| author | wenzelm | 
| Thu, 25 Nov 2021 21:31:50 +0100 | |
| changeset 74845 | 91ee232b4211 | 
| parent 68358 | e761afd35baa | 
| child 81583 | b6df83045178 | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Map_Functions.thy | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 2 | Author: Brian Huffman | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 3 | *) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 4 | |
| 62175 | 5 | section \<open>Map functions for various types\<close> | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 6 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 7 | theory Map_Functions | 
| 67312 | 8 | imports Deflation Sprod Ssum Sfun Up | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 9 | begin | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 10 | |
| 62175 | 11 | subsection \<open>Map operator for continuous function space\<close> | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 12 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 13 | default_sort cpo | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 14 | |
| 67312 | 15 | definition cfun_map :: "('b \<rightarrow> 'a) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> ('a \<rightarrow> 'c) \<rightarrow> ('b \<rightarrow> 'd)"
 | 
| 16 | where "cfun_map = (\<Lambda> a b f x. b\<cdot>(f\<cdot>(a\<cdot>x)))" | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 17 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 18 | lemma cfun_map_beta [simp]: "cfun_map\<cdot>a\<cdot>b\<cdot>f\<cdot>x = b\<cdot>(f\<cdot>(a\<cdot>x))" | 
| 67312 | 19 | by (simp add: cfun_map_def) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 20 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 21 | lemma cfun_map_ID: "cfun_map\<cdot>ID\<cdot>ID = ID" | 
| 67312 | 22 | by (simp add: cfun_eq_iff) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 23 | |
| 67312 | 24 | lemma cfun_map_map: "cfun_map\<cdot>f1\<cdot>g1\<cdot>(cfun_map\<cdot>f2\<cdot>g2\<cdot>p) = cfun_map\<cdot>(\<Lambda> x. f2\<cdot>(f1\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p" | 
| 25 | by (rule cfun_eqI) simp | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 26 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 27 | lemma ep_pair_cfun_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 28 | assumes "ep_pair e1 p1" and "ep_pair e2 p2" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 29 | shows "ep_pair (cfun_map\<cdot>p1\<cdot>e2) (cfun_map\<cdot>e1\<cdot>p2)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 30 | proof | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 31 | interpret e1p1: ep_pair e1 p1 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 32 | interpret e2p2: ep_pair e2 p2 by fact | 
| 67312 | 33 | show "cfun_map\<cdot>e1\<cdot>p2\<cdot>(cfun_map\<cdot>p1\<cdot>e2\<cdot>f) = f" for f | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 34 | by (simp add: cfun_eq_iff) | 
| 67312 | 35 | show "cfun_map\<cdot>p1\<cdot>e2\<cdot>(cfun_map\<cdot>e1\<cdot>p2\<cdot>g) \<sqsubseteq> g" for g | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 36 | apply (rule cfun_belowI, simp) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 37 | apply (rule below_trans [OF e2p2.e_p_below]) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 38 | apply (rule monofun_cfun_arg) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 39 | apply (rule e1p1.e_p_below) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 40 | done | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 41 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 42 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 43 | lemma deflation_cfun_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 44 | assumes "deflation d1" and "deflation d2" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 45 | shows "deflation (cfun_map\<cdot>d1\<cdot>d2)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 46 | proof | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 47 | interpret d1: deflation d1 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 48 | interpret d2: deflation d2 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 49 | fix f | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 50 | show "cfun_map\<cdot>d1\<cdot>d2\<cdot>(cfun_map\<cdot>d1\<cdot>d2\<cdot>f) = cfun_map\<cdot>d1\<cdot>d2\<cdot>f" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 51 | by (simp add: cfun_eq_iff d1.idem d2.idem) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 52 | show "cfun_map\<cdot>d1\<cdot>d2\<cdot>f \<sqsubseteq> f" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 53 | apply (rule cfun_belowI, simp) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 54 | apply (rule below_trans [OF d2.below]) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 55 | apply (rule monofun_cfun_arg) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 56 | apply (rule d1.below) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 