| author | wenzelm | 
| Wed, 13 Aug 2008 20:57:26 +0200 | |
| changeset 27853 | 916038f77be6 | 
| parent 27310 | d0229bc6c461 | 
| child 29063 | 7619f0561cd7 | 
| permissions | -rw-r--r-- | 
| 15600 | 1 | (* Title: HOLCF/Ssum.thy | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 2 | ID: $Id$ | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 3 | Author: Franz Regensburger and Brian Huffman | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 4 | |
| 16070 
4a83dd540b88
removed LICENCE note -- everything is subject to Isabelle licence as
 wenzelm parents: 
16060diff
changeset | 5 | Strict sum with typedef. | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 6 | *) | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 7 | |
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 8 | header {* The type of strict sums *}
 | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 9 | |
| 15577 | 10 | theory Ssum | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 11 | imports Cprod Tr | 
| 15577 | 12 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 13 | |
| 16083 
fca38c55c8fa
added defaultsort declaration, moved cpair_less to Cprod.thy
 huffman parents: 
16070diff
changeset | 14 | defaultsort pcpo | 
| 
fca38c55c8fa
added defaultsort declaration, moved cpair_less to Cprod.thy
 huffman parents: 
16070diff
changeset | 15 | |
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 16 | subsection {* Definition of strict sum type *}
 | 
| 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 17 | |
| 17817 | 18 | pcpodef (Ssum)  ('a, 'b) "++" (infixr "++" 10) = 
 | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 19 |   "{p :: tr \<times> ('a \<times> 'b).
 | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 20 | (cfst\<cdot>p \<sqsubseteq> TT \<longleftrightarrow> csnd\<cdot>(csnd\<cdot>p) = \<bottom>) \<and> | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 21 | (cfst\<cdot>p \<sqsubseteq> FF \<longleftrightarrow> cfst\<cdot>(csnd\<cdot>p) = \<bottom>)}" | 
| 16699 | 22 | by simp | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 23 | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 24 | instance "++" :: ("{finite_po,pcpo}", "{finite_po,pcpo}") finite_po
 | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 25 | by (rule typedef_finite_po [OF type_definition_Ssum]) | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 26 | |
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 27 | instance "++" :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 28 | by (rule typedef_chfin [OF type_definition_Ssum less_Ssum_def]) | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 29 | |
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 30 | syntax (xsymbols) | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 31 |   "++"		:: "[type, type] => type"	("(_ \<oplus>/ _)" [21, 20] 20)
 | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 32 | syntax (HTML output) | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 33 |   "++"		:: "[type, type] => type"	("(_ \<oplus>/ _)" [21, 20] 20)
 | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 34 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 35 | subsection {* Definitions of constructors *}
 | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 36 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 37 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 38 |   sinl :: "'a \<rightarrow> ('a ++ 'b)" where
 | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 39 | "sinl = (\<Lambda> a. Abs_Ssum <strictify\<cdot>(\<Lambda> _. TT)\<cdot>a, a, \<bottom>>)" | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 40 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 41 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 42 |   sinr :: "'b \<rightarrow> ('a ++ 'b)" where
 | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 43 | "sinr = (\<Lambda> b. Abs_Ssum <strictify\<cdot>(\<Lambda> _. FF)\<cdot>b, \<bottom>, b>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 44 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 45 | lemma sinl_Ssum: "<strictify\<cdot>(\<Lambda> _. TT)\<cdot>a, a, \<bottom>> \<in> Ssum" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 46 | by (simp add: Ssum_def strictify_conv_if) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 47 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 48 | lemma sinr_Ssum: "<strictify\<cdot>(\<Lambda> _. FF)\<cdot>b, \<bottom>, b> \<in> Ssum" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 49 | by (simp add: Ssum_def strictify_conv_if) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 50 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 51 | lemma sinl_Abs_Ssum: "sinl\<cdot>a = Abs_Ssum <strictify\<cdot>(\<Lambda> _. TT)\<cdot>a, a, \<bottom>>" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 52 | by (unfold sinl_def, simp add: cont_Abs_Ssum sinl_Ssum) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 53 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 54 | lemma sinr_Abs_Ssum: "sinr\<cdot>b = Abs_Ssum <strictify\<cdot>(\<Lambda> _. FF)\<cdot>b, \<bottom>, b>" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 55 | by (unfold sinr_def, simp add: cont_Abs_Ssum sinr_Ssum) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 56 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 57 | lemma Rep_Ssum_sinl: "Rep_Ssum (sinl\<cdot>a) = <strictify\<cdot>(\<Lambda> _. TT)\<cdot>a, a, \<bottom>>" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 58 | by (simp add: sinl_Abs_Ssum Abs_Ssum_inverse sinl_Ssum) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 59 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 60 | lemma Rep_Ssum_sinr: "Rep_Ssum (sinr\<cdot>b) = <strictify\<cdot>(\<Lambda> _. FF)\<cdot>b, \<bottom>, b>" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 61 | by (simp add: sinr_Abs_Ssum Abs_Ssum_inverse sinr_Ssum) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 62 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 63 | subsection {* Properties of @{term sinl} and @{term sinr} *}
