src/HOL/Subst/Unify.thy
author wenzelm
Mon, 18 Jun 2007 23:30:46 +0200
changeset 23414 927203ad4b3a
parent 23000 6f158bba99e4
child 24327 a207114007c6
permissions -rw-r--r--
tuned conjunction tactics: slightly smaller proof terms;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
     1
(*  ID:         $Id$
3192
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
     2
    Author:     Konrad Slind, Cambridge University Computer Laboratory
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
     3
    Copyright   1997  University of Cambridge
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
     4
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
     5
*)
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
     6
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
     7
header{*Unification Algorithm*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
     8
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
     9
theory Unify
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    10
imports Unifier
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    11
begin
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    12
23000
6f158bba99e4 added pointer to new Unification theory
krauss
parents: 19769
diff changeset
    13
subsection {* Substitution and Unification in Higher-Order Logic. *}
6f158bba99e4 added pointer to new Unification theory
krauss
parents: 19769
diff changeset
    14
6f158bba99e4 added pointer to new Unification theory
krauss
parents: 19769
diff changeset
    15
text {*
6f158bba99e4 added pointer to new Unification theory
krauss
parents: 19769
diff changeset
    16
NB: This theory is already quite old.
6f158bba99e4 added pointer to new Unification theory
krauss
parents: 19769
diff changeset
    17
You might want to look at the newer Isar formalization of
6f158bba99e4 added pointer to new Unification theory
krauss
parents: 19769
diff changeset
    18
unification in HOL/ex/Unification.thy.
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    19
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    20
Implements Manna and Waldinger's formalization, with Paulson's simplifications,
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    21
and some new simplifications by Slind.
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    22
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    23
Z Manna and R Waldinger, Deductive Synthesis of the Unification Algorithm.
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    24
SCP 1 (1981), 5-48
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    25
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    26
L C Paulson, Verifying the Unification Algorithm in LCF. SCP 5 (1985), 143-170
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    27
*}
3192
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
    28
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
    29
consts
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
    30
3267
7203f4dbc0c5 Removed rprod from the WF relation
paulson
parents: 3192
diff changeset
    31
   unifyRel :: "(('a uterm * 'a uterm) * ('a uterm * 'a uterm)) set"
3298
5f0ed3caa991 Now uses type option instead of Fail/Subst
paulson
parents: 3267
diff changeset
    32
   unify    :: "'a uterm * 'a uterm => ('a * 'a uterm) list option"
3192
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
    33
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
    34
defs
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    35
  unifyRel_def:
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    36
       "unifyRel == inv_image (finite_psubset <*lex*> measure uterm_size)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    37
                               (%(M,N). (vars_of M Un vars_of N, M))"
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    38
   --{*Termination relation for the Unify function:
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    39
         either the set of variables decreases,
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    40
         or the first argument does (in fact, both do) *}
3192
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
    41
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    42
text{* Wellfoundedness of unifyRel *}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    43
lemma wf_unifyRel [iff]: "wf unifyRel"
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    44
by (simp add: unifyRel_def wf_lex_prod wf_finite_psubset)
3192
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
    45
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    46
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    47
recdef (permissive) unify "unifyRel"
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    48
 unify_CC: "unify(Const m, Const n)  = (if (m=n) then Some[] else None)"
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    49
 unify_CB: "unify(Const m, Comb M N) = None"
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    50
 unify_CV: "unify(Const m, Var v)    = Some[(v,Const m)]"
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    51
 unify_V:  "unify(Var v, M) = (if (Var v \<prec> M) then None else Some[(v,M)])"
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    52
 unify_BC: "unify(Comb M N, Const x) = None"
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    53
 unify_BV: "unify(Comb M N, Var v)   = (if (Var v \<prec> Comb M N) then None
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    54
                                        else Some[(v,Comb M N)])"
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    55
 unify_BB:
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    56
  "unify(Comb M1 N1, Comb M2 N2) =
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    57
      (case unify(M1,M2)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    58
        of None       => None
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    59
         | Some theta => (case unify(N1 \<lhd> theta, N2 \<lhd> theta)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    60
                            of None       => None
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    61
                             | Some sigma => Some (theta \<lozenge> sigma)))"
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    62
  (hints recdef_wf: wf_unifyRel)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    63
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    64
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    65
text{* This file defines a nested unification algorithm, then proves that it
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    66
 terminates, then proves 2 correctness theorems: that when the algorithm
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    67
 succeeds, it 1) returns an MGU; and 2) returns an idempotent substitution.
