13020
|
1 |
|
|
2 |
header {* \chapter{The Owicki-Gries Method}
|
|
3 |
|
|
4 |
\section{Abstract Syntax} *}
|
|
5 |
|
16417
|
6 |
theory OG_Com imports Main begin
|
13020
|
7 |
|
|
8 |
text {* Type abbreviations for boolean expressions and assertions: *}
|
|
9 |
|
42174
|
10 |
type_synonym 'a bexp = "'a set"
|
|
11 |
type_synonym 'a assn = "'a set"
|
13020
|
12 |
|
|
13 |
text {* The syntax of commands is defined by two mutually recursive
|
|
14 |
datatypes: @{text "'a ann_com"} for annotated commands and @{text "'a
|
|
15 |
com"} for non-annotated commands. *}
|
|
16 |
|
58310
|
17 |
datatype 'a ann_com =
|
13020
|
18 |
AnnBasic "('a assn)" "('a \<Rightarrow> 'a)"
|
|
19 |
| AnnSeq "('a ann_com)" "('a ann_com)"
|
|
20 |
| AnnCond1 "('a assn)" "('a bexp)" "('a ann_com)" "('a ann_com)"
|
|
21 |
| AnnCond2 "('a assn)" "('a bexp)" "('a ann_com)"
|
|
22 |
| AnnWhile "('a assn)" "('a bexp)" "('a assn)" "('a ann_com)"
|
|
23 |
| AnnAwait "('a assn)" "('a bexp)" "('a com)"
|
|
24 |
and 'a com =
|
|
25 |
Parallel "('a ann_com option \<times> 'a assn) list"
|
|
26 |
| Basic "('a \<Rightarrow> 'a)"
|
|
27 |
| Seq "('a com)" "('a com)"
|
|
28 |
| Cond "('a bexp)" "('a com)" "('a com)"
|
|
29 |
| While "('a bexp)" "('a assn)" "('a com)"
|
|
30 |
|
|
31 |
text {* The function @{text pre} extracts the precondition of an
|
|
32 |
annotated command: *}
|
|
33 |
|
39246
|
34 |
primrec pre ::"'a ann_com \<Rightarrow> 'a assn" where
|
13020
|
35 |
"pre (AnnBasic r f) = r"
|
39246
|
36 |
| "pre (AnnSeq c1 c2) = pre c1"
|
|
37 |
| "pre (AnnCond1 r b c1 c2) = r"
|
|
38 |
| "pre (AnnCond2 r b c) = r"
|
|
39 |
| "pre (AnnWhile r b i c) = r"
|
|
40 |
| "pre (AnnAwait r b c) = r"
|
13020
|
41 |
|
|
42 |
text {* Well-formedness predicate for atomic programs: *}
|
|
43 |
|
39246
|
44 |
primrec atom_com :: "'a com \<Rightarrow> bool" where
|
13020
|
45 |
"atom_com (Parallel Ts) = False"
|
39246
|
46 |
| "atom_com (Basic f) = True"
|
|
47 |
| "atom_com (Seq c1 c2) = (atom_com c1 \<and> atom_com c2)"
|
|
48 |
| "atom_com (Cond b c1 c2) = (atom_com c1 \<and> atom_com c2)"
|
|
49 |
| "atom_com (While b i c) = atom_com c"
|
13020
|
50 |
|
|
51 |
end |