69184
|
1 |
(* Title: HOL/Library/Comparator.thy
|
|
2 |
Author: Florian Haftmann, TU Muenchen
|
|
3 |
*)
|
|
4 |
|
|
5 |
theory Comparator
|
|
6 |
imports Main
|
|
7 |
begin
|
|
8 |
|
|
9 |
section \<open>Comparators on linear quasi-orders\<close>
|
|
10 |
|
|
11 |
datatype comp = Less | Equiv | Greater
|
|
12 |
|
|
13 |
locale comparator =
|
|
14 |
fixes cmp :: "'a \<Rightarrow> 'a \<Rightarrow> comp"
|
|
15 |
assumes refl [simp]: "\<And>a. cmp a a = Equiv"
|
|
16 |
and trans_equiv: "\<And>a b c. cmp a b = Equiv \<Longrightarrow> cmp b c = Equiv \<Longrightarrow> cmp a c = Equiv"
|
|
17 |
assumes trans_less: "cmp a b = Less \<Longrightarrow> cmp b c = Less \<Longrightarrow> cmp a c = Less"
|
|
18 |
and greater_iff_sym_less: "\<And>b a. cmp b a = Greater \<longleftrightarrow> cmp a b = Less"
|
|
19 |
begin
|
|
20 |
|
|
21 |
text \<open>Dual properties\<close>
|
|
22 |
|
|
23 |
lemma trans_greater:
|
|
24 |
"cmp a c = Greater" if "cmp a b = Greater" "cmp b c = Greater"
|
|
25 |
using that greater_iff_sym_less trans_less by blast
|
|
26 |
|
|
27 |
lemma less_iff_sym_greater:
|
|
28 |
"cmp b a = Less \<longleftrightarrow> cmp a b = Greater"
|
|
29 |
by (simp add: greater_iff_sym_less)
|
|
30 |
|
|
31 |
text \<open>The equivalence part\<close>
|
|
32 |
|
|
33 |
lemma sym:
|
|
34 |
"cmp b a = Equiv \<longleftrightarrow> cmp a b = Equiv"
|
|
35 |
by (metis (full_types) comp.exhaust greater_iff_sym_less)
|
|
36 |
|
|
37 |
lemma reflp:
|
|
38 |
"reflp (\<lambda>a b. cmp a b = Equiv)"
|
|
39 |
by (rule reflpI) simp
|
|
40 |
|
|
41 |
lemma symp:
|
|
42 |
"symp (\<lambda>a b. cmp a b = Equiv)"
|
|
43 |
by (rule sympI) (simp add: sym)
|
|
44 |
|
|
45 |
lemma transp:
|
|
46 |
"transp (\<lambda>a b. cmp a b = Equiv)"
|
|
47 |
by (rule transpI) (fact trans_equiv)
|
|
48 |
|
|
49 |
lemma equivp:
|
|
50 |
"equivp (\<lambda>a b. cmp a b = Equiv)"
|
|
51 |
using reflp symp transp by (rule equivpI)
|
|
52 |
|
|
53 |
text \<open>The strict part\<close>
|
|
54 |
|
|
55 |
lemma irreflp_less:
|
|
56 |
"irreflp (\<lambda>a b. cmp a b = Less)"
|
|
57 |
by (rule irreflpI) simp
|
|
58 |
|
|
59 |
lemma irreflp_greater:
|
|
60 |
"irreflp (\<lambda>a b. cmp a b = Greater)"
|
|
61 |
by (rule irreflpI) simp
|
|
62 |
|
|
63 |
lemma asym_less:
|
|
64 |
"cmp b a \<noteq> Less" if "cmp a b = Less"
|
|
65 |
using that greater_iff_sym_less by force
|
|
66 |
|
|
67 |
lemma asym_greater:
|
|
68 |
"cmp b a \<noteq> Greater" if "cmp a b = Greater"
|
|
69 |
using that greater_iff_sym_less by force
|
|
70 |
|
|
71 |
lemma asymp_less:
|
|
72 |
"asymp (\<lambda>a b. cmp a b = Less)"
|
|
73 |
using irreflp_less by (auto intro: asympI dest: asym_less)
|
|
74 |
|
|
75 |
lemma asymp_greater:
|
|
76 |
"asymp (\<lambda>a b. cmp a b = Greater)"
