src/HOL/Algebra/Generated_Fields.thy
author paulson <lp15@cam.ac.uk>
Thu, 24 Aug 2023 21:40:24 +0100
changeset 78522 918a9ed06898
parent 68582 b9b9e2985878
child 81438 95c9af7483b1
permissions -rw-r--r--
some refinements in Algebra and Number_Theory
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
68582
b9b9e2985878 more standard headers;
wenzelm
parents: 68569
diff changeset
     1
(*  Title:      HOL/Algebra/Generated_Fields.thy
b9b9e2985878 more standard headers;
wenzelm
parents: 68569
diff changeset
     2
    Author:     Martin Baillon
b9b9e2985878 more standard headers;
wenzelm
parents: 68569
diff changeset
     3
*)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     4
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     5
theory Generated_Fields
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     6
imports Generated_Rings Subrings Multiplicative_Group
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     7
begin
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     8
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     9
inductive_set
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    10
  generate_field :: "('a, 'b) ring_scheme \<Rightarrow> 'a set \<Rightarrow> 'a set"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    11
  for R and H where
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    12
    one  : "\<one>\<^bsub>R\<^esub> \<in> generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    13
  | incl : "h \<in> H \<Longrightarrow> h \<in> generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    14
  | a_inv: "h \<in> generate_field R H \<Longrightarrow> \<ominus>\<^bsub>R\<^esub> h \<in> generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    15
  | m_inv: "\<lbrakk> h \<in> generate_field R H; h \<noteq> \<zero>\<^bsub>R\<^esub> \<rbrakk> \<Longrightarrow> inv\<^bsub>R\<^esub> h \<in> generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    16
  | eng_add : "\<lbrakk> h1 \<in> generate_field R H; h2 \<in> generate_field R H \<rbrakk> \<Longrightarrow> h1 \<oplus>\<^bsub>R\<^esub> h2 \<in> generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    17
  | eng_mult: "\<lbrakk> h1 \<in> generate_field R H; h2 \<in> generate_field R H \<rbrakk> \<Longrightarrow> h1 \<otimes>\<^bsub>R\<^esub> h2 \<in> generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    18
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    19
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    20
subsection\<open>Basic Properties of Generated Rings - First Part\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    21
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    22
lemma (in field) generate_field_in_carrier:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    23
  assumes "H \<subseteq> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    24
  shows "h \<in> generate_field R H \<Longrightarrow> h \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    25
  apply (induction rule: generate_field.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    26
  using assms field_Units
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    27
  by blast+
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    28
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    29
lemma (in field) generate_field_incl:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    30
  assumes "H \<subseteq> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    31
  shows "generate_field R H \<subseteq> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    32
  using generate_field_in_carrier[OF assms] by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    33
       
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    34
lemma (in field) zero_in_generate: "\<zero>\<^bsub>R\<^esub> \<in> generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    35
  using one a_inv generate_field.eng_add one_closed r_neg
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    36
  by metis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    37
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    38
lemma (in field) generate_field_is_subfield:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    39
  assumes "H \<subseteq> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    40
  shows "subfield (generate_field R H) R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    41
proof (intro subfieldI', simp_all add: m_inv)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    42
  show "subring (generate_field R H) R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    43
    by (auto intro: subringI[of "generate_field R H"]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    44
             simp add: eng_add a_inv eng_mult one generate_field_in_carrier[OF assms])
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    45
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    46
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    47
lemma (in field) generate_field_is_add_subgroup:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    48
  assumes "H \<subseteq> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    49
  shows "subgroup (generate_field R H) (add_monoid R)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    50
  using subring.axioms(1)[OF subfieldE(1)[OF generate_field_is_subfield[OF assms]]] .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    51
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    52
lemma (in field) generate_field_is_field :
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    53
  assumes "H \<subseteq> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    54
  shows "field (R \<lparr> carrier := generate_field R H \<rparr>)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    55
  using subfield_iff generate_field_is_subfield assms by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    56
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    57
lemma (in field) generate_field_min_subfield1:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    58
  assumes "H \<subseteq> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    59
    and "subfield E R" "H \<subseteq> E"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    60
  shows "generate_field R H \<subseteq> E"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    61
proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    62
  fix h
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    63
  assume h: "h \<in> generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    64
