| 
21131
 | 
     1  | 
(* Title:       HOL/ex/LexOrds.thy
  | 
| 
 | 
     2  | 
   ID:
  | 
| 
 | 
     3  | 
   Author:      Lukas Bulwahn, TU Muenchen
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
Examples for functions whose termination is proven by lexicographic order.
  | 
| 
 | 
     6  | 
*)
  | 
| 
 | 
     7  | 
 
  | 
| 
 | 
     8  | 
theory LexOrds
  | 
| 
 | 
     9  | 
imports Main
  | 
| 
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
subsection {* Trivial examples *}
 | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
fun f :: "nat \<Rightarrow> nat"
  | 
| 
 | 
    15  | 
where
  | 
| 
 | 
    16  | 
"f n = n"
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
termination by lexicographic_order
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
fun g :: "nat \<Rightarrow> nat"
  | 
| 
 | 
    22  | 
where 
  | 
| 
 | 
    23  | 
  "g 0 = 0"
  | 
| 
 | 
    24  | 
  "g (Suc n) = Suc (g n)"
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
termination by lexicographic_order
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
subsection {* Examples on natural numbers *}
 | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
fun bin :: "(nat * nat) \<Rightarrow> nat"
  | 
| 
 | 
    32  | 
where
  | 
| 
 | 
    33  | 
  "bin (0, 0) = 1"
  | 
| 
 | 
    34  | 
  "bin (Suc n, 0) = 0"
  | 
| 
 | 
    35  | 
  "bin (0, Suc m) = 0"
  | 
| 
 | 
    36  | 
  "bin (Suc n, Suc m) = bin (n, m) + bin (Suc n, m)"
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
termination by lexicographic_order
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
fun t :: "(nat * nat) \<Rightarrow> nat"
  | 
| 
 | 
    42  | 
where
  | 
| 
 | 
    43  | 
  "t (0,n) = 0"
  | 
| 
 | 
    44  | 
  "t (n,0) = 0"
  | 
| 
 | 
    45  | 
  "t (Suc n, Suc m) = (if (n mod 2 = 0) then (t (Suc n, m)) else (t (n, Suc m)))" 
  | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
termination by lexicographic_order
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
function h :: "(nat * nat) * (nat * nat) \<Rightarrow> nat"
  | 
| 
 | 
    50  | 
where
  | 
| 
 | 
    51  | 
  "h ((0,0),(0,0)) = 0"
  | 
| 
 | 
    52  | 
  "h ((Suc z, y), (u,v)) = h((z, y), (u, v))" (* z is descending *)
  | 
| 
 | 
    53  | 
  "h ((0, Suc y), (u,v)) = h((1, y), (u, v))" (* y is descending *)
  | 
| 
 | 
    54  | 
  "h ((0,0), (Suc u, v)) = h((1, 1), (u, v))" (* u is descending *)
  | 
| 
 | 
    55  | 
  "h ((0,0), (0, Suc v)) = h ((1,1), (1,v))" (*  v is descending *)
  | 
| 
 | 
    56  | 
by (pat_completeness, auto)
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
termination by lexicographic_order
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
fun gcd2 :: "nat \<Rightarrow> nat \<Rightarrow> nat"
  | 
| 
 | 
    62  | 
where
  | 
| 
 | 
    63  | 
  "gcd2 x 0 = x"
  | 
| 
 | 
    64  | 
| "gcd2 0 y = y"
  | 
| 
 | 
    65  | 
| "gcd2 (Suc x) (Suc y) = (if x < y then gcd2 (Suc x) (y - x)
  | 
| 
 | 
    66  | 
                                    else gcd2 (x - y) (Suc y))"
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
termination by lexicographic_order
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
function ack :: "(nat * nat) \<Rightarrow> nat"
  | 
| 
 | 
    72  | 
where
  | 
| 
 | 
    73  | 
  "ack (0, m) = Suc m"
  | 
| 
 | 
    74  | 
  "ack (Suc n, 0) = ack(n, 1)"
  | 
| 
 | 
    75  | 
  "ack (Suc n, Suc m) = ack (n, ack (Suc n, m))"
  | 
| 
 | 
    76  | 
by pat_completeness auto
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
termination by lexicographic_order
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
subsection {* Simple examples with other datatypes than nat, e.g. trees and lists *}
 | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
datatype tree = Node | Branch tree tree
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
fun g_tree :: "tree * tree \<Rightarrow> tree"
  | 
| 
 | 
    85  | 
where
  | 
| 
 | 
    86  | 
  "g_tree (Node, Node) = Node"
  | 
| 
 | 
    87  | 
  "g_tree (Node, Branch a b) = Branch Node (g_tree (a,b))"
  | 
| 
 | 
    88  | 
  "g_tree (Branch a b, Node) = Branch (g_tree (a,Node)) b"
  | 
| 
 | 
    89  | 
  "g_tree (Branch a b, Branch c d) = Branch (g_tree (a,c)) (g_tree (b,d))"
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
termination by lexicographic_order
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
  | 
| 