57 | done | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 58 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 59 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 60 | lemma finite_range_cfun_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 61 | assumes a: "finite (range (\<lambda>x. a\<cdot>x))" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 62 | assumes b: "finite (range (\<lambda>y. b\<cdot>y))" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 63 | shows "finite (range (\<lambda>f. cfun_map\<cdot>a\<cdot>b\<cdot>f))" (is "finite (range ?h)") | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 64 | proof (rule finite_imageD) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 65 | let ?f = "\<lambda>g. range (\<lambda>x. (a\<cdot>x, g\<cdot>x))" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 66 | show "finite (?f ` range ?h)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 67 | proof (rule finite_subset) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 68 | let ?B = "Pow (range (\<lambda>x. a\<cdot>x) \<times> range (\<lambda>y. b\<cdot>y))" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 69 | show "?f ` range ?h \<subseteq> ?B" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 70 | by clarsimp | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 71 | show "finite ?B" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 72 | by (simp add: a b) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 73 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 74 | show "inj_on ?f (range ?h)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 75 | proof (rule inj_onI, rule cfun_eqI, clarsimp) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 76 | fix x f g | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 77 | assume "range (\<lambda>x. (a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x)))) = range (\<lambda>x. (a\<cdot>x, b\<cdot>(g\<cdot>(a\<cdot>x))))" | 
| 67312 | 78 | then have "range (\<lambda>x. (a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x)))) \<subseteq> range (\<lambda>x. (a\<cdot>x, b\<cdot>(g\<cdot>(a\<cdot>x))))" | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 79 | by (rule equalityD1) | 
| 67312 | 80 | then have "(a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x))) \<in> range (\<lambda>x. (a\<cdot>x, b\<cdot>(g\<cdot>(a\<cdot>x))))" | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 81 | by (simp add: subset_eq) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 82 | then obtain y where "(a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x))) = (a\<cdot>y, b\<cdot>(g\<cdot>(a\<cdot>y)))" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 83 | by (rule rangeE) | 
| 67312 | 84 | then show "b\<cdot>(f\<cdot>(a\<cdot>x)) = b\<cdot>(g\<cdot>(a\<cdot>x))" | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 85 | by clarsimp | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 86 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 87 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 88 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 89 | lemma finite_deflation_cfun_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 90 | assumes "finite_deflation d1" and "finite_deflation d2" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 91 | shows "finite_deflation (cfun_map\<cdot>d1\<cdot>d2)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 92 | proof (rule finite_deflation_intro) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 93 | interpret d1: finite_deflation d1 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 94 | interpret d2: finite_deflation d2 by fact | 
| 67682 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 wenzelm parents: 
67312diff
changeset | 95 | from d1.deflation_axioms d2.deflation_axioms show "deflation (cfun_map\<cdot>d1\<cdot>d2)" | 
| 67312 | 96 | by (rule deflation_cfun_map) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 97 | have "finite (range (\<lambda>f. cfun_map\<cdot>d1\<cdot>d2\<cdot>f))" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 98 | using d1.finite_range d2.finite_range | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 99 | by (rule finite_range_cfun_map) | 
| 67312 | 100 |   then show "finite {f. cfun_map\<cdot>d1\<cdot>d2\<cdot>f = f}"
 | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 101 | by (rule finite_range_imp_finite_fixes) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 102 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 103 | |
| 62175 | 104 | text \<open>Finite deflations are compact elements of the function space\<close> | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 105 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 106 | lemma finite_deflation_imp_compact: "finite_deflation d \<Longrightarrow> compact d" | 
| 67312 | 107 | apply (frule finite_deflation_imp_deflation) | 
| 108 | apply (subgoal_tac "compact (cfun_map\<cdot>d\<cdot>d\<cdot>d)") | |
