923
|
1 |
(* Title: HOL/simpdata.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 1991 University of Cambridge
|
|
5 |
|
|
6 |
Instantiation of the generic simplifier
|
|
7 |
*)
|
|
8 |
|
|
9 |
open Simplifier;
|
|
10 |
|
|
11 |
local
|
|
12 |
|
|
13 |
fun prover s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1]);
|
|
14 |
|
|
15 |
val P_imp_P_iff_True = prover "P --> (P = True)" RS mp;
|
|
16 |
val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection;
|
|
17 |
|
|
18 |
val not_P_imp_P_iff_F = prover "~P --> (P = False)" RS mp;
|
|
19 |
val not_P_imp_P_eq_False = not_P_imp_P_iff_F RS eq_reflection;
|
|
20 |
|
|
21 |
fun atomize pairs =
|
|
22 |
let fun atoms th =
|
|
23 |
(case concl_of th of
|
|
24 |
Const("Trueprop",_) $ p =>
|
|
25 |
(case head_of p of
|
|
26 |
Const(a,_) =>
|
|
27 |
(case assoc(pairs,a) of
|
|
28 |
Some(rls) => flat (map atoms ([th] RL rls))
|
|
29 |
| None => [th])
|
|
30 |
| _ => [th])
|
|
31 |
| _ => [th])
|
|
32 |
in atoms end;
|
|
33 |
|
|
34 |
fun mk_meta_eq r = case concl_of r of
|
|
35 |
Const("==",_)$_$_ => r
|
|
36 |
| _$(Const("op =",_)$_$_) => r RS eq_reflection
|
|
37 |
| _$(Const("not",_)$_) => r RS not_P_imp_P_eq_False
|
|
38 |
| _ => r RS P_imp_P_eq_True;
|
|
39 |
(* last 2 lines requires all formulae to be of the from Trueprop(.) *)
|
|
40 |
|
|
41 |
fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
|
|
42 |
|
|
43 |
val imp_cong = impI RSN
|
|
44 |
(2, prove_goal HOL.thy "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))"
|
|
45 |
(fn _=> [fast_tac HOL_cs 1]) RS mp RS mp);
|
|
46 |
|
|
47 |
val o_apply = prove_goalw HOL.thy [o_def] "(f o g)(x) = f(g(x))"
|
|
48 |
(fn _ => [rtac refl 1]);
|
|
49 |
|
|
50 |
val simp_thms = map prover
|
|
51 |
[ "(x=x) = True",
|
|
52 |
"(~True) = False", "(~False) = True", "(~ ~ P) = P",
|
|
53 |
"(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))",
|
|
54 |
"(True=P) = P", "(P=True) = P",
|
|
55 |
"(True --> P) = P", "(False --> P) = True",
|
|
56 |
"(P --> True) = True", "(P --> P) = True",
|
|
57 |
"(P --> False) = (~P)", "(P --> ~P) = (~P)",
|
|
58 |
"(P & True) = P", "(True & P) = P",
|
|
59 |
"(P & False) = False", "(False & P) = False", "(P & P) = P",
|
|
60 |
"(P | True) = True", "(True | P) = True",
|
|
61 |
"(P | False) = P", "(False | P) = P", "(P | P) = P",
|
|
62 |
"(!x.P) = P", "(? x.P) = P", "? x. x=t", "(? x. x=t & P(x)) = P(t)",
|
|
63 |
"(P|Q --> R) = ((P-->R)&(Q-->R))" ];
|
|
64 |
|
|
65 |
in
|
|
66 |
|
|
67 |
val meta_eq_to_obj_eq = prove_goal HOL.thy "x==y ==> x=y"
|
|
68 |
(fn [prem] => [rewtac prem, rtac refl 1]);
|
|
69 |
|
|
70 |
val eq_sym_conv = prover "(x=y) = (y=x)";
|
|
71 |
|
|
72 |
val conj_assoc = prover "((P&Q)&R) = (P&(Q&R))";
|
|
73 |
|
965
|
74 |
val if_True = prove_goalw HOL.thy [if_def] "(if True then x else y) = x"
|
923
|
75 |
(fn _=>[fast_tac (HOL_cs addIs [select_equality]) 1]);
|
|
76 |
|
965
|
77 |
val if_False = prove_goalw HOL.thy [if_def] "(if False then x else y) = y"
|
923
|
78 |
(fn _=>[fast_tac (HOL_cs addIs [select_equality]) 1]);
|
|
79 |
|
965
|
80 |
val if_P = prove_goal HOL.thy "P ==> (if P then x else y) = x"
|
923
|
81 |
(fn [prem] => [ stac (prem RS eqTrueI) 1, rtac if_True 1 ]);
|
|
82 |
|
965
|
83 |
val if_not_P = prove_goal HOL.thy "~P ==> (if P then x else y) = y"
|
923
|
84 |
(fn [prem] => [ stac (prem RS not_P_imp_P_iff_F) 1, rtac if_False 1 ]);
|
|
85 |
|
|
86 |
val expand_if = prove_goal HOL.thy
|
965
|
87 |
"P(if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
|
923
|
88 |
(fn _=> [ (res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1),
|
|
89 |
