'a bexp => 'a com => 'a com" | |
| 225 |         ("(0WHILE _ //DO _ /OD)"  [0, 0] 61)
 | |
| 226 | ||
| 227 | syntax (xsymbols) | |
| 228 |   "_Assert"      :: "'a => 'a set"            ("(\<lbrace>_\<rbrace>)" [0] 1000)
 | |
| 229 | ||
| 230 | translations | |
| 231 |   ".{b}."                   => "Collect .(b)."
 | |
| 10869 | 232 |   "B [a/\<acute>x]"                => ".{\<acute>(_update_name x a) \<in> B}."
 | 
| 10838 | 233 | "\<acute>x := a" => "Basic .(\<acute>(_update_name x a))." | 
| 10869 | 234 |   "IF b THEN c1 ELSE c2 FI" => "Cond .{b}. c1 c2"
 | 
| 235 |   "WHILE b INV i DO c OD"   => "While .{b}. i c"
 | |
| 10148 | 236 | "WHILE b DO c OD" == "WHILE b INV arbitrary DO c OD" | 
| 237 | ||
| 238 | parse_translation {*
 | |
| 239 | let | |
| 240 | fun quote_tr [t] = Syntax.quote_tr "_antiquote" t | |
| 241 |       | quote_tr ts = raise TERM ("quote_tr", ts);
 | |
| 10643 | 242 |   in [("_quote", quote_tr)] end
 | 
| 10148 | 243 | *} | 
| 244 | ||
| 245 | text {*
 | |
| 246 | As usual in Isabelle syntax translations, the part for printing is | |
| 247 | more complicated --- we cannot express parts as macro rules as above. | |
| 248 | Don't look here, unless you have to do similar things for yourself. | |
| 249 | *} | |
| 250 | ||
| 251 | print_translation {*
 | |
| 252 | let | |
| 253 | fun quote_tr' f (t :: ts) = | |
| 254 | Term.list_comb (f $ Syntax.quote_tr' "_antiquote" t, ts) | |
| 255 | | quote_tr' _ _ = raise Match; | |
| 256 | ||
| 257 | val assert_tr' = quote_tr' (Syntax.const "_Assert"); | |
| 258 | ||
| 259 |     fun bexp_tr' name ((Const ("Collect", _) $ t) :: ts) =
 | |
| 260 | quote_tr' (Syntax.const name) (t :: ts) | |
| 261 | | bexp_tr' _ _ = raise Match; | |
| 262 | ||
| 263 | fun upd_tr' (x_upd, T) = | |
| 264 | (case try (unsuffix RecordPackage.updateN) x_upd of | |
| 15531 | 265 | SOME x => (x, if T = dummyT then T else Term.domain_type T) | 
| 266 | | NONE => raise Match); | |
| 10148 | 267 | |
| 268 | fun update_name_tr' (Free x) = Free (upd_tr' x) | |
| 269 |       | update_name_tr' ((c as Const ("_free", _)) $ Free x) =
 | |
| 270 | c $ Free (upd_tr' x) | |
| 271 | | update_name_tr' (Const x) = Const (upd_tr' x) | |
| 272 | | update_name_tr' _ = raise Match; | |
| 273 | ||
| 274 | fun assign_tr' (Abs (x, _, f $ t $ Bound 0) :: ts) = | |
| 275 | quote_tr' (Syntax.const "_Assign" $ update_name_tr' f) | |
| 276 | (Abs (x, dummyT, t) :: ts) | |
| 277 | | assign_tr' _ = raise Match; | |
| 278 | in | |
| 279 |     [("Collect", assert_tr'), ("Basic", assign_tr'),
 | |
| 280 |       ("Cond", bexp_tr' "_Cond"), ("While", bexp_tr' "_While_inv")]
 | |
| 281 | end | |
| 282 | *} | |
| 283 | ||
| 284 | ||
| 285 | subsection {* Rules for single-step proof \label{sec:hoare-isar} *}
 | |
| 286 | ||
| 287 | text {*
 | |
| 288 | We are now ready to introduce a set of Hoare rules to be used in | |
| 289 | single-step structured proofs in Isabelle/Isar. We refer to the | |
| 290 | concrete syntax introduce above. | |
| 291 | ||
| 292 | \medskip Assertions of Hoare Logic may be manipulated in | |
| 293 | calculational proofs, with the inclusion expressed in terms of sets | |
| 294 | or predicates. Reversed order is supported as well. | |
| 295 | *} | |
| 296 | ||
| 297 | lemma [trans]: "|- P c Q ==> P' <= P ==> |- P' c Q" | |
| 298 | by (unfold Valid_def) blast | |
| 299 | lemma [trans] : "P' <= P ==> |- P c Q ==> |- P' c Q" | |
| 300 | by (unfold Valid_def) blast | |
| 301 | ||
| 302 | lemma [trans]: "Q <= Q' ==> |- P c Q ==> |- P c Q'" | |
| 303 | by (unfold Valid_def) blast | |
| 304 | lemma [trans]: "|- P c Q ==> Q <= Q' ==> |- P c Q'" | |
| 305 | by (unfold Valid_def) blast | |
| 306 | ||
| 307 | lemma [trans]: | |
| 10838 | 308 |     "|- .{\<acute>P}. c Q ==> (!!s. P' s --> P s) ==> |- .{\<acute>P'}. c Q"
 | 
| 10148 | 309 | by (simp add: Valid_def) | 
| 310 | lemma [trans]: | |
| 10838 | 311 |     "(!!s. P' s --> P s) ==> |- .{\<acute>P}. c Q ==> |- .{\<acute>P'}. c Q"
 | 
| 10148 | 312 | by (simp add: Valid_def) | 
| 313 | ||
| 314 | lemma [trans]: | |
| 10838 | 315 |     "|- P c .{\<acute>Q}. ==> (!!s. Q s --> Q' s) ==> |- P c .{\<acute>Q'}."