| 109 | apply (simp add: cfun_map_def deflation.idem eta_cfun) | |
| 110 | apply (rule finite_deflation.compact) | |
| 111 | apply (simp only: finite_deflation_cfun_map) | |
| 112 | done | |
| 113 | ||
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 114 | |
| 62175 | 115 | subsection \<open>Map operator for product type\<close> | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 116 | |
| 67312 | 117 | definition prod_map :: "('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> 'a \<times> 'c \<rightarrow> 'b \<times> 'd"
 | 
| 118 | where "prod_map = (\<Lambda> f g p. (f\<cdot>(fst p), g\<cdot>(snd p)))" | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 119 | |
| 41297 | 120 | lemma prod_map_Pair [simp]: "prod_map\<cdot>f\<cdot>g\<cdot>(x, y) = (f\<cdot>x, g\<cdot>y)" | 
| 67312 | 121 | by (simp add: prod_map_def) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 122 | |
| 41297 | 123 | lemma prod_map_ID: "prod_map\<cdot>ID\<cdot>ID = ID" | 
| 67312 | 124 | by (auto simp: cfun_eq_iff) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 125 | |
| 67312 | 126 | lemma prod_map_map: "prod_map\<cdot>f1\<cdot>g1\<cdot>(prod_map\<cdot>f2\<cdot>g2\<cdot>p) = prod_map\<cdot>(\<Lambda> x. f1\<cdot>(f2\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p" | 
| 127 | by (induct p) simp | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 128 | |
| 41297 | 129 | lemma ep_pair_prod_map: | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 130 | assumes "ep_pair e1 p1" and "ep_pair e2 p2" | 
| 41297 | 131 | shows "ep_pair (prod_map\<cdot>e1\<cdot>e2) (prod_map\<cdot>p1\<cdot>p2)" | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 132 | proof | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 133 | interpret e1p1: ep_pair e1 p1 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 134 | interpret e2p2: ep_pair e2 p2 by fact | 
| 67312 | 135 | show "prod_map\<cdot>p1\<cdot>p2\<cdot>(prod_map\<cdot>e1\<cdot>e2\<cdot>x) = x" for x | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 136 | by (induct x) simp | 
| 67312 | 137 | show "prod_map\<cdot>e1\<cdot>e2\<cdot>(prod_map\<cdot>p1\<cdot>p2\<cdot>y) \<sqsubseteq> y" for y | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 138 | by (induct y) (simp add: e1p1.e_p_below e2p2.e_p_below) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 139 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 140 | |
| 41297 | 141 | lemma deflation_prod_map: | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 142 | assumes "deflation d1" and "deflation d2" | 
| 41297 | 143 | shows "deflation (prod_map\<cdot>d1\<cdot>d2)" | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 144 | proof | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 145 | interpret d1: deflation d1 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 146 | interpret d2: deflation d2 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 147 | fix x | 
| 41297 | 148 | show "prod_map\<cdot>d1\<cdot>d2\<cdot>(prod_map\<cdot>d1\<cdot>d2\<cdot>x) = prod_map\<cdot>d1\<cdot>d2\<cdot>x" | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 149 | by (induct x) (simp add: d1.idem d2.idem) | 
| 41297 | 150 | show "prod_map\<cdot>d1\<cdot>d2\<cdot>x \<sqsubseteq> x" | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 151 | by (induct x) (simp add: d1.below d2.below) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 152 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 153 | |
| 41297 | 154 | lemma finite_deflation_prod_map: | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 155 | assumes "finite_deflation d1" and "finite_deflation d2" | 
| 41297 | 156 | shows "finite_deflation (prod_map\<cdot>d1\<cdot>d2)" | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 157 | proof (rule finite_deflation_intro) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 158 | interpret d1: finite_deflation d1 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 159 | interpret d2: finite_deflation d2 by fact | 
| 67682 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 wenzelm parents: 
67312diff
changeset | 160 | from d1.deflation_axioms d2.deflation_axioms show "deflation (prod_map\<cdot>d1\<cdot>d2)" | 
| 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 wenzelm parents: 
67312diff
changeset | 161 | by (rule deflation_prod_map) | 
| 41297 | 162 |   have "{p. prod_map\<cdot>d1\<cdot>d2\<cdot>p = p} \<subseteq> {x. d1\<cdot>x = x} \<times> {y. d2\<cdot>y = y}"
 | 
| 67312 | 163 | by auto | 
| 164 |   then show "finite {p. prod_map\<cdot>d1\<cdot>d2\<cdot>p = p}"
 | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 165 | by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 166 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 167 | |
| 67312 | 168 | |
| 62175 | 169 | subsection \<open>Map function for lifted cpo\<close> | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 170 | |
