923
|
1 |
(* Title: HOL/gfp
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
For gfp.thy. The Knaster-Tarski Theorem for greatest fixed points.
|
|
7 |
*)
|
|
8 |
|
|
9 |
open Gfp;
|
|
10 |
|
|
11 |
(*** Proof of Knaster-Tarski Theorem using gfp ***)
|
|
12 |
|
|
13 |
(* gfp(f) is the least upper bound of {u. u <= f(u)} *)
|
|
14 |
|
|
15 |
val prems = goalw Gfp.thy [gfp_def] "[| X <= f(X) |] ==> X <= gfp(f)";
|
|
16 |
by (rtac (CollectI RS Union_upper) 1);
|
|
17 |
by (resolve_tac prems 1);
|
|
18 |
qed "gfp_upperbound";
|
|
19 |
|
|
20 |
val prems = goalw Gfp.thy [gfp_def]
|
|
21 |
"[| !!u. u <= f(u) ==> u<=X |] ==> gfp(f) <= X";
|
|
22 |
by (REPEAT (ares_tac ([Union_least]@prems) 1));
|
|
23 |
by (etac CollectD 1);
|
|
24 |
qed "gfp_least";
|
|
25 |
|
|
26 |
val [mono] = goal Gfp.thy "mono(f) ==> gfp(f) <= f(gfp(f))";
|
|
27 |
by (EVERY1 [rtac gfp_least, rtac subset_trans, atac,
|
|
28 |
rtac (mono RS monoD), rtac gfp_upperbound, atac]);
|
|
29 |
qed "gfp_lemma2";
|
|
30 |
|
|
31 |
val [mono] = goal Gfp.thy "mono(f) ==> f(gfp(f)) <= gfp(f)";
|
|
32 |
by (EVERY1 [rtac gfp_upperbound, rtac (mono RS monoD),
|
|
33 |
rtac gfp_lemma2, rtac mono]);
|
|
34 |
qed "gfp_lemma3";
|
|
35 |
|
|
36 |
val [mono] = goal Gfp.thy "mono(f) ==> gfp(f) = f(gfp(f))";
|
|
37 |
by (REPEAT (resolve_tac [equalityI,gfp_lemma2,gfp_lemma3,mono] 1));
|
|
38 |
qed "gfp_Tarski";
|
|
39 |
|
|
40 |
(*** Coinduction rules for greatest fixed points ***)
|
|
41 |
|
|
42 |
(*weak version*)
|
|
43 |
val prems = goal Gfp.thy
|
|
44 |
"[| a: X; X <= f(X) |] ==> a : gfp(f)";
|
|
45 |
by (rtac (gfp_upperbound RS subsetD) 1);
|
|
46 |
by (REPEAT (ares_tac prems 1));
|
|
47 |
qed "weak_coinduct";
|
|
48 |
|
|
49 |
val [prem,mono] = goal Gfp.thy
|
|
50 |
"[| X <= f(X Un gfp(f)); mono(f) |] ==> \
|
|
51 |
\ X Un gfp(f) <= f(X Un gfp(f))";
|
|
52 |
by (rtac (prem RS Un_least) 1);
|
|
53 |
by (rtac (mono RS gfp_lemma2 RS subset_trans) 1);
|
|
54 |
by (rtac (Un_upper2 RS subset_trans) 1);
|
|
55 |
by (rtac (mono RS mono_Un) 1);
|
|
56 |
qed "coinduct_lemma";
|
|
57 |
|
|
58 |
(*strong version, thanks to Coen & Frost*)
|
|
59 |
goal Gfp.thy
|
|
60 |
"!!X. [| mono(f); a: X; X <= f(X Un gfp(f)) |] ==> a : gfp(f)";
|
|
61 |
by (rtac (coinduct_lemma RSN (2, weak_coinduct)) 1);
|
|
62 |
by (REPEAT (ares_tac [UnI1, Un_least] 1));
|
|
63 |
qed "coinduct";
|
|
64 |
|
|
65 |
val [mono,prem] = goal Gfp.thy
|
|
66 |
"[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))";
|
|
67 |
br (mono RS mono_Un RS subsetD) 1;
|
|
68 |
br (mono RS gfp_lemma2 RS subsetD RS UnI2) 1;
|
|
69 |
by (rtac prem 1);
|
|
70 |
qed "gfp_fun_UnI2";
|
|
71 |
|
|
72 |
(*** Even Stronger version of coinduct [by Martin Coen]
|
|
73 |
- instead of the condition X <= f(X)
|
|
74 |
consider X <= (f(X) Un f(f(X)) ...) Un gfp(X) ***)
|
|
75 |
|
|
76 |
val [prem] = goal Gfp.thy "mono(f) ==> mono(%x.f(x) Un X Un B)";
|
|
77 |
by (REPEAT (ares_tac [subset_refl, monoI, Un_mono, prem RS monoD] 1));