  show "h \<in> E"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    65
    using h and assms(3) and subfield_m_inv[OF assms(2)]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    66
    by (induct rule: generate_field.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    67
       (auto simp add: subringE(3,5-7)[OF subfieldE(1)[OF assms(2)]])
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    68
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    69
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    70
lemma (in field) generate_fieldI:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    71
  assumes "H \<subseteq> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    72
    and "subfield E R" "H \<subseteq> E"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    73
    and "\<And>K. \<lbrakk> subfield K R; H \<subseteq> K \<rbrakk> \<Longrightarrow> E \<subseteq> K"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    74
  shows "E = generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    75
proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    76
  show "E \<subseteq> generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    77
    using assms generate_field_is_subfield generate_field.incl by (metis subset_iff)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    78
  show "generate_field R H \<subseteq> E"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    79
    using generate_field_min_subfield1[OF assms(1-3)] by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    80
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    81
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    82
lemma (in field) generate_fieldE:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    83
  assumes "H \<subseteq> carrier R" and "E = generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    84
  shows "subfield E R" and "H \<subseteq> E" and "\<And>K. \<lbrakk> subfield K R; H \<subseteq> K \<rbrakk> \<Longrightarrow> E \<subseteq> K"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    85
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    86
  show "subfield E R" using assms generate_field_is_subfield by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    87
  show "H \<subseteq> E" using assms(2) by (simp add: generate_field.incl subsetI)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    88
  show "\<And>K. subfield K R  \<Longrightarrow> H \<subseteq> K \<Longrightarrow> E \<subseteq> K"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    89
    using assms generate_field_min_subfield1 by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    90
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    91
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    92
lemma (in field) generate_field_min_subfield2:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    93
  assumes "H \<subseteq> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    94
  shows "generate_field R H = \<Inter>{K. subfield K R \<and> H \<subseteq> K}"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    95
proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    96
  have "subfield (generate_field R H) R \<and> H \<subseteq> generate_field R H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    97
    by (simp add: assms generate_fieldE(2) generate_field_is_subfield)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    98
  thus "\<Inter>{K. subfield K R \<and> H \<subseteq> K} \<subseteq> generate_field R H" by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    99
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   100
  have "\<And>K. subfield K R \<and> H \<subseteq> K \<Longrightarrow> generate_field R H \<subseteq> K"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   101
    by (simp add: assms generate_field_min_subfield1)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   102
  thus "generate_field R H \<subseteq> \<Inter>{K. subfield K R \<and> H \<subseteq> K}" by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   103
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   104
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   105
lemma (in field) mono_generate_field:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   106
  assumes "I \<subseteq> J" and "J \<subseteq> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   107
  shows "generate_field R I \<subseteq> generate_field R J"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   108
proof-
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   109
  have "I \<subseteq> generate_field R J "
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   110
    using assms generate_fieldE(2) by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   111
  thus "generate_field R I \<subseteq> generate_field R J"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   112
    using generate_field_min_subfield1[of I "generate_field R J"] assms generate_field_is_subfield[OF assms(2)]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   113
    by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   114
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   115
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   116
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   117
lemma (in field) subfield_gen_incl :
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   118
  assumes "subfield H R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   119
    and  "subfield K R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   120
    and "I \<subseteq> H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   121
    and "I \<subseteq> K"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   122
  shows "generate_field (R\<lparr>carrier := K\<rparr>) I \<subseteq> generate_field (R\<lparr>carrier := H\<rparr>) I"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   123
proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   124
  {fix J assume J_def : "subfield J R" "I \<subseteq> J"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   125
    have "generate_field (R \<lparr> carrier := J \<rparr>) I \<subseteq> J"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   126
      using field.mono_generate_field[of "(R\<lparr>carrier := J\<rparr>)" I J] subfield_iff(2)[OF J_def(1)]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   127
          field.generate_field_in_carrier[of "R\<lparr>carrier := J\<rparr>"]  field_axioms J_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   128