|
|
77 |
using irreflp_greater by (auto intro!: asympI dest: asym_greater)
|
|
78 |
|
|
79 |
lemma transp_less:
|
|
80 |
"transp (\<lambda>a b. cmp a b = Less)"
|
|
81 |
by (rule transpI) (fact trans_less)
|
|
82 |
|
|
83 |
lemma transp_greater:
|
|
84 |
"transp (\<lambda>a b. cmp a b = Greater)"
|
|
85 |
by (rule transpI) (fact trans_greater)
|
|
86 |
|
|
87 |
text \<open>The reflexive part\<close>
|
|
88 |
|
|
89 |
lemma reflp_not_less:
|
|
90 |
"reflp (\<lambda>a b. cmp a b \<noteq> Less)"
|
|
91 |
by (rule reflpI) simp
|
|
92 |
|
|
93 |
lemma reflp_not_greater:
|
|
94 |
"reflp (\<lambda>a b. cmp a b \<noteq> Greater)"
|
|
95 |
by (rule reflpI) simp
|
|
96 |
|
|
97 |
lemma quasisym_not_less:
|
|
98 |
"cmp a b = Equiv" if "cmp a b \<noteq> Less" and "cmp b a \<noteq> Less"
|
|
99 |
using that comp.exhaust greater_iff_sym_less by auto
|
|
100 |
|
|
101 |
lemma quasisym_not_greater:
|
|
102 |
"cmp a b = Equiv" if "cmp a b \<noteq> Greater" and "cmp b a \<noteq> Greater"
|
|
103 |
using that comp.exhaust greater_iff_sym_less by auto
|
|
104 |
|
|
105 |
lemma trans_not_less:
|
|
106 |
"cmp a c \<noteq> Less" if "cmp a b \<noteq> Less" "cmp b c \<noteq> Less"
|
|
107 |
using that by (metis comp.exhaust greater_iff_sym_less trans_equiv trans_less)
|
|
108 |
|
|
109 |
lemma trans_not_greater:
|
|
110 |
"cmp a c \<noteq> Greater" if "cmp a b \<noteq> Greater" "cmp b c \<noteq> Greater"
|
|
111 |
using that greater_iff_sym_less trans_not_less by blast
|
|
112 |
|
|
113 |
lemma transp_not_less:
|
|
114 |
"transp (\<lambda>a b. cmp a b \<noteq> Less)"
|
|
115 |
by (rule transpI) (fact trans_not_less)
|
|
116 |
|
|
117 |
lemma transp_not_greater:
|
|
118 |
"transp (\<lambda>a b. cmp a b \<noteq> Greater)"
|
|
119 |
by (rule transpI) (fact trans_not_greater)
|
|
120 |
|
|
121 |
end
|
|
122 |
|
|
123 |
typedef 'a comparator = "{cmp :: 'a \<Rightarrow> 'a \<Rightarrow> comp. comparator cmp}"
|
|
124 |
morphisms compare Abs_comparator
|
|
125 |
proof -
|
|
126 |
have "comparator (\<lambda>_ _. Equiv)"
|
|
127 |
by standard simp_all
|
|
128 |
then show ?thesis
|
|
129 |
by auto
|
|
130 |
qed
|
|
131 |
|
|
132 |
setup_lifting type_definition_comparator
|
|
133 |
|
|
134 |
global_interpretation compare: comparator "compare cmp"
|
|
135 |
using compare [of cmp] by simp
|
|
136 |
|
|
137 |
lift_definition flat :: "'a comparator"
|
|
138 |
is "\<lambda>_ _. Equiv" by standard simp_all
|
|
139 |
|
|
140 |
instantiation comparator :: (linorder) default
|
|
141 |
begin
|
|
142 |
|
|
143 |
lift_definition default_comparator :: "'a comparator"
|
|
144 |
is "\<lambda>x y. if x < y then Less else if x > y then Greater else Equiv"
|
|
145 |
by standard (auto split: if_splits)
|
|
146 |
|
|
147 |
instance ..
