author | wenzelm |
Mon, 02 May 2011 16:33:21 +0200 | |
changeset 42616 | 92715b528e78 |
parent 41550 | efa734d9b221 |
child 45231 | d85a2fdc586c |
permissions | -rw-r--r-- |
3390
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
1 |
(* Title: HOL/Power.thy |
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
3 |
Copyright 1997 University of Cambridge |
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
4 |
*) |
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
5 |
|
30960 | 6 |
header {* Exponentiation *} |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
7 |
|
15131 | 8 |
theory Power |
21413 | 9 |
imports Nat |
15131 | 10 |
begin |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
11 |
|
30960 | 12 |
subsection {* Powers for Arbitrary Monoids *} |
13 |
||
30996 | 14 |
class power = one + times |
30960 | 15 |
begin |
24996 | 16 |
|
30960 | 17 |
primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where |
18 |
power_0: "a ^ 0 = 1" |
|
19 |
| power_Suc: "a ^ Suc n = a * a ^ n" |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
20 |
|
30996 | 21 |
notation (latex output) |
22 |
power ("(_\<^bsup>_\<^esup>)" [1000] 1000) |
|
23 |
||
24 |
notation (HTML output) |
|
25 |
power ("(_\<^bsup>_\<^esup>)" [1000] 1000) |
|
26 |
||
30960 | 27 |
end |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
28 |
|
30996 | 29 |
context monoid_mult |
30 |
begin |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
31 |
|
39438
c5ece2a7a86e
Isar "default" step needs to fail for solved problems, for clear distinction of '.' and '..' for example -- amending lapse introduced in 9de4d64eee3b (April 2004);
wenzelm
parents:
36409
diff
changeset
|
32 |
subclass power . |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
33 |
|
30996 | 34 |
lemma power_one [simp]: |
35 |
"1 ^ n = 1" |
|
30273
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents:
30242
diff
changeset
|
36 |
by (induct n) simp_all |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
37 |
|
30996 | 38 |
lemma power_one_right [simp]: |
31001 | 39 |
"a ^ 1 = a" |
30996 | 40 |
by simp |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
41 |
|
30996 | 42 |
lemma power_commutes: |
43 |
"a ^ n * a = a * a ^ n" |
|
30273
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents:
30242
diff
changeset
|
44 |
by (induct n) (simp_all add: mult_assoc) |
21199
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents:
17149
diff
changeset
|
45 |
|
30996 | 46 |
lemma power_Suc2: |
47 |
"a ^ Suc n = a ^ n * a" |
|
30273
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents:
30242
diff
changeset
|
48 |
by (simp add: power_commutes) |
28131
3130d7b3149d
add lemma power_Suc2; generalize power_minus from class comm_ring_1 to ring_1
huffman
parents:
25874
diff
changeset
|
49 |
|
30996 | 50 |
lemma power_add: |
51 |
"a ^ (m + n) = a ^ m * a ^ n" |
|
52 |
by (induct m) (simp_all add: algebra_simps) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
53 |
|
30996 | 54 |
lemma power_mult: |
55 |
"a ^ (m * n) = (a ^ m) ^ n" |
|
30273
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents:
30242
diff
changeset
|
56 |
by (induct n) (simp_all add: power_add) |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
57 |
|
30996 | 58 |
end |
59 |
||
60 |
context comm_monoid_mult |
|
61 |
begin |
|
62 |
||
63 |
lemma power_mult_distrib: |
|
64 |
"(a * b) ^ n = (a ^ n) * (b ^ n)" |
|
30273
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents:
30242
diff
changeset
|
65 |
by (induct n) (simp_all add: mult_ac) |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
66 |
|
30996 | 67 |
end |
68 |
||
69 |
context semiring_1 |
|
70 |
begin |
|
71 |
||
72 |
lemma of_nat_power: |
|
73 |
"of_nat (m ^ n) = of_nat m ^ n" |
|
74 |
by (induct n) (simp_all add: of_nat_mult) |
|
75 |
||
76 |
end |
|
77 |
||
78 |
context comm_semiring_1 |
|
79 |
begin |
|
80 |
||
81 |
text {* The divides relation *} |
|
82 |
||
83 |
lemma le_imp_power_dvd: |
|
84 |
assumes "m \<le> n" shows "a ^ m dvd a ^ n" |
|
85 |
proof |
|
86 |
have "a ^ n = a ^ (m + (n - m))" |
|
87 |
using `m \<le> n` by simp |
|
88 |
also have "\<dots> = a ^ m * a ^ (n - m)" |
|
89 |
by (rule power_add) |
|
90 |
finally show "a ^ n = a ^ m * a ^ (n - m)" . |
|
91 |
qed |
|
92 |
||
93 |
lemma power_le_dvd: |
|
94 |
"a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b" |
|
95 |
by (rule dvd_trans [OF le_imp_power_dvd]) |
|
96 |
||
97 |
lemma dvd_power_same: |
|
98 |
"x dvd y \<Longrightarrow> x ^ n dvd y ^ n" |
|
99 |
by (induct n) (auto simp add: mult_dvd_mono) |
|
100 |
||
101 |
lemma dvd_power_le: |
|
102 |