| 67312 | 171 | definition u_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a u \<rightarrow> 'b u"
 | 
| 172 | where "u_map = (\<Lambda> f. fup\<cdot>(up oo f))" | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 173 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 174 | lemma u_map_strict [simp]: "u_map\<cdot>f\<cdot>\<bottom> = \<bottom>" | 
| 67312 | 175 | by (simp add: u_map_def) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 176 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 177 | lemma u_map_up [simp]: "u_map\<cdot>f\<cdot>(up\<cdot>x) = up\<cdot>(f\<cdot>x)" | 
| 67312 | 178 | by (simp add: u_map_def) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 179 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 180 | lemma u_map_ID: "u_map\<cdot>ID = ID" | 
| 67312 | 181 | by (simp add: u_map_def cfun_eq_iff eta_cfun) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 182 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 183 | lemma u_map_map: "u_map\<cdot>f\<cdot>(u_map\<cdot>g\<cdot>p) = u_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>p" | 
| 67312 | 184 | by (induct p) simp_all | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 185 | |
| 41291 | 186 | lemma u_map_oo: "u_map\<cdot>(f oo g) = u_map\<cdot>f oo u_map\<cdot>g" | 
| 67312 | 187 | by (simp add: cfcomp1 u_map_map eta_cfun) | 
| 41291 | 188 | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 189 | lemma ep_pair_u_map: "ep_pair e p \<Longrightarrow> ep_pair (u_map\<cdot>e) (u_map\<cdot>p)" | 
| 67312 | 190 | apply standard | 
| 68358 | 191 | subgoal for x by (cases x) (simp_all add: ep_pair.e_inverse) | 
| 192 | subgoal for y by (cases y) (simp_all add: ep_pair.e_p_below) | |
| 67312 | 193 | done | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 194 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 195 | lemma deflation_u_map: "deflation d \<Longrightarrow> deflation (u_map\<cdot>d)" | 
| 67312 | 196 | apply standard | 
| 68358 | 197 | subgoal for x by (cases x) (simp_all add: deflation.idem) | 
| 198 | subgoal for x by (cases x) (simp_all add: deflation.below) | |
| 67312 | 199 | done | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 200 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 201 | lemma finite_deflation_u_map: | 
| 67312 | 202 | assumes "finite_deflation d" | 
| 203 | shows "finite_deflation (u_map\<cdot>d)" | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 204 | proof (rule finite_deflation_intro) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 205 | interpret d: finite_deflation d by fact | 
| 67682 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 wenzelm parents: 
67312diff
changeset | 206 | from d.deflation_axioms show "deflation (u_map\<cdot>d)" | 
| 67312 | 207 | by (rule deflation_u_map) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 208 |   have "{x. u_map\<cdot>d\<cdot>x = x} \<subseteq> insert \<bottom> ((\<lambda>x. up\<cdot>x) ` {x. d\<cdot>x = x})"
 | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 209 | by (rule subsetI, case_tac x, simp_all) | 
| 67312 | 210 |   then show "finite {x. u_map\<cdot>d\<cdot>x = x}"
 | 
| 211 | by (rule finite_subset) (simp add: d.finite_fixes) | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 212 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 213 | |
| 67312 | 214 | |
| 62175 | 215 | subsection \<open>Map function for strict products\<close> | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 216 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 217 | default_sort pcpo | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 218 | |
| 67312 | 219 | definition sprod_map :: "('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> 'a \<otimes> 'c \<rightarrow> 'b \<otimes> 'd"
 | 
| 220 | where "sprod_map = (\<Lambda> f g. ssplit\<cdot>(\<Lambda> x y. (:f\<cdot>x, g\<cdot>y:)))" | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 221 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 222 | lemma sprod_map_strict [simp]: "sprod_map\<cdot>a\<cdot>b\<cdot>\<bottom> = \<bottom>" | 
| 67312 | 223 | by (simp add: sprod_map_def) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 224 | |
| 67312 | 225 | lemma sprod_map_spair [simp]: "x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> sprod_map\<cdot>f\<cdot>g\<cdot>(:x, y:) = (:f\<cdot>x, g\<cdot>y:)" | 
| 226 | by (simp add: sprod_map_def) | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 227 | |
| 67312 | 228 | lemma sprod_map_spair': "f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> g\<cdot>\<bottom> = \<bottom> \<Longrightarrow> sprod_map\<cdot>f\<cdot>g\<cdot>(:x, y:) = (:f\<cdot>x, g\<cdot>y:)" | 
| 229 | by (cases "x = \<bottom> \<or> y = \<bottom>") auto | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 230 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 231 | lemma sprod_map_ID: "sprod_map\<cdot>ID\<cdot>ID = ID" | 