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    68
 Although the proofs may seem long, they are actually quite direct, in that
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    69
 the correctness and termination properties are not mingled as much as in
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    70
 previous proofs of this algorithm.*}
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    71
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    72
(*---------------------------------------------------------------------------
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    73
 * Our approach for nested recursive functions is as follows:
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    74
 *
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    75
 *    0. Prove the wellfoundedness of the termination relation.
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    76
 *    1. Prove the non-nested termination conditions.
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    77
 *    2. Eliminate (0) and (1) from the recursion equations and the
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    78
 *       induction theorem.
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    79
 *    3. Prove the nested termination conditions by using the induction
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    80
 *       theorem from (2) and by using the recursion equations from (2).
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    81
 *       These are constrained by the nested termination conditions, but
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    82
 *       things work out magically (by wellfoundedness of the termination
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    83
 *       relation).
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    84
 *    4. Eliminate the nested TCs from the results of (2).
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    85
 *    5. Prove further correctness properties using the results of (4).
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    86
 *
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    87
 * Deeper nestings require iteration of steps (3) and (4).
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    88
 *---------------------------------------------------------------------------*)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    89
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    90
text{*The non-nested TC (terminiation condition).*}
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
    91
recdef_tc unify_tc1: unify (1)
19769
c40ce2de2020 Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
krauss
parents: 19623
diff changeset
    92
  by (auto simp: unifyRel_def finite_psubset_def finite_vars_of)
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    93
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    94
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    95
text{*Termination proof.*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    96
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    97
lemma trans_unifyRel: "trans unifyRel"
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    98
by (simp add: unifyRel_def measure_def trans_inv_image trans_lex_prod
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
    99
              trans_finite_psubset)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   100
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   101
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   102
text{*The following lemma is used in the last step of the termination proof
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   103
for the nested call in Unify.  Loosely, it says that unifyRel doesn't care
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   104
about term structure.*}
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   105
lemma Rassoc:
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   106
  "((X,Y), (Comb A (Comb B C), Comb D (Comb E F))) \<in> unifyRel  ==>
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   107
   ((X,Y), (Comb (Comb A B) C, Comb (Comb D E) F)) \<in> unifyRel"
19769
c40ce2de2020 Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
krauss
parents: 19623
diff changeset
   108
by (simp add: less_eq add_assoc Un_assoc
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   109
              unifyRel_def lex_prod_def)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   110
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   111
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   112
text{*This lemma proves the nested termination condition for the base cases
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   113
 * 3, 4, and 6.*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   114
lemma var_elimR:
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   115
  "~(Var x \<prec> M) ==>
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   116
    ((N1 \<lhd> [(x,M)], N2 \<lhd> [(x,M)]), (Comb M N1, Comb(Var x) N2)) \<in> unifyRel
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   117
  & ((N1 \<lhd> [(x,M)], N2 \<lhd> [(x,M)]), (Comb(Var x) N1, Comb M N2)) \<in> unifyRel"
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   118
apply (case_tac "Var x = M", clarify, simp)
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   119
apply (case_tac "x \<in> (vars_of N1 Un vars_of N2)")
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   120
txt{*uterm_less case*}
19769
c40ce2de2020 Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
krauss
parents: 19623
diff changeset
   121
apply (simp add: less_eq unifyRel_def lex_prod_def)
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   122
apply blast
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   123
txt{*@{text finite_psubset} case*}
19769
c40ce2de2020 Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
krauss
parents: 19623
diff changeset
   124
apply (simp add: unifyRel_def lex_prod_def)
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   125
apply (simp add: finite_psubset_def finite_vars_of psubset_def)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   126
apply blast
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   127
txt{*Final case, also @{text finite_psubset}*}
19769
c40ce2de2020 Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
krauss
parents: 19623
diff changeset
   128
apply (simp add: finite_vars_of unifyRel_def finite_psubset_def lex_prod_def)
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   129
apply (cut_tac s = "[(x,M)]" and v = x and t = N2 in Var_elim)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   130
apply (cut_tac [3] s = "[(x,M)]" and v = x and t = N1 in Var_elim)
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   131
apply (simp_all (no_asm_simp) add: srange_iff vars_iff_occseq)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   132
apply (auto elim!: Var_intro [THEN disjE] simp add: srange_iff)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   133
done
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   134
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   135
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   136
text{*Eliminate tc1 from the recursion equations and the induction theorem.*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   137
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   138
lemmas unify_nonrec [simp] =
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   139
       unify_CC unify_CB unify_CV unify_V unify_BC unify_BV
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   140
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   141
lemmas unify_simps0 = unify_nonrec unify_BB [OF unify_tc1]
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   142
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   143
lemmas unify_induct0 = unify.induct [OF unify_tc1]
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   144
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   145
text{*The nested TC. The (2) requests the second one.