"x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m" |
|
103 |
by (rule power_le_dvd [OF dvd_power_same]) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
104 |
|
30996 | 105 |
lemma dvd_power [simp]: |
106 |
assumes "n > (0::nat) \<or> x = 1" |
|
107 |
shows "x dvd (x ^ n)" |
|
108 |
using assms proof |
|
109 |
assume "0 < n" |
|
110 |
then have "x ^ n = x ^ Suc (n - 1)" by simp |
|
111 |
then show "x dvd (x ^ n)" by simp |
|
112 |
next |
|
113 |
assume "x = 1" |
|
114 |
then show "x dvd (x ^ n)" by simp |
|
115 |
qed |
|
116 |
||
117 |
end |
|
118 |
||
119 |
context ring_1 |
|
120 |
begin |
|
121 |
||
122 |
lemma power_minus: |
|
123 |
"(- a) ^ n = (- 1) ^ n * a ^ n" |
|
124 |
proof (induct n) |
|
125 |
case 0 show ?case by simp |
|
126 |
next |
|
127 |
case (Suc n) then show ?case |
|
128 |
by (simp del: power_Suc add: power_Suc2 mult_assoc) |
|
129 |
qed |
|
130 |
||
131 |
end |
|
132 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33364
diff
changeset
|
133 |
context linordered_semidom |
30996 | 134 |
begin |
135 |
||
136 |
lemma zero_less_power [simp]: |
|
137 |
"0 < a \<Longrightarrow> 0 < a ^ n" |
|
138 |
by (induct n) (simp_all add: mult_pos_pos) |
|
139 |
||
140 |
lemma zero_le_power [simp]: |
|
141 |
"0 \<le> a \<Longrightarrow> 0 \<le> a ^ n" |
|
142 |
by (induct n) (simp_all add: mult_nonneg_nonneg) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
143 |
|
25874 | 144 |
lemma one_le_power[simp]: |
30996 | 145 |
"1 \<le> a \<Longrightarrow> 1 \<le> a ^ n" |
146 |
apply (induct n) |
|
147 |
apply simp_all |
|
148 |
apply (rule order_trans [OF _ mult_mono [of 1 _ 1]]) |
|
149 |
apply (simp_all add: order_trans [OF zero_le_one]) |
|
150 |
done |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
151 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
152 |
lemma power_gt1_lemma: |
30996 | 153 |
assumes gt1: "1 < a" |
154 |
shows "1 < a * a ^ n" |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
155 |
proof - |
30996 | 156 |
from gt1 have "0 \<le> a" |
157 |
by (fact order_trans [OF zero_le_one less_imp_le]) |
|
158 |
have "1 * 1 < a * 1" using gt1 by simp |
|
159 |
also have "\<dots> \<le> a * a ^ n" using gt1 |
|
160 |
by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le |
|
14577 | 161 |
zero_le_one order_refl) |
162 |
finally show ?thesis by simp |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
163 |
qed |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
164 |
|
30996 | 165 |
lemma power_gt1: |
166 |
"1 < a \<Longrightarrow> 1 < a ^ Suc n" |
|
167 |
by (simp add: power_gt1_lemma) |
|
24376 | 168 |
|
30996 | 169 |
lemma one_less_power [simp]: |
170 |
"1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n" |
|
171 |
by (cases n) (simp_all add: power_gt1_lemma) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
172 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
173 |
lemma power_le_imp_le_exp: |
30996 | 174 |
assumes gt1: "1 < a" |
175 |
shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n" |
|
176 |
proof (induct m arbitrary: n) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
177 |
case 0 |
14577 | 178 |
show ?case by simp |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
179 |
next |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
180 |
case (Suc m) |
14577 | 181 |
show ?case |
182 |
proof (cases n) |
|
183 |
case 0 |
|
30996 | 184 |
with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp |
14577 | 185 |
with gt1 show ?thesis |
186 |
by (force simp only: power_gt1_lemma |
|
30996 | 187 |
not_less [symmetric]) |
14577 | 188 |
next |
189 |
case (Suc n) |
|
30996 | 190 |
with Suc.prems Suc.hyps show ?thesis |
14577 | 191 |
by (force dest: mult_left_le_imp_le |
30996 | 192 |
simp add: less_trans [OF zero_less_one gt1]) |
14577 | 193 |
qed |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
194 |
qed |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
195 |
|
14577 | 196 |
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*} |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
197 |
lemma power_inject_exp [simp]: |
30996 | 198 |
"1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n" |
14577 | 199 |
by (force simp add: order_antisym power_le_imp_le_exp) |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
200 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
201 |
text{*Can relax the first premise to @{term "0<a"} in the case of the |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
202 |
natural numbers.*} |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
203 |
lemma power_less_imp_less_exp: |
30996 | 204 |
"1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n" |