| 67312 | 232 | by (simp add: sprod_map_def cfun_eq_iff eta_cfun) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 233 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 234 | lemma sprod_map_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 235 | "\<lbrakk>f1\<cdot>\<bottom> = \<bottom>; g1\<cdot>\<bottom> = \<bottom>\<rbrakk> \<Longrightarrow> | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 236 | sprod_map\<cdot>f1\<cdot>g1\<cdot>(sprod_map\<cdot>f2\<cdot>g2\<cdot>p) = | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 237 | sprod_map\<cdot>(\<Lambda> x. f1\<cdot>(f2\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p" | 
| 68358 | 238 | proof (induct p) | 
| 239 | case bottom | |
| 240 | then show ?case by simp | |
| 241 | next | |
| 242 | case (spair x y) | |
| 243 | then show ?case | |
| 244 | apply (cases "f2\<cdot>x = \<bottom>", simp) | |
| 245 | apply (cases "g2\<cdot>y = \<bottom>", simp) | |
| 246 | apply simp | |
| 247 | done | |
| 248 | qed | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 249 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 250 | lemma ep_pair_sprod_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 251 | assumes "ep_pair e1 p1" and "ep_pair e2 p2" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 252 | shows "ep_pair (sprod_map\<cdot>e1\<cdot>e2) (sprod_map\<cdot>p1\<cdot>p2)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 253 | proof | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 254 | interpret e1p1: pcpo_ep_pair e1 p1 unfolding pcpo_ep_pair_def by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 255 | interpret e2p2: pcpo_ep_pair e2 p2 unfolding pcpo_ep_pair_def by fact | 
| 67312 | 256 | show "sprod_map\<cdot>p1\<cdot>p2\<cdot>(sprod_map\<cdot>e1\<cdot>e2\<cdot>x) = x" for x | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 257 | by (induct x) simp_all | 
| 67312 | 258 | show "sprod_map\<cdot>e1\<cdot>e2\<cdot>(sprod_map\<cdot>p1\<cdot>p2\<cdot>y) \<sqsubseteq> y" for y | 
| 68358 | 259 | proof (induct y) | 
| 260 | case bottom | |
| 261 | then show ?case by simp | |
| 262 | next | |
| 263 | case (spair x y) | |
| 264 | then show ?case | |
| 265 | apply simp | |
| 266 | apply (cases "p1\<cdot>x = \<bottom>", simp, cases "p2\<cdot>y = \<bottom>", simp) | |
| 267 | apply (simp add: monofun_cfun e1p1.e_p_below e2p2.e_p_below) | |
| 268 | done | |
| 269 | qed | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 270 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 271 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 272 | lemma deflation_sprod_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 273 | assumes "deflation d1" and "deflation d2" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 274 | shows "deflation (sprod_map\<cdot>d1\<cdot>d2)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 275 | proof | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 276 | interpret d1: deflation d1 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 277 | interpret d2: deflation d2 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 278 | fix x | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 279 | show "sprod_map\<cdot>d1\<cdot>d2\<cdot>(sprod_map\<cdot>d1\<cdot>d2\<cdot>x) = sprod_map\<cdot>d1\<cdot>d2\<cdot>x" | 
| 68358 | 280 | proof (induct x) | 
| 281 | case bottom | |
| 282 | then show ?case by simp | |
| 283 | next | |
| 284 | case (spair x y) | |
| 285 | then show ?case | |
| 286 | apply (cases "d1\<cdot>x = \<bottom>", simp, cases "d2\<cdot>y = \<bottom>", simp) | |
| 287 | apply (simp add: d1.idem d2.idem) | |
| 288 | done | |
| 289 | qed | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 290 | show "sprod_map\<cdot>d1\<cdot>d2\<cdot>x \<sqsubseteq> x" | 
| 68358 | 291 | proof (induct x) | 
| 292 | case bottom | |
| 293 | then show ?case by simp | |
| 294 | next | |
| 295 | case spair | |
| 296 | then show ?case by (simp add: monofun_cfun d1.below d2.below) | |
| 297 | qed | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 298 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 299 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 300 | lemma finite_deflation_sprod_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 301 | assumes "finite_deflation d1" and "finite_deflation d2" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 302 | shows "finite_deflation (sprod_map\<cdot>d1\<cdot>d2)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 303 | proof (rule finite_deflation_intro) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 304 | interpret d1: finite_deflation d1 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 305 | interpret d2: finite_deflation d2 by fact | 
| 67682 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 wenzelm parents: 
67312diff
changeset | 306 | from d1.deflation_axioms d2.deflation_axioms show "deflation (sprod_map\<cdot>d1\<cdot>d2)" | 
| 67312 | 307 | by (rule deflation_sprod_map) | 
| 308 |   have "{x. sprod_map\<cdot>d1\<cdot>d2\<cdot>x = x} \<subseteq>
 | |