 | 
| 10148 | 316 | by (simp add: Valid_def) | 
| 317 | lemma [trans]: | |
| 10838 | 318 |     "(!!s. Q s --> Q' s) ==> |- P c .{\<acute>Q}. ==> |- P c .{\<acute>Q'}."
 | 
| 10148 | 319 | by (simp add: Valid_def) | 
| 320 | ||
| 321 | ||
| 322 | text {*
 | |
| 323 |  Identity and basic assignments.\footnote{The $\idt{hoare}$ method
 | |
| 324 |  introduced in \S\ref{sec:hoare-vcg} is able to provide proper
 | |
| 325 | instances for any number of basic assignments, without producing | |
| 326 | additional verification conditions.} | |
| 327 | *} | |
| 328 | ||
| 329 | lemma skip [intro?]: "|- P SKIP P" | |
| 330 | proof - | |
| 331 |   have "|- {s. id s : P} SKIP P" by (rule basic)
 | |
| 332 | thus ?thesis by simp | |
| 333 | qed | |
| 334 | ||
| 10869 | 335 | lemma assign: "|- P [\<acute>a/\<acute>x] \<acute>x := \<acute>a P" | 
| 10148 | 336 | by (rule basic) | 
| 337 | ||
| 338 | text {*
 | |
| 339 | Note that above formulation of assignment corresponds to our | |
| 340 | preferred way to model state spaces, using (extensible) record types | |
| 341 |  in HOL \cite{Naraschewski-Wenzel:1998:HOOL}.  For any record field
 | |
| 342 | $x$, Isabelle/HOL provides a functions $x$ (selector) and | |
| 343 |  $\idt{x{\dsh}update}$ (update).  Above, there is only a place-holder
 | |
| 344 | appearing for the latter kind of function: due to concrete syntax | |
| 10838 | 345 |  \isa{\'x := \'a} also contains \isa{x\_update}.\footnote{Note that due
 | 
| 10148 | 346 | to the external nature of HOL record fields, we could not even state | 
| 347 | a general theorem relating selector and update functions (if this | |
| 348 | were required here); this would only work for any particular instance | |
| 349 | of record fields introduced so far.} | |
| 350 | *} | |
| 351 | ||
| 352 | text {*
 | |
| 353 | Sequential composition --- normalizing with associativity achieves | |
| 354 | proper of chunks of code verified separately. | |
| 355 | *} | |
| 356 | ||
| 357 | lemmas [trans, intro?] = seq | |
| 358 | ||
| 359 | lemma seq_assoc [simp]: "( |- P c1;(c2;c3) Q) = ( |- P (c1;c2);c3 Q)" | |
| 360 | by (auto simp add: Valid_def) | |
| 361 | ||
| 362 | text {*
 | |
| 363 | Conditional statements. | |
| 364 | *} | |
| 365 | ||
| 366 | lemmas [trans, intro?] = cond | |
| 367 | ||
| 368 | lemma [trans, intro?]: | |
| 10838 | 369 |   "|- .{\<acute>P & \<acute>b}. c1 Q
 | 
| 370 |       ==> |- .{\<acute>P & ~ \<acute>b}. c2 Q
 | |
| 371 |       ==> |- .{\<acute>P}. IF \<acute>b THEN c1 ELSE c2 FI Q"
 | |
| 10148 | 372 | by (rule cond) (simp_all add: Valid_def) | 
| 373 | ||
| 374 | text {*
 | |
| 375 | While statements --- with optional invariant. | |
| 376 | *} | |
| 377 | ||
| 378 | lemma [intro?]: | |
| 379 | "|- (P Int b) c P ==> |- P (While b P c) (P Int -b)" | |
| 380 | by (rule while) | |
| 381 | ||
| 382 | lemma [intro?]: | |
| 383 | "|- (P Int b) c P ==> |- P (While b arbitrary c) (P Int -b)" | |
| 384 | by (rule while) | |
| 385 | ||
| 386 | ||
| 387 | lemma [intro?]: | |
| 10838 | 388 |   "|- .{\<acute>P & \<acute>b}. c .{\<acute>P}.