|
|
148 |
|
|
149 |
end
|
|
150 |
|
|
151 |
text \<open>A rudimentary quickcheck setup\<close>
|
|
152 |
|
|
153 |
instantiation comparator :: (enum) equal
|
|
154 |
begin
|
|
155 |
|
|
156 |
lift_definition equal_comparator :: "'a comparator \<Rightarrow> 'a comparator \<Rightarrow> bool"
|
|
157 |
is "\<lambda>f g. \<forall>x \<in> set Enum.enum. f x = g x" .
|
|
158 |
|
|
159 |
instance
|
|
160 |
by (standard; transfer) (auto simp add: enum_UNIV)
|
|
161 |
|
|
162 |
end
|
|
163 |
|
|
164 |
lemma [code]:
|
|
165 |
"HOL.equal cmp1 cmp2 \<longleftrightarrow> Enum.enum_all (\<lambda>x. compare cmp1 x = compare cmp2 x)"
|
|
166 |
by transfer (simp add: enum_UNIV)
|
|
167 |
|
|
168 |
lemma [code nbe]:
|
|
169 |
"HOL.equal (cmp :: 'a::enum comparator) cmp \<longleftrightarrow> True"
|
|
170 |
by (fact equal_refl)
|
|
171 |
|
|
172 |
instantiation comparator :: ("{linorder, typerep}") full_exhaustive
|
|
173 |
begin
|
|
174 |
|
|
175 |
definition full_exhaustive_comparator ::
|
|
176 |
"('a comparator \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option)
|
|
177 |
\<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
|
|
178 |
where "full_exhaustive_comparator f s =
|
|
179 |
Quickcheck_Exhaustive.orelse
|
|
180 |
(f (flat, (\<lambda>u. Code_Evaluation.Const (STR ''Comparator.flat'') TYPEREP('a comparator))))
|
|
181 |
(f (default, (\<lambda>u. Code_Evaluation.Const (STR ''HOL.default_class.default'') TYPEREP('a comparator))))"
|
|
182 |
|
|
183 |
instance ..
|
|
184 |
|
|
185 |
end
|
|
186 |
|
|
187 |
lift_definition reversed :: "'a comparator \<Rightarrow> 'a comparator"
|
|
188 |
is "\<lambda>cmp a b. cmp b a"
|
|
189 |
proof -
|
|
190 |
fix cmp :: "'a \<Rightarrow> 'a \<Rightarrow> comp"
|
|
191 |
assume "comparator cmp"
|
|
192 |
then interpret comparator cmp .
|
|
193 |
show "comparator (\<lambda>a b. cmp b a)"
|
|
194 |
by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less)
|
|
195 |
qed
|
|
196 |
|
|
197 |
lift_definition key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a comparator \<Rightarrow> 'b comparator"
|
|
198 |
is "\<lambda>f cmp a b. cmp (f a) (f b)"
|
|
199 |
proof -
|
|
200 |
fix cmp :: "'a \<Rightarrow> 'a \<Rightarrow> comp" and f :: "'b \<Rightarrow> 'a"
|
|
201 |
assume "comparator cmp"
|
|
202 |
then interpret comparator cmp .
|
|
203 |
show "comparator (\<lambda>a b. cmp (f a) (f b))"
|
|
204 |
by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less)
|
|
205 |
qed
|
|
206 |
|
|
207 |
end
|