 | 
    95  | 
fun acklist :: "'a list * 'a list \<Rightarrow> 'a list"
  | 
| 
 | 
    96  | 
where
  | 
| 
 | 
    97  | 
  "acklist ([], m) = ((hd m)#m)"
  | 
| 
 | 
    98  | 
|  "acklist (n#ns, []) = acklist (ns, [n])"
  | 
| 
 | 
    99  | 
|  "acklist ((n#ns), (m#ms)) = acklist (ns, acklist ((n#ns), ms))"
  | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
termination by lexicographic_order
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
subsection {* Examples with mutual recursion *}
 | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
fun evn od :: "nat \<Rightarrow> bool"
  | 
| 
 | 
   107  | 
where
  | 
| 
 | 
   108  | 
  "evn 0 = True"
  | 
| 
 | 
   109  | 
| "od 0 = False"
  | 
| 
 | 
   110  | 
| "evn (Suc n) = od n"
  | 
| 
 | 
   111  | 
| "od (Suc n) = evn n"
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
termination by lexicographic_order
  | 
| 
 | 
   114  | 
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
fun
  | 
| 
 | 
   117  | 
 evn2 od2  :: "(nat * nat) \<Rightarrow> bool"
  | 
| 
 | 
   118  | 
where
  | 
| 
 | 
   119  | 
  "evn2 (0, n) = True"
  | 
| 
 | 
   120  | 
  "evn2 (n, 0) = True"
  | 
| 
 | 
   121  | 
  "od2 (0, n) = False"
  | 
| 
 | 
   122  | 
  "od2 (n, 0) = False"
  | 
| 
 | 
   123  | 
  "evn2 (Suc n, Suc m) = od2 (Suc n, m)"
  | 
| 
 | 
   124  | 
  "od2 (Suc n, Suc m) = evn2 (n, Suc m)"
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
termination by lexicographic_order
  | 
| 
 | 
   127  | 
  | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
fun evn3 od3 :: "(nat * nat) \<Rightarrow> nat"
  | 
| 
 | 
   130  | 
where
  | 
| 
 | 
   131  | 
  "evn3 (0,n) = n"
  | 
| 
 | 
   132  | 
  "od3 (0,n) = n"
  | 
| 
 | 
   133  | 
  "evn3 (n,0) = n"
  | 
| 
 | 
   134  | 
  "od3 (n,0) = n"
  | 
| 
 | 
   135  | 
  "evn3 (Suc n, Suc m) = od3 (Suc m, n)"
  | 
| 
 | 
   136  | 
  "od3 (Suc n, Suc m) = evn3 (Suc m, n) + od3(n, m)"
  | 
| 
 | 
   137  | 
  | 
| 
 | 
   138  | 
termination by lexicographic_order
  | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
  | 
| 
 | 
   141  | 
fun div3r0 div3r1 div3r2 :: "(nat * nat) \<Rightarrow> bool"
  | 
| 
 | 
   142  | 
where
  | 
| 
 | 
   143  | 
  "div3r0 (0, 0) = True"
  | 
| 
 | 
   144  | 
  "div3r1 (0, 0) = False"
  | 
| 
 | 
   145  | 
  "div3r2 (0, 0) = False"
  | 
| 
 | 
   146  | 
  "div3r0 (0, Suc m) = div3r2 (0, m)"
  | 
| 
 | 
   147  | 
  "div3r1 (0, Suc m) = div3r0 (0, m)"
  | 
| 
 | 
   148  | 
  "div3r2 (0, Suc m) = div3r1 (0, m)"
  | 
| 
 | 
   149  | 
  "div3r0 (Suc n, 0) = div3r2 (n, 0)"
  | 
| 
 | 
   150  | 
  "div3r1 (Suc n, 0) = div3r0 (n, 0)"
  | 
| 
 | 
   151  | 
  "div3r2 (Suc n, 0) = div3r1 (n, 0)"
  | 
| 
 | 
   152  | 
  "div3r1 (Suc n, Suc m) = div3r2 (n, m)"
  | 
| 
 | 
   153  | 
  "div3r2 (Suc n, Suc m) = div3r0 (n, m)"
  | 
| 
 | 
   154  | 
  "div3r0 (Suc n, Suc m) = div3r1 (n, m)"
  | 
| 
 | 
   155  | 
  | 
| 
 | 
   156  | 
termination by lexicographic_order
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
subsection {*Examples for an unprovable termination *}
 | 
| 
 | 
   160  | 
  | 
| 
 | 
   161  | 
text {* If termination cannot be proven, the tactic gives further information about unprovable subgoals on the arguments *}
 | 
| 
 | 
   162  | 
  | 
| 
 | 
   163  | 
fun noterm :: "(nat * nat) \<Rightarrow> nat"
  | 
| 
 | 
   164  | 
where
  | 
| 
 | 
   165  | 
  "noterm (a,b) = noterm(b,a)"
  | 
| 
 | 
   166  | 
  | 
| 
 | 
   167  | 
(* termination by apply lexicographic_order*)
  | 
| 
 | 
   168  | 
  | 
| 
 | 
   169  | 
fun term_but_no_prove :: "nat * nat \<Rightarrow> nat"
  | 
| 
 | 
   170  | 
where
  | 
| 
 | 
   171  | 
  "term_but_no_prove (0,0) = 1"
  | 
| 
 | 
   172  | 
  "term_but_no_prove (0, Suc b) = 0"
  | 
| 
 | 
   173  | 
  "term_but_no_prove (Suc a, 0) = 0"
  | 
| 
 | 
   174  | 
  "term_but_no_prove (Suc a, Suc b) = term_but_no_prove (b, a)"
  | 
| 
 | 
   175  | 
  | 
| 
 | 
   176  | 
(* termination by lexicographic_order *)
  | 
| 
 | 
   177  | 
  | 
| 
 | 
   178  | 
text{* The tactic distinguishes between N = not provable AND F = False *}
 | 
| 
 | 
   179  | 
fun no_proof :: "nat \<Rightarrow> nat"
  | 
| 
 | 
   180  | 
where
  | 
| 
 | 
   181  | 
  "no_proof m = no_proof (Suc m)"
  | 
| 
 | 
   182  | 
  | 
| 
 | 
   183  | 
(* termination by lexicographic_order *)
  | 
| 
 | 
   184  | 
  | 
| 
 | 
   185  | 
end  |