205 |
by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] |
|
206 |
power_le_imp_le_exp) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
207 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
208 |
lemma power_mono: |
30996 | 209 |
"a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n" |
210 |
by (induct n) |
|
211 |
(auto intro: mult_mono order_trans [of 0 a b]) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
212 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
213 |
lemma power_strict_mono [rule_format]: |
30996 | 214 |
"a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n" |
215 |
by (induct n) |
|
216 |
(auto simp add: mult_strict_mono le_less_trans [of 0 a b]) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
217 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
218 |
text{*Lemma for @{text power_strict_decreasing}*} |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
219 |
lemma power_Suc_less: |
30996 | 220 |
"0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n" |
221 |
by (induct n) |
|
222 |
(auto simp add: mult_strict_left_mono) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
223 |
|
30996 | 224 |
lemma power_strict_decreasing [rule_format]: |
225 |
"n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n" |
|
226 |
proof (induct N) |
|
227 |
case 0 then show ?case by simp |
|
228 |
next |
|
229 |
case (Suc N) then show ?case |
|
230 |
apply (auto simp add: power_Suc_less less_Suc_eq) |
|
231 |
apply (subgoal_tac "a * a^N < 1 * a^n") |
|
232 |
apply simp |
|
233 |
apply (rule mult_strict_mono) apply auto |
|
234 |
done |
|
235 |
qed |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
236 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
237 |
text{*Proof resembles that of @{text power_strict_decreasing}*} |
30996 | 238 |
lemma power_decreasing [rule_format]: |
239 |
"n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n" |
|
240 |
proof (induct N) |
|
241 |
case 0 then show ?case by simp |
|
242 |
next |
|
243 |
case (Suc N) then show ?case |
|
244 |
apply (auto simp add: le_Suc_eq) |
|
245 |
apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp) |
|
246 |
apply (rule mult_mono) apply auto |
|
247 |
done |
|
248 |
qed |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
249 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
250 |
lemma power_Suc_less_one: |
30996 | 251 |
"0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1" |
252 |
using power_strict_decreasing [of 0 "Suc n" a] by simp |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
253 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
254 |
text{*Proof again resembles that of @{text power_strict_decreasing}*} |
30996 | 255 |
lemma power_increasing [rule_format]: |
256 |
"n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N" |
|
257 |
proof (induct N) |
|
258 |
case 0 then show ?case by simp |
|
259 |
next |
|
260 |
case (Suc N) then show ?case |
|
261 |
apply (auto simp add: le_Suc_eq) |
|
262 |
apply (subgoal_tac "1 * a^n \<le> a * a^N", simp) |
|
263 |
apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) |
|
264 |
done |
|
265 |
qed |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
266 |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
267 |
text{*Lemma for @{text power_strict_increasing}*} |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
268 |
lemma power_less_power_Suc: |
30996 | 269 |
"1 < a \<Longrightarrow> a ^ n < a * a ^ n" |
270 |
by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one]) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
271 |
|
30996 | 272 |
lemma power_strict_increasing [rule_format]: |
273 |
"n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N" |
|
274 |
proof (induct N) |
|
275 |
case 0 then show ?case by simp |
|
276 |
next |
|
277 |
case (Suc N) then show ?case |
|
278 |
apply (auto simp add: power_less_power_Suc less_Suc_eq) |
|
279 |
apply (subgoal_tac "1 * a^n < a * a^N", simp) |
|
280 |
apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) |
|
281 |
done |
|
282 |
qed |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
283 |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
284 |
lemma power_increasing_iff [simp]: |
30996 | 285 |
"1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y" |
286 |
by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) |
|
15066 | 287 |
|
288 |
lemma power_strict_increasing_iff [simp]: |
|
30996 | 289 |
"1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y" |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
290 |
by (blast intro: power_less_imp_less_exp power_strict_increasing) |