| 309 |       insert \<bottom> ((\<lambda>(x, y). (:x, y:)) ` ({x. d1\<cdot>x = x} \<times> {y. d2\<cdot>y = y}))"
 | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 310 | by (rule subsetI, case_tac x, auto simp add: spair_eq_iff) | 
| 67312 | 311 |   then show "finite {x. sprod_map\<cdot>d1\<cdot>d2\<cdot>x = x}"
 | 
| 312 | by (rule finite_subset) (simp add: d1.finite_fixes d2.finite_fixes) | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 313 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 314 | |
| 67312 | 315 | |
| 62175 | 316 | subsection \<open>Map function for strict sums\<close> | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 317 | |
| 67312 | 318 | definition ssum_map :: "('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> 'a \<oplus> 'c \<rightarrow> 'b \<oplus> 'd"
 | 
| 319 | where "ssum_map = (\<Lambda> f g. sscase\<cdot>(sinl oo f)\<cdot>(sinr oo g))" | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 320 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 321 | lemma ssum_map_strict [simp]: "ssum_map\<cdot>f\<cdot>g\<cdot>\<bottom> = \<bottom>" | 
| 67312 | 322 | by (simp add: ssum_map_def) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 323 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 324 | lemma ssum_map_sinl [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = sinl\<cdot>(f\<cdot>x)" | 
| 67312 | 325 | by (simp add: ssum_map_def) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 326 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 327 | lemma ssum_map_sinr [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>x) = sinr\<cdot>(g\<cdot>x)" | 
| 67312 | 328 | by (simp add: ssum_map_def) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 329 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 330 | lemma ssum_map_sinl': "f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = sinl\<cdot>(f\<cdot>x)" | 
| 67312 | 331 | by (cases "x = \<bottom>") simp_all | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 332 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 333 | lemma ssum_map_sinr': "g\<cdot>\<bottom> = \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>x) = sinr\<cdot>(g\<cdot>x)" | 
| 67312 | 334 | by (cases "x = \<bottom>") simp_all | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 335 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 336 | lemma ssum_map_ID: "ssum_map\<cdot>ID\<cdot>ID = ID" | 
| 67312 | 337 | by (simp add: ssum_map_def cfun_eq_iff eta_cfun) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 338 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 339 | lemma ssum_map_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 340 | "\<lbrakk>f1\<cdot>\<bottom> = \<bottom>; g1\<cdot>\<bottom> = \<bottom>\<rbrakk> \<Longrightarrow> | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 341 | ssum_map\<cdot>f1\<cdot>g1\<cdot>(ssum_map\<cdot>f2\<cdot>g2\<cdot>p) = | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 342 | ssum_map\<cdot>(\<Lambda> x. f1\<cdot>(f2\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p" | 
| 68358 | 343 | proof (induct p) | 
| 344 | case bottom | |
| 345 | then show ?case by simp | |
| 346 | next | |
| 347 | case (sinl x) | |
| 348 | then show ?case by (cases "f2\<cdot>x = \<bottom>") simp_all | |
| 349 | next | |
| 350 | case (sinr y) | |
| 351 | then show ?case by (cases "g2\<cdot>y = \<bottom>") simp_all | |
| 352 | qed | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 353 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 354 | lemma ep_pair_ssum_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 355 | assumes "ep_pair e1 p1" and "ep_pair e2 p2" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 356 | shows "ep_pair (ssum_map\<cdot>e1\<cdot>e2) (ssum_map\<cdot>p1\<cdot>p2)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 357 | proof | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 358 | interpret e1p1: pcpo_ep_pair e1 p1 unfolding pcpo_ep_pair_def by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 359 | interpret e2p2: pcpo_ep_pair e2 p2 unfolding pcpo_ep_pair_def by fact | 
| 67312 | 360 | show "ssum_map\<cdot>p1\<cdot>p2\<cdot>(ssum_map\<cdot>e1\<cdot>e2\<cdot>x) = x" for x | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 361 | by (induct x) simp_all | 
| 67312 | 362 | show "ssum_map\<cdot>e1\<cdot>e2\<cdot>(ssum_map\<cdot>p1\<cdot>p2\<cdot>y) \<sqsubseteq> y" for y | 
| 68358 | 363 | proof (induct y) | 
| 364 | case bottom | |
| 365 | then show ?case by simp | |
| 366 | next | |
| 367 | case (sinl x) | |
| 368 | then show ?case by (cases "p1\<cdot>x = \<bottom>") (simp_all add: e1p1.e_p_below) | |
| 369 | next | |
| 370 | case (sinr y) | |
| 371 | then show ?case by (cases "p2\<cdot>y = \<bottom>") (simp_all add: e2p2.e_p_below) | |