rtac (if_P RS ssubst) 2,
|
|
90 |
rtac (if_not_P RS ssubst) 1,
|
|
91 |
REPEAT(fast_tac HOL_cs 1) ]);
|
|
92 |
|
965
|
93 |
val if_bool_eq = prove_goal HOL.thy
|
|
94 |
"(if P then Q else R) = ((P-->Q) & (~P-->R))"
|
|
95 |
(fn _ => [rtac expand_if 1]);
|
923
|
96 |
|
988
|
97 |
(*Add congruence rules for = (instead of ==) *)
|
|
98 |
infix 4 addcongs;
|
923
|
99 |
fun ss addcongs congs = ss addeqcongs (congs RL [eq_reflection]);
|
|
100 |
|
988
|
101 |
(*Add a simpset to a classical set!*)
|
|
102 |
infix 4 addss;
|
|
103 |
fun cs addss ss = cs addbefore asm_full_simp_tac ss 1;
|
|
104 |
|
923
|
105 |
val mksimps_pairs =
|
|
106 |
[("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
|
|
107 |
("All", [spec]), ("True", []), ("False", []),
|
965
|
108 |
("If", [if_bool_eq RS iffD1])];
|
923
|
109 |
|
|
110 |
fun mksimps pairs = map mk_meta_eq o atomize pairs o gen_all;
|
|
111 |
|
|
112 |
val HOL_ss = empty_ss
|
|
113 |
setmksimps (mksimps mksimps_pairs)
|
|
114 |
setsolver (fn prems => resolve_tac (TrueI::refl::prems) ORELSE' atac
|
|
115 |
ORELSE' etac FalseE)
|
|
116 |
setsubgoaler asm_simp_tac
|
|
117 |
addsimps ([if_True, if_False, o_apply, conj_assoc] @ simp_thms)
|
|
118 |
addcongs [imp_cong];
|
|
119 |
|
941
|
120 |
local val mktac = mk_case_split_tac (meta_eq_to_obj_eq RS iffD2)
|
|
121 |
in
|
|
122 |
fun split_tac splits = mktac (map mk_meta_eq splits)
|
|
123 |
end;
|
|
124 |
|
923
|
125 |
|
|
126 |
(* eliminiation of existential quantifiers in assumptions *)
|
|
127 |
|
|
128 |
val ex_all_equiv =
|
|
129 |
let val lemma1 = prove_goal HOL.thy
|
|
130 |
"(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)"
|
|
131 |
(fn prems => [resolve_tac prems 1, etac exI 1]);
|
|
132 |
val lemma2 = prove_goalw HOL.thy [Ex_def]
|
|
133 |
"(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)"
|
|
134 |
(fn prems => [REPEAT(resolve_tac prems 1)])
|
|
135 |
in equal_intr lemma1 lemma2 end;
|
|
136 |
|
|
137 |
(* '&' congruence rule: not included by default!
|
|
138 |
May slow rewrite proofs down by as much as 50% *)
|
|
139 |
|
|
140 |
val conj_cong = impI RSN
|
|
141 |
(2, prove_goal HOL.thy "(P=P')--> (P'--> (Q=Q'))--> ((P&Q) = (P'&Q'))"
|
|
142 |
(fn _=> [fast_tac HOL_cs 1]) RS mp RS mp);
|
|
143 |
|
|
144 |
(** 'if' congruence rules: neither included by default! *)
|
|
145 |
|
|
146 |
(*Simplifies x assuming c and y assuming ~c*)
|
|
147 |
val if_cong = prove_goal HOL.thy
|
965
|
148 |
"[| b=c; c ==> x=u; ~c ==> y=v |] ==>\
|
|
149 |
\ (if b then x else y) = (if c then u else v)"
|
923
|
150 |
(fn rew::prems =>
|
|
151 |
[stac rew 1, stac expand_if 1, stac expand_if 1,
|
|
152 |
fast_tac (HOL_cs addDs prems) 1]);
|
|
153 |
|
|
154 |
(*Prevents simplification of x and y: much faster*)
|
|
155 |
val if_weak_cong = prove_goal HOL.thy
|
965
|
156 |
"b=c ==> (if b then x else y) = (if c then x else y)"
|
923
|
157 |
(fn [prem] => [rtac (prem RS arg_cong) 1]);
|
|
158 |
|
|
159 |
(*Prevents simplification of t: much faster*)
|
|
160 |
val let_weak_cong = prove_goal HOL.thy
|
|
161 |
"a = b ==> (let x=a in t(x)) = (let x=b in t(x))"
|
|
162 |
(fn [prem] => [rtac (prem RS arg_cong) 1]);
|
|
163 |
|
|
164 |
end;
|
|
165 |
|
|
166 |
fun prove nm thm = qed_goal nm HOL.thy thm (fn _ => [fast_tac HOL_cs 1]);
|
|
167 |
|
|
168 |
prove "conj_commute" "(P&Q) = (Q&P)";
|
|
169 |
prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))";
|
|
170 |
val conj_comms = [conj_commute, conj_left_commute];
|
|
171 |
|
|
172 |
prove "conj_disj_distribL" "(P&(Q|R)) = (P&Q | P&R)";
|
|
173 |
prove "conj_disj_distribR" "((P|Q)&R) = (P&R | Q&R)";
|