|
|
78 |
qed "coinduct3_mono_lemma";
|
|
79 |
|
|
80 |
val [prem,mono] = goal Gfp.thy
|
|
81 |
"[| X <= f(lfp(%x.f(x) Un X Un gfp(f))); mono(f) |] ==> \
|
|
82 |
\ lfp(%x.f(x) Un X Un gfp(f)) <= f(lfp(%x.f(x) Un X Un gfp(f)))";
|
|
83 |
by (rtac subset_trans 1);
|
|
84 |
by (rtac (mono RS coinduct3_mono_lemma RS lfp_lemma3) 1);
|
|
85 |
by (rtac (Un_least RS Un_least) 1);
|
|
86 |
by (rtac subset_refl 1);
|
|
87 |
by (rtac prem 1);
|
|
88 |
by (rtac (mono RS gfp_Tarski RS equalityD1 RS subset_trans) 1);
|
|
89 |
by (rtac (mono RS monoD) 1);
|
|
90 |
by (rtac (mono RS coinduct3_mono_lemma RS lfp_Tarski RS ssubst) 1);
|
|
91 |
by (rtac Un_upper2 1);
|
|
92 |
qed "coinduct3_lemma";
|
|
93 |
|
|
94 |
val prems = goal Gfp.thy
|
|
95 |
"[| mono(f); a:X; X <= f(lfp(%x.f(x) Un X Un gfp(f))) |] ==> a : gfp(f)";
|
|
96 |
by (rtac (coinduct3_lemma RSN (2,weak_coinduct)) 1);
|
|
97 |
by (resolve_tac (prems RL [coinduct3_mono_lemma RS lfp_Tarski RS ssubst]) 1);
|
|
98 |
by (rtac (UnI2 RS UnI1) 1);
|
|
99 |
by (REPEAT (resolve_tac prems 1));
|
|
100 |
qed "coinduct3";
|
|
101 |
|
|
102 |
|
|
103 |
(** Definition forms of gfp_Tarski and coinduct, to control unfolding **)
|
|
104 |
|
|
105 |
val [rew,mono] = goal Gfp.thy "[| A==gfp(f); mono(f) |] ==> A = f(A)";
|
|
106 |
by (rewtac rew);
|
|
107 |
by (rtac (mono RS gfp_Tarski) 1);
|
|
108 |
qed "def_gfp_Tarski";
|
|
109 |
|
|
110 |
val rew::prems = goal Gfp.thy
|
|
111 |
"[| A==gfp(f); mono(f); a:X; X <= f(X Un A) |] ==> a: A";
|
|
112 |
by (rewtac rew);
|
|
113 |
by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct]) 1));
|
|
114 |
qed "def_coinduct";
|
|
115 |
|
|
116 |
(*The version used in the induction/coinduction package*)
|
|
117 |
val prems = goal Gfp.thy
|
|
118 |
"[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w))); \
|
|
119 |
\ a: X; !!z. z: X ==> P (X Un A) z |] ==> \
|
|
120 |
\ a : A";
|
|
121 |
by (rtac def_coinduct 1);
|
|
122 |
by (REPEAT (ares_tac (prems @ [subsetI,CollectI]) 1));
|
|
123 |
qed "def_Collect_coinduct";
|
|
124 |
|
|
125 |
val rew::prems = goal Gfp.thy
|
|
126 |
"[| A==gfp(f); mono(f); a:X; X <= f(lfp(%x.f(x) Un X Un A)) |] ==> a: A";
|
|
127 |
by (rewtac rew);
|
|
128 |
by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct3]) 1));
|
|
129 |
qed "def_coinduct3";
|
|
130 |
|
|
131 |
(*Monotonicity of gfp!*)
|
|
132 |
val prems = goal Gfp.thy
|
|
133 |
"[| mono(f); !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)";
|
|
134 |
by (rtac gfp_upperbound 1);
|
|
135 |
by (rtac subset_trans 1);
|
|
136 |
by (rtac gfp_lemma2 1);
|
|
137 |
by (resolve_tac prems 1);
|
|
138 |
by (resolve_tac prems 1);
|
|
139 |
val gfp_mono = result();
|
|
140 |
|
|
141 |
(*Monotonicity of gfp!*)
|
|
142 |
val [prem] = goal Gfp.thy "[| !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)";
|
|
143 |
br (gfp_upperbound RS gfp_least) 1;
|
|
144 |
be (prem RSN (2,subset_trans)) 1;
|
|
145 |
qed "gfp_mono";
|