| 372 | qed | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 373 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 374 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 375 | lemma deflation_ssum_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 376 | assumes "deflation d1" and "deflation d2" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 377 | shows "deflation (ssum_map\<cdot>d1\<cdot>d2)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 378 | proof | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 379 | interpret d1: deflation d1 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 380 | interpret d2: deflation d2 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 381 | fix x | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 382 | show "ssum_map\<cdot>d1\<cdot>d2\<cdot>(ssum_map\<cdot>d1\<cdot>d2\<cdot>x) = ssum_map\<cdot>d1\<cdot>d2\<cdot>x" | 
| 68358 | 383 | proof (induct x) | 
| 384 | case bottom | |
| 385 | then show ?case by simp | |
| 386 | next | |
| 387 | case (sinl x) | |
| 388 | then show ?case by (cases "d1\<cdot>x = \<bottom>") (simp_all add: d1.idem) | |
| 389 | next | |
| 390 | case (sinr y) | |
| 391 | then show ?case by (cases "d2\<cdot>y = \<bottom>") (simp_all add: d2.idem) | |
| 392 | qed | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 393 | show "ssum_map\<cdot>d1\<cdot>d2\<cdot>x \<sqsubseteq> x" | 
| 68358 | 394 | proof (induct x) | 
| 395 | case bottom | |
| 396 | then show ?case by simp | |
| 397 | next | |
| 398 | case (sinl x) | |
| 399 | then show ?case by (cases "d1\<cdot>x = \<bottom>") (simp_all add: d1.below) | |
| 400 | next | |
| 401 | case (sinr y) | |
| 402 | then show ?case by (cases "d2\<cdot>y = \<bottom>") (simp_all add: d2.below) | |
| 403 | qed | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 404 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 405 | |
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 406 | lemma finite_deflation_ssum_map: | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 407 | assumes "finite_deflation d1" and "finite_deflation d2" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 408 | shows "finite_deflation (ssum_map\<cdot>d1\<cdot>d2)" | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 409 | proof (rule finite_deflation_intro) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 410 | interpret d1: finite_deflation d1 by fact | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 411 | interpret d2: finite_deflation d2 by fact | 
| 67682 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 wenzelm parents: 
67312diff
changeset | 412 | from d1.deflation_axioms d2.deflation_axioms show "deflation (ssum_map\<cdot>d1\<cdot>d2)" | 
| 67312 | 413 | by (rule deflation_ssum_map) | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 414 |   have "{x. ssum_map\<cdot>d1\<cdot>d2\<cdot>x = x} \<subseteq>
 | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 415 |         (\<lambda>x. sinl\<cdot>x) ` {x. d1\<cdot>x = x} \<union>
 | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 416 |         (\<lambda>x. sinr\<cdot>x) ` {x. d2\<cdot>x = x} \<union> {\<bottom>}"
 | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 417 | by (rule subsetI, case_tac x, simp_all) | 
| 67312 | 418 |   then show "finite {x. ssum_map\<cdot>d1\<cdot>d2\<cdot>x = x}"
 | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 419 | by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes) | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 420 | qed | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 421 | |
| 67312 | 422 | |
| 62175 | 423 | subsection \<open>Map operator for strict function space\<close> | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 424 | |
| 67312 | 425 | definition sfun_map :: "('b \<rightarrow> 'a) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> ('a \<rightarrow>! 'c) \<rightarrow> ('b \<rightarrow>! 'd)"
 | 
| 426 | where "sfun_map = (\<Lambda> a b. sfun_abs oo cfun_map\<cdot>a\<cdot>b oo sfun_rep)" | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 427 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 428 | lemma sfun_map_ID: "sfun_map\<cdot>ID\<cdot>ID = ID" | 
| 67312 | 429 | by (simp add: sfun_map_def cfun_map_ID cfun_eq_iff) | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 430 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 431 | lemma sfun_map_map: | 
| 67312 | 432 | assumes "f2\<cdot>\<bottom> = \<bottom>" and "g2\<cdot>\<bottom> = \<bottom>" | 
| 433 | shows "sfun_map\<cdot>f1\<cdot>g1\<cdot>(sfun_map\<cdot>f2\<cdot>g2\<cdot>p) = | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 434 | sfun_map\<cdot>(\<Lambda> x. f2\<cdot>(f1\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p" | 