      by auto}
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   129
  note incl_HK = this
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   130
  {fix x have "x \<in> generate_field (R\<lparr>carrier := K\<rparr>) I \<Longrightarrow> x \<in> generate_field (R\<lparr>carrier := H\<rparr>) I" 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   131
    proof (induction  rule : generate_field.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   132
      case one
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   133
        have "\<one>\<^bsub>R\<lparr>carrier := H\<rparr>\<^esub> \<otimes> \<one>\<^bsub>R\<lparr>carrier := K\<rparr>\<^esub> = \<one>\<^bsub>R\<lparr>carrier := H\<rparr>\<^esub>" by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   134
        moreover have "\<one>\<^bsub>R\<lparr>carrier := H\<rparr>\<^esub> \<otimes> \<one>\<^bsub>R\<lparr>carrier := K\<rparr>\<^esub> = \<one>\<^bsub>R\<lparr>carrier := K\<rparr>\<^esub>" by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   135
        ultimately show ?case using assms generate_field.one by metis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   136
    next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   137
      case (incl h) thus ?case using generate_field.incl by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   138
    next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   139
      case (a_inv h)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   140
      note hyp = this
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   141
      have "a_inv (R\<lparr>carrier := K\<rparr>) h = a_inv R h" 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   142
        using assms group.m_inv_consistent[of "add_monoid R" K] a_comm_group incl_HK[of K] hyp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   143
               subring.axioms(1)[OF subfieldE(1)[OF assms(2)]]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   144
        unfolding comm_group_def a_inv_def by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   145
      moreover have "a_inv (R\<lparr>carrier := H\<rparr>) h = a_inv R h"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   146
        using assms group.m_inv_consistent[of "add_monoid R" H] a_comm_group incl_HK[of H] hyp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   147
               subring.axioms(1)[OF subfieldE(1)[OF assms(1)]]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   148
        unfolding  comm_group_def a_inv_def by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   149
      ultimately show ?case using generate_field.a_inv a_inv.IH by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   150
    next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   151
      case (m_inv h) 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   152
      note hyp = this
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   153
      have h_K : "h \<in> (K - {\<zero>})" using incl_HK[OF assms(2) assms(4)] hyp by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   154
      hence "m_inv (R\<lparr>carrier := K\<rparr>) h = m_inv R h" 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   155
        using  field.m_inv_mult_of[OF subfield_iff(2)[OF assms(2)]]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   156
               group.m_inv_consistent[of "mult_of R" "K - {\<zero>}"] field_mult_group units_of_inv
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   157
               subgroup_mult_of subfieldE[OF assms(2)] unfolding mult_of_def apply simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   158
        by (metis h_K mult_of_def mult_of_is_Units subgroup.mem_carrier units_of_carrier assms(2))
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   159
      moreover have h_H : "h \<in> (H - {\<zero>})" using incl_HK[OF assms(1) assms(3)] hyp by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   160
      hence "m_inv (R\<lparr>carrier := H\<rparr>) h = m_inv R h"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   161
        using  field.m_inv_mult_of[OF subfield_iff(2)[OF assms(1)]]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   162
               group.m_inv_consistent[of "mult_of R" "H - {\<zero>}"] field_mult_group 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   163
               subgroup_mult_of[OF assms(1)]  unfolding mult_of_def apply simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   164
        by (metis h_H field_Units m_inv_mult_of mult_of_is_Units subgroup.mem_carrier units_of_def)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   165
      ultimately show ?case using generate_field.m_inv m_inv.IH h_H by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   166
    next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   167
      case (eng_add h1 h2)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   168
      thus ?case using incl_HK assms generate_field.eng_add by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   169
    next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   170
      case (eng_mult h1 h2)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   171
      thus ?case using generate_field.eng_mult by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   172
    qed}
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   173
  thus "\<And>x. x \<in> generate_field (R\<lparr>carrier := K\<rparr>) I \<Longrightarrow> x \<in> generate_field (R\<lparr>carrier := H\<rparr>) I"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   174
    by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   175
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   176
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   177
lemma (in field) subfield_gen_equality:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   178
  assumes "subfield H R" "K \<subseteq> H"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   179
  shows "generate_field R K = generate_field (R \<lparr> carrier := H \<rparr>) K"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   180
  using subfield_gen_incl[OF assms(1) carrier_is_subfield assms(2)] assms subringE(1)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   181
        subfield_gen_incl[OF carrier_is_subfield assms(1) _ assms(2)] subfieldE(1)[OF assms(1)]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   182
  by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   183
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   184
end