 | 
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 64 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 65 | text {* Ordering *}
 | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 66 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 67 | lemma sinl_less [simp]: "(sinl\<cdot>x \<sqsubseteq> sinl\<cdot>y) = (x \<sqsubseteq> y)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 68 | by (simp add: less_Ssum_def Rep_Ssum_sinl strictify_conv_if) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 69 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 70 | lemma sinr_less [simp]: "(sinr\<cdot>x \<sqsubseteq> sinr\<cdot>y) = (x \<sqsubseteq> y)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 71 | by (simp add: less_Ssum_def Rep_Ssum_sinr strictify_conv_if) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 72 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 73 | lemma sinl_less_sinr [simp]: "(sinl\<cdot>x \<sqsubseteq> sinr\<cdot>y) = (x = \<bottom>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 74 | by (simp add: less_Ssum_def Rep_Ssum_sinl Rep_Ssum_sinr strictify_conv_if) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 75 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 76 | lemma sinr_less_sinl [simp]: "(sinr\<cdot>x \<sqsubseteq> sinl\<cdot>y) = (x = \<bottom>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 77 | by (simp add: less_Ssum_def Rep_Ssum_sinl Rep_Ssum_sinr strictify_conv_if) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 78 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 79 | text {* Equality *}
 | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 80 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 81 | lemma sinl_eq [simp]: "(sinl\<cdot>x = sinl\<cdot>y) = (x = y)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 82 | by (simp add: po_eq_conv) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 83 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 84 | lemma sinr_eq [simp]: "(sinr\<cdot>x = sinr\<cdot>y) = (x = y)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 85 | by (simp add: po_eq_conv) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 86 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 87 | lemma sinl_eq_sinr [simp]: "(sinl\<cdot>x = sinr\<cdot>y) = (x = \<bottom> \<and> y = \<bottom>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 88 | by (subst po_eq_conv, simp) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 89 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 90 | lemma sinr_eq_sinl [simp]: "(sinr\<cdot>x = sinl\<cdot>y) = (x = \<bottom> \<and> y = \<bottom>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 91 | by (subst po_eq_conv, simp) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 92 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 93 | lemma sinl_inject: "sinl\<cdot>x = sinl\<cdot>y \<Longrightarrow> x = y" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 94 | by (rule sinl_eq [THEN iffD1]) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 95 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 96 | lemma sinr_inject: "sinr\<cdot>x = sinr\<cdot>y \<Longrightarrow> x = y" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 97 | by (rule sinr_eq [THEN iffD1]) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 98 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 99 | text {* Strictness *}
 | 
| 17837 | 100 | |
| 16211 
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
 huffman parents: 
16083diff
changeset | 101 | lemma sinl_strict [simp]: "sinl\<cdot>\<bottom> = \<bottom>" | 
| 25915 | 102 | by (simp add: sinl_Abs_Ssum Abs_Ssum_strict) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 103 | |
| 16211 
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
 huffman parents: 
16083diff
changeset | 104 | lemma sinr_strict [simp]: "sinr\<cdot>\<bottom> = \<bottom>" | 
| 25915 | 105 | by (simp add: sinr_Abs_Ssum Abs_Ssum_strict) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 106 | |
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 107 | lemma sinl_defined_iff [simp]: "(sinl\<cdot>x = \<bottom>) = (x = \<bottom>)" | 
| 17837 | 108 | by (cut_tac sinl_eq [of "x" "\<bottom>"], simp) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 109 | |
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 110 | lemma sinr_defined_iff [simp]: "(sinr\<cdot>x = \<bottom>) = (x = \<bottom>)" | 
| 17837 | 111 | by (cut_tac sinr_eq [of "x" "\<bottom>"], simp) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 112 | |
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 113 | lemma sinl_defined [intro!]: "x \<noteq> \<bottom> \<Longrightarrow> sinl\<cdot>x \<noteq> \<bottom>" | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 114 | by simp | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 115 | |
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 116 | lemma sinr_defined [intro!]: "x \<noteq> \<bottom> \<Longrightarrow> sinr\<cdot>x \<noteq> \<bottom>" | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 117 | by simp | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 118 | |
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 119 | text {* Compactness *}
 | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 120 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 121 | lemma compact_sinl: "compact x \<Longrightarrow> compact (sinl\<cdot>x)" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 122 | by (rule compact_Ssum, simp add: Rep_Ssum_sinl strictify_conv_if) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 123 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 124 | lemma compact_sinr: "compact x \<Longrightarrow> compact (sinr\<cdot>x)" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 125 | by (rule compact_Ssum, simp add: Rep_Ssum_sinr strictify_conv_if) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 126 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 127 | lemma compact_sinlD: "compact (sinl\<cdot>x) \<Longrightarrow> compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 128 | unfolding compact_def | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 129 | by (drule adm_subst [OF cont_Rep_CFun2 [where f=sinl]], simp) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 130 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 131 | lemma compact_sinrD: "compact (sinr\<cdot>x) \<Longrightarrow> compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 132 | unfolding compact_def | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 133 | by (drule adm_subst [OF cont_Rep_CFun2 [where f=sinr]], simp) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 134 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 135 | lemma compact_sinl_iff [simp]: "compact (sinl\<cdot>x) = compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 136 | by (safe elim!: compact_sinl compact_sinlD) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 137 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 138 | lemma compact_sinr_iff [simp]: "compact (sinr\<cdot>x) = compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 139 | by (safe elim!: compact_sinr compact_sinrD) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 140 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 141 | subsection {* Case analysis *}
 | 
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 142 | |
| 16921 | 143 | lemma Exh_Ssum: | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 144 | "z = \<bottom> \<or> (\<exists>a. z = sinl\<cdot>a \<and> a \<noteq> \<bottom>) \<or> (\<exists>b. z = sinr\<cdot>b \<and> b \<noteq> \<bottom>)" | 
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 145 | apply (rule_tac x=z in Abs_Ssum_induct) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 146 | apply (rule_tac p=y in cprodE, rename_tac t x) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 147 | apply (rule_tac p=x in cprodE, rename_tac a b) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 148 | apply (rule_tac p=t in trE) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 149 | apply (rule disjI1) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 150 | apply (simp add: Ssum_def cpair_strict Abs_Ssum_strict) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 151 | apply (rule disjI2, rule disjI1, rule_tac x=a in exI) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 152 | apply (simp add: sinl_Abs_Ssum Ssum_def) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 153 | apply (rule disjI2, rule disjI2, rule_tac x=b in exI) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 154 | apply (simp add: sinr_Abs_Ssum Ssum_def) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 155 | done | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 156 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 157 | lemma ssumE [cases type: ++]: | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 158 | "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; | 
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 159 | \<And>x. \<lbrakk>p = sinl\<cdot>x; x \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> Q; | 
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 160 | \<And>y. \<lbrakk>p = sinr\<cdot>y; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 16921 | 161 | by (cut_tac z=p in Exh_Ssum, auto) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 162 | |
| 25756 | 163 | lemma ssum_induct [induct type: ++]: | 
| 164 | "\<lbrakk>P \<bottom>; | |
| 165 | \<And>x. x \<noteq> \<bottom> \<Longrightarrow> P (sinl\<cdot>x); | |
| 166 | \<And>y. y \<noteq> \<bottom> \<Longrightarrow> P (sinr\<cdot>y)\<rbrakk> \<Longrightarrow> P x" | |
| 167 | by (cases x, simp_all) | |
| 168 | ||
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 169 | lemma ssumE2: | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 170 | "\<lbrakk>\<And>x. p = sinl\<cdot>x \<Longrightarrow> Q; \<And>y. p = sinr\<cdot>y \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 171 | by (cases p, simp only: sinl_strict [symmetric], simp, simp) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 172 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 173 | lemma less_sinlD: "p \<sqsubseteq> sinl\<cdot>x \<Longrightarrow> \<exists>y. p = sinl\<cdot>y \<and> y \<sqsubseteq> x" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 174 | by (cases p, rule_tac x="\<bottom>" in exI, simp_all) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 175 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 176 | lemma less_sinrD: "p \<sqsubseteq> sinr\<cdot>x \<Longrightarrow> \<exists>y. p = sinr\<cdot>y \<and> y \<sqsubseteq> x" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 177 | by (cases p, rule_tac x="\<bottom>" in exI, simp_all) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 178 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 179 | subsection {* Case analysis combinator *}
 | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 180 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 181 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 182 |   sscase :: "('a \<rightarrow> 'c) \<rightarrow> ('b \<rightarrow> 'c) \<rightarrow> ('a ++ 'b) \<rightarrow> 'c" where
 | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 183 | "sscase = (\<Lambda> f g s. (\<Lambda><t, x, y>. If t then f\<cdot>x else g\<cdot>y fi)\<cdot>(Rep_Ssum s))" | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 184 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 185 | translations | 
| 26046 | 186 | "case s of XCONST sinl\<cdot>x \<Rightarrow> t1 | XCONST sinr\<cdot>y \<Rightarrow> t2" == "CONST sscase\<cdot>(\<Lambda> x. t1)\<cdot>(\<Lambda> y. t2)\<cdot>s" | 
| 18078 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 187 | |
| 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 188 | translations | 
| 26046 | 189 | "\<Lambda>(XCONST sinl\<cdot>x). t" == "CONST sscase\<cdot>(\<Lambda> x. t)\<cdot>\<bottom>" | 
| 190 | "\<Lambda>(XCONST sinr\<cdot>y). t" == "CONST sscase\<cdot>\<bottom>\<cdot>(\<Lambda> y. t)" | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 191 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 192 | lemma beta_sscase: | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 193 | "sscase\<cdot>f\<cdot>g\<cdot>s = (\<Lambda><t, x, y>. If t then f\<cdot>x else g\<cdot>y fi)\<cdot>(Rep_Ssum s)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 194 | unfolding sscase_def by (simp add: cont_Rep_Ssum) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 195 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 196 | lemma sscase1 [simp]: "sscase\<cdot>f\<cdot>g\<cdot>\<bottom> = \<bottom>" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 197 | unfolding beta_sscase by (simp add: Rep_Ssum_strict) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 198 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 199 | lemma sscase2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = f\<cdot>x" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 200 | unfolding beta_sscase by (simp add: Rep_Ssum_sinl) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 201 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 202 | lemma sscase3 [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>y) = g\<cdot>y" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 203 | unfolding beta_sscase by (simp add: Rep_Ssum_sinr) | 
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 204 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 205 | lemma sscase4 [simp]: "sscase\<cdot>sinl\<cdot>sinr\<cdot>z = z" | 
| 25756 | 206 | by (cases z, simp_all) | 
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 207 | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 208 | subsection {* Strict sum preserves flatness *}
 | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 209 | |
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 210 | instance "++" :: (flat, flat) flat | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 211 | apply (intro_classes, clarify) | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 212 | apply (rule_tac p=x in ssumE, simp) | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 213 | apply (rule_tac p=y in ssumE, simp_all add: flat_less_iff) | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 214 | apply (rule_tac p=y in ssumE, simp_all add: flat_less_iff) | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 215 | done | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 216 | |
| 25915 | 217 | subsection {* Strict sum is a bifinite domain *}
 | 
| 218 | ||
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 219 | instantiation "++" :: (bifinite, bifinite) bifinite | 
| 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 220 | begin | 
| 25915 | 221 | |
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 222 | definition | 
| 25915 | 223 | approx_ssum_def: | 
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 224 | "approx = (\<lambda>n. sscase\<cdot>(\<Lambda> x. sinl\<cdot>(approx n\<cdot>x))\<cdot>(\<Lambda> y. sinr\<cdot>(approx n\<cdot>y)))" | 
| 25915 | 225 | |
| 226 | lemma approx_sinl [simp]: "approx i\<cdot>(sinl\<cdot>x) = sinl\<cdot>(approx i\<cdot>x)" | |
| 227 | unfolding approx_ssum_def by (cases "x = \<bottom>") simp_all | |
| 228 | ||
| 229 | lemma approx_sinr [simp]: "approx i\<cdot>(sinr\<cdot>x) = sinr\<cdot>(approx i\<cdot>x)" | |
| 230 | unfolding approx_ssum_def by (cases "x = \<bottom>") simp_all | |
| 231 | ||
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 232 | instance proof | 
| 25915 | 233 | fix i :: nat and x :: "'a \<oplus> 'b" | 
| 27310 | 234 | show "chain (approx :: nat \<Rightarrow> 'a \<oplus> 'b \<rightarrow> 'a \<oplus> 'b)" | 
| 25915 | 235 | unfolding approx_ssum_def by simp | 
| 236 | show "(\<Squnion>i. approx i\<cdot>x) = x" | |
| 237 | unfolding approx_ssum_def | |
| 238 | by (simp add: lub_distribs eta_cfun) | |
| 239 | show "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x" | |
| 240 | by (cases x, simp add: approx_ssum_def, simp, simp) | |
| 241 |   have "{x::'a \<oplus> 'b. approx i\<cdot>x = x} \<subseteq>
 | |
| 242 |         (\<lambda>x. sinl\<cdot>x) ` {x. approx i\<cdot>x = x} \<union>
 | |
| 243 |         (\<lambda>x. sinr\<cdot>x) ` {x. approx i\<cdot>x = x}"
 | |
| 27310 | 244 | by (rule subsetI, case_tac x rule: ssumE2, simp, simp) | 
| 25915 | 245 |   thus "finite {x::'a \<oplus> 'b. approx i\<cdot>x = x}"
 | 
| 246 | by (rule finite_subset, | |
| 247 | intro finite_UnI finite_imageI finite_fixes_approx) | |
| 248 | qed | |
| 249 | ||
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 250 | end | 
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 251 | |
| 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 252 | end |