| 67312 | 435 | by (simp add: sfun_map_def cfun_eq_iff strictify_cancel assms cfun_map_map) | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 436 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 437 | lemma ep_pair_sfun_map: | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 438 | assumes 1: "ep_pair e1 p1" | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 439 | assumes 2: "ep_pair e2 p2" | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 440 | shows "ep_pair (sfun_map\<cdot>p1\<cdot>e2) (sfun_map\<cdot>e1\<cdot>p2)" | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 441 | proof | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 442 | interpret e1p1: pcpo_ep_pair e1 p1 | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 443 | unfolding pcpo_ep_pair_def by fact | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 444 | interpret e2p2: pcpo_ep_pair e2 p2 | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 445 | unfolding pcpo_ep_pair_def by fact | 
| 67312 | 446 | show "sfun_map\<cdot>e1\<cdot>p2\<cdot>(sfun_map\<cdot>p1\<cdot>e2\<cdot>f) = f" for f | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 447 | unfolding sfun_map_def | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 448 | apply (simp add: sfun_eq_iff strictify_cancel) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 449 | apply (rule ep_pair.e_inverse) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 450 | apply (rule ep_pair_cfun_map [OF 1 2]) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 451 | done | 
| 67312 | 452 | show "sfun_map\<cdot>p1\<cdot>e2\<cdot>(sfun_map\<cdot>e1\<cdot>p2\<cdot>g) \<sqsubseteq> g" for g | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 453 | unfolding sfun_map_def | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 454 | apply (simp add: sfun_below_iff strictify_cancel) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 455 | apply (rule ep_pair.e_p_below) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 456 | apply (rule ep_pair_cfun_map [OF 1 2]) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 457 | done | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 458 | qed | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 459 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 460 | lemma deflation_sfun_map: | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 461 | assumes 1: "deflation d1" | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 462 | assumes 2: "deflation d2" | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 463 | shows "deflation (sfun_map\<cdot>d1\<cdot>d2)" | 
| 67312 | 464 | apply (simp add: sfun_map_def) | 
| 465 | apply (rule deflation.intro) | |
| 466 | apply simp | |
| 467 | apply (subst strictify_cancel) | |
| 468 | apply (simp add: cfun_map_def deflation_strict 1 2) | |
| 469 | apply (simp add: cfun_map_def deflation.idem 1 2) | |
| 470 | apply (simp add: sfun_below_iff) | |
| 471 | apply (subst strictify_cancel) | |
| 472 | apply (simp add: cfun_map_def deflation_strict 1 2) | |
| 473 | apply (rule deflation.below) | |
| 474 | apply (rule deflation_cfun_map [OF 1 2]) | |
| 475 | done | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 476 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 477 | lemma finite_deflation_sfun_map: | 
| 67312 | 478 | assumes "finite_deflation d1" | 
| 479 | and "finite_deflation d2" | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 480 | shows "finite_deflation (sfun_map\<cdot>d1\<cdot>d2)" | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 481 | proof (intro finite_deflation_intro) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 482 | interpret d1: finite_deflation d1 by fact | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 483 | interpret d2: finite_deflation d2 by fact | 
| 67682 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 wenzelm parents: 
67312diff
changeset | 484 | from d1.deflation_axioms d2.deflation_axioms show "deflation (sfun_map\<cdot>d1\<cdot>d2)" | 
| 67312 | 485 | by (rule deflation_sfun_map) | 
| 486 | from assms have "finite_deflation (cfun_map\<cdot>d1\<cdot>d2)" | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 487 | by (rule finite_deflation_cfun_map) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 488 |   then have "finite {f. cfun_map\<cdot>d1\<cdot>d2\<cdot>f = f}"
 | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 489 | by (rule finite_deflation.finite_fixes) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 490 | moreover have "inj (\<lambda>f. sfun_rep\<cdot>f)" | 
| 67312 | 491 | by (rule inj_onI) (simp add: sfun_eq_iff) | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 492 |   ultimately have "finite ((\<lambda>f. sfun_rep\<cdot>f) -` {f. cfun_map\<cdot>d1\<cdot>d2\<cdot>f = f})"
 | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 493 | by (rule finite_vimageI) | 
| 67312 | 494 |   with \<open>deflation d1\<close> \<open>deflation d2\<close> show "finite {f. sfun_map\<cdot>d1\<cdot>d2\<cdot>f = f}"
 | 
| 495 | by (simp add: sfun_map_def sfun_eq_iff strictify_cancel deflation_strict) | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 496 | qed | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40502diff
changeset | 497 | |
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: diff
changeset | 498 | end |