15066 | 291 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
292 |
lemma power_le_imp_le_base: |
30996 | 293 |
assumes le: "a ^ Suc n \<le> b ^ Suc n" |
294 |
and ynonneg: "0 \<le> b" |
|
295 |
shows "a \<le> b" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
296 |
proof (rule ccontr) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
297 |
assume "~ a \<le> b" |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
298 |
then have "b < a" by (simp only: linorder_not_le) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
299 |
then have "b ^ Suc n < a ^ Suc n" |
41550 | 300 |
by (simp only: assms power_strict_mono) |
30996 | 301 |
from le and this show False |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
302 |
by (simp add: linorder_not_less [symmetric]) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25062
diff
changeset
|
303 |
qed |
14577 | 304 |
|
22853 | 305 |
lemma power_less_imp_less_base: |
306 |
assumes less: "a ^ n < b ^ n" |
|
307 |
assumes nonneg: "0 \<le> b" |
|
308 |
shows "a < b" |
|
309 |
proof (rule contrapos_pp [OF less]) |
|
310 |
assume "~ a < b" |
|
311 |
hence "b \<le> a" by (simp only: linorder_not_less) |
|
312 |
hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono) |
|
30996 | 313 |
thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less) |
22853 | 314 |
qed |
315 |
||
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
316 |
lemma power_inject_base: |
30996 | 317 |
"a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b" |
318 |
by (blast intro: power_le_imp_le_base antisym eq_refl sym) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
319 |
|
22955 | 320 |
lemma power_eq_imp_eq_base: |
30996 | 321 |
"a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b" |
322 |
by (cases n) (simp_all del: power_Suc, rule power_inject_base) |
|
22955 | 323 |
|
30996 | 324 |
end |
325 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33364
diff
changeset
|
326 |
context linordered_idom |
30996 | 327 |
begin |
29978
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
huffman
parents:
29608
diff
changeset
|
328 |
|
30996 | 329 |
lemma power_abs: |
330 |
"abs (a ^ n) = abs a ^ n" |
|
331 |
by (induct n) (auto simp add: abs_mult) |
|
332 |
||
333 |
lemma abs_power_minus [simp]: |
|
334 |
"abs ((-a) ^ n) = abs (a ^ n)" |
|
35216 | 335 |
by (simp add: power_abs) |
30996 | 336 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35216
diff
changeset
|
337 |
lemma zero_less_power_abs_iff [simp, no_atp]: |
30996 | 338 |
"0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0" |
339 |
proof (induct n) |
|
340 |
case 0 show ?case by simp |
|
341 |
next |
|
342 |
case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff) |
|
29978
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
huffman
parents:
29608
diff
changeset
|
343 |
qed |
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
huffman
parents:
29608
diff
changeset
|
344 |
|
30996 | 345 |
lemma zero_le_power_abs [simp]: |
346 |
"0 \<le> abs a ^ n" |
|
347 |
by (rule zero_le_power [OF abs_ge_zero]) |
|
348 |
||
349 |
end |
|
350 |
||
351 |
context ring_1_no_zero_divisors |
|
352 |
begin |
|
353 |
||
354 |
lemma field_power_not_zero: |
|
355 |
"a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0" |
|
356 |
by (induct n) auto |
|
357 |
||
358 |
end |
|
359 |
||
360 |
context division_ring |
|
361 |
begin |
|
29978
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
huffman
parents:
29608
diff
changeset
|
362 |
|
30997 | 363 |
text {* FIXME reorient or rename to @{text nonzero_inverse_power} *} |
30996 | 364 |
lemma nonzero_power_inverse: |
365 |
"a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n" |
|
366 |
by (induct n) |
|
367 |
(simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
368 |
|
30996 | 369 |
end |
370 |
||
371 |
context field |
|
372 |
begin |
|
373 |
||
374 |
lemma nonzero_power_divide: |
|
375 |
"b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n" |
|
376 |
by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse) |
|
377 |
||
378 |
end |
|
379 |
||
380 |
lemma power_0_Suc [simp]: |
|
381 |
"(0::'a::{power, semiring_0}) ^ Suc n = 0" |
|
382 |
by simp |
|
30313 | 383 |
|
30996 | 384 |
text{*It looks plausible as a simprule, but its effect can be strange.*} |
385 |
lemma power_0_left: |
|
386 |
"0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))" |
|
387 |
by (induct n) simp_all |
|
388 |
||
389 |
lemma power_eq_0_iff [simp]: |
|
390 |
"a ^ n = 0 \<longleftrightarrow> |
|
391 |
a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \<and> n \<noteq> 0" |