 | 
| 389 |     ==> |- .{\<acute>P}. WHILE \<acute>b INV .{\<acute>P}. DO c OD .{\<acute>P & ~ \<acute>b}."
 | |
| 10148 | 390 | by (simp add: while Collect_conj_eq Collect_neg_eq) | 
| 391 | ||
| 392 | lemma [intro?]: | |
| 10838 | 393 |   "|- .{\<acute>P & \<acute>b}. c .{\<acute>P}.
 | 
| 394 |     ==> |- .{\<acute>P}. WHILE \<acute>b DO c OD .{\<acute>P & ~ \<acute>b}."
 | |
| 10148 | 395 | by (simp add: while Collect_conj_eq Collect_neg_eq) | 
| 396 | ||
| 397 | ||
| 398 | subsection {* Verification conditions \label{sec:hoare-vcg} *}
 | |
| 399 | ||
| 400 | text {*
 | |
| 401 |  We now load the \emph{original} ML file for proof scripts and tactic
 | |
| 402 | definition for the Hoare Verification Condition Generator (see | |
| 403 |  \url{http://isabelle.in.tum.de/library/Hoare/}).  As far as we are
 | |
| 404 |  concerned here, the result is a proof method \name{hoare}, which may
 | |
| 405 | be applied to a Hoare Logic assertion to extract purely logical | |
| 406 | verification conditions. It is important to note that the method | |
| 407 |  requires \texttt{WHILE} loops to be fully annotated with invariants
 | |
| 408 |  beforehand.  Furthermore, only \emph{concrete} pieces of code are
 | |
| 409 | handled --- the underlying tactic fails ungracefully if supplied with | |
| 410 | meta-variables or parameters, for example. | |
| 411 | *} | |
| 412 | ||
| 13862 | 413 | lemma SkipRule: "p \<subseteq> q \<Longrightarrow> Valid p (Basic id) q" | 
| 414 | by (auto simp:Valid_def) | |
| 415 | ||
| 416 | lemma BasicRule: "p \<subseteq> {s. f s \<in> q} \<Longrightarrow> Valid p (Basic f) q"
 | |
| 417 | by (auto simp:Valid_def) | |
| 418 | ||
| 419 | lemma SeqRule: "Valid P c1 Q \<Longrightarrow> Valid Q c2 R \<Longrightarrow> Valid P (c1;c2) R" | |
| 420 | by (auto simp:Valid_def) | |
| 421 | ||
| 422 | lemma CondRule: | |
| 423 |  "p \<subseteq> {s. (s \<in> b \<longrightarrow> s \<in> w) \<and> (s \<notin> b \<longrightarrow> s \<in> w')}
 | |
| 424 | \<Longrightarrow> Valid w c1 q \<Longrightarrow> Valid w' c2 q \<Longrightarrow> Valid p (Cond b c1 c2) q" | |
| 425 | by (auto simp:Valid_def) | |
| 426 | ||
| 427 | lemma iter_aux: "! s s'. Sem c s s' --> s : I & s : b --> s' : I ==> | |
| 428 | (\<And>s s'. s : I \<Longrightarrow> iter n b (Sem c) s s' \<Longrightarrow> s' : I & s' ~: b)"; | |
| 429 | apply(induct n) | |
| 430 | apply clarsimp | |
| 431 | apply(simp (no_asm_use)) | |
| 432 | apply blast | |
| 433 | done | |
| 434 | ||
| 435 | lemma WhileRule: | |
| 436 | "p \<subseteq> i \<Longrightarrow> Valid (i \<inter> b) c i \<Longrightarrow> i \<inter> (-b) \<subseteq> q \<Longrightarrow> Valid p (While b i c) q" | |
| 437 | apply (clarsimp simp:Valid_def) | |
| 438 | apply(drule iter_aux) | |
| 439 | prefer 2 apply assumption | |
| 440 | apply blast | |
| 441 | apply blast | |
| 442 | done | |
| 443 | ||
| 444 | ||
| 10148 | 445 | ML {* val Valid_def = thm "Valid_def" *}
 | 
| 13703 | 446 | use "~~/src/HOL/Hoare/hoare.ML" | 
| 10148 | 447 | |
| 448 | method_setup hoare = {*
 | |
| 449 | Method.no_args | |
| 450 | (Method.SIMPLE_METHOD' HEADGOAL (hoare_tac (K all_tac))) *} | |
| 451 | "verification condition generator for Hoare logic" | |
| 452 | ||
| 13703 | 453 | end |