|
392 |
by (induct n) |
|
393 |
(auto simp add: no_zero_divisors elim: contrapos_pp) |
|
394 |
||
36409 | 395 |
lemma (in field) power_diff: |
30996 | 396 |
assumes nz: "a \<noteq> 0" |
397 |
shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n" |
|
36409 | 398 |
by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero) |
30313 | 399 |
|
30996 | 400 |
text{*Perhaps these should be simprules.*} |
401 |
lemma power_inverse: |
|
36409 | 402 |
fixes a :: "'a::division_ring_inverse_zero" |
403 |
shows "inverse (a ^ n) = inverse a ^ n" |
|
30996 | 404 |
apply (cases "a = 0") |
405 |
apply (simp add: power_0_left) |
|
406 |
apply (simp add: nonzero_power_inverse) |
|
407 |
done (* TODO: reorient or rename to inverse_power *) |
|
408 |
||
409 |
lemma power_one_over: |
|
36409 | 410 |
"1 / (a::'a::{field_inverse_zero, power}) ^ n = (1 / a) ^ n" |
30996 | 411 |
by (simp add: divide_inverse) (rule power_inverse) |
412 |
||
413 |
lemma power_divide: |
|
36409 | 414 |
"(a / b) ^ n = (a::'a::field_inverse_zero) ^ n / b ^ n" |
30996 | 415 |
apply (cases "b = 0") |
416 |
apply (simp add: power_0_left) |
|
417 |
apply (rule nonzero_power_divide) |
|
418 |
apply assumption |
|
30313 | 419 |
done |
420 |
||
421 |
||
30960 | 422 |
subsection {* Exponentiation for the Natural Numbers *} |
14577 | 423 |
|
30996 | 424 |
lemma nat_one_le_power [simp]: |
425 |
"Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n" |
|
426 |
by (rule one_le_power [of i n, unfolded One_nat_def]) |
|
23305 | 427 |
|
30996 | 428 |
lemma nat_zero_less_power_iff [simp]: |
429 |
"x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0" |
|
430 |
by (induct n) auto |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
431 |
|
30056 | 432 |
lemma nat_power_eq_Suc_0_iff [simp]: |
30996 | 433 |
"x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0" |
434 |
by (induct m) auto |
|
30056 | 435 |
|
30996 | 436 |
lemma power_Suc_0 [simp]: |
437 |
"Suc 0 ^ n = Suc 0" |
|
438 |
by simp |
|
30056 | 439 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
440 |
text{*Valid for the naturals, but what if @{text"0<i<1"}? |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
441 |
Premises cannot be weakened: consider the case where @{term "i=0"}, |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
442 |
@{term "m=1"} and @{term "n=0"}.*} |
21413 | 443 |
lemma nat_power_less_imp_less: |
444 |
assumes nonneg: "0 < (i\<Colon>nat)" |
|
30996 | 445 |
assumes less: "i ^ m < i ^ n" |
21413 | 446 |
shows "m < n" |
447 |
proof (cases "i = 1") |
|
448 |
case True with less power_one [where 'a = nat] show ?thesis by simp |
|
449 |
next |
|
450 |
case False with nonneg have "1 < i" by auto |
|
451 |
from power_strict_increasing_iff [OF this] less show ?thesis .. |
|
452 |
qed |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
8844
diff
changeset
|
453 |
|
33274
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
454 |
lemma power_dvd_imp_le: |
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
455 |
"i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n" |
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
456 |
apply (rule power_le_imp_le_exp, assumption) |
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
457 |
apply (erule dvd_imp_le, simp) |
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
458 |
done |
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents:
31998
diff
changeset
|
459 |
|
31155
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
460 |
|
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
461 |
subsection {* Code generator tweak *} |
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
462 |
|
31998
2c7a24f74db9
code attributes use common underscore convention
haftmann
parents:
31155
diff
changeset
|
463 |
lemma power_power_power [code, code_unfold, code_inline del]: |
31155
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
464 |
"power = power.power (1::'a::{power}) (op *)" |
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
465 |
unfolding power_def power.power_def .. |
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
466 |
|
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
467 |
declare power.power.simps [code] |
92d8ff6af82c
monomorphic code generation for power operations
haftmann
parents:
31021
diff
changeset
|
468 |
|
33364 | 469 |
code_modulename SML |
470 |
Power Arith |
|
471 |
||
472 |
code_modulename OCaml |
|
473 |
Power Arith |
|
474 |
||
475 |
code_modulename Haskell |
|
476 |
Power Arith |
|
477 |
||
3390
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
paulson
parents:
diff
changeset
|
478 |
end |