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   146
      Proved by recursion induction.*}
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   147
recdef_tc unify_tc2: unify (2)
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   148
txt{*The extracted TC needs the scope of its quantifiers adjusted, so our
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   149
 first step is to restrict the scopes of N1 and N2.*}
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   150
apply (subgoal_tac "\<forall>M1 M2 theta. unify (M1, M2) = Some theta -->
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   151
      (\<forall>N1 N2.((N1\<lhd>theta, N2\<lhd>theta), (Comb M1 N1, Comb M2 N2)) \<in> unifyRel)")
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   152
apply blast
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   153
apply (rule allI)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   154
apply (rule allI)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   155
txt{*Apply induction on this still-quantified formula*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   156
apply (rule_tac u = M1 and v = M2 in unify_induct0)
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   157
      apply (simp_all (no_asm_simp) add: var_elimR unify_simps0)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   158
 txt{*Const-Const case*}
19769
c40ce2de2020 Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
krauss
parents: 19623
diff changeset
   159
 apply (simp add: unifyRel_def lex_prod_def less_eq)
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   160
txt{*Comb-Comb case*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   161
apply (simp (no_asm_simp) split add: option.split)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   162
apply (intro strip)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   163
apply (rule trans_unifyRel [THEN transD], blast)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   164
apply (simp only: subst_Comb [symmetric])
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   165
apply (rule Rassoc, blast)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   166
done
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   167
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   168
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   169
text{* Now for elimination of nested TC from unify.simps and induction.*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   170
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   171
text{*Desired rule, copied from the theory file.*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   172
lemma unifyCombComb [simp]:
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   173
    "unify(Comb M1 N1, Comb M2 N2) =
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   174
       (case unify(M1,M2)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   175
         of None => None
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   176
          | Some theta => (case unify(N1 \<lhd> theta, N2 \<lhd> theta)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   177
                             of None => None
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   178
                              | Some sigma => Some (theta \<lozenge> sigma)))"
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   179
by (simp add: unify_tc2 unify_simps0 split add: option.split)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   180
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   181
text{*The ML version had this, but it can't be used: we get
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   182
*** exception THM raised: transfer: not a super theory
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   183
All we can do is state the desired induction rule in full and prove it.*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   184
ML{*
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   185
bind_thm ("unify_induct",
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   186
	  rule_by_tactic
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   187
	     (ALLGOALS (full_simp_tac (simpset() addsimps [thm"unify_tc2"])))
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   188
	     (thm"unify_induct0"));
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   189
*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   190
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   191
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   192
text{*Correctness. Notice that idempotence is not needed to prove that the
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   193
algorithm terminates and is not needed to prove the algorithm correct, if you
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   194
are only interested in an MGU.  This is in contrast to the approach of M&W,
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   195
who used idempotence and MGU-ness in the termination proof.*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   196
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   197
theorem unify_gives_MGU [rule_format]:
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   198
     "\<forall>theta. unify(M,N) = Some theta --> MGUnifier theta M N"
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   199
apply (rule_tac u = M and v = N in unify_induct0)
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   200
    apply (simp_all (no_asm_simp))
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   201
    txt{*Const-Const case*}
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   202
    apply (simp add: MGUnifier_def Unifier_def)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   203
   txt{*Const-Var case*}
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   204
   apply (subst mgu_sym)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   205
   apply (simp add: MGUnifier_Var)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   206
  txt{*Var-M case*}
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   207
  apply (simp add: MGUnifier_Var)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   208
 txt{*Comb-Var case*}
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   209
 apply (subst mgu_sym)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   210
 apply (simp add: MGUnifier_Var)
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   211
txt{*Comb-Comb case*}
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   212
apply (simp add: unify_tc2)
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   213
apply (simp (no_asm_simp) split add: option.split)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   214
apply (intro strip)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   215
apply (simp add: MGUnifier_def Unifier_def MoreGeneral_def)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   216
apply (safe, rename_tac theta sigma gamma)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   217
apply (erule_tac x = gamma in allE, erule (1) notE impE)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   218
apply (erule exE, rename_tac delta)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   219
apply (erule_tac x = delta in allE)
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   220
apply (subgoal_tac "N1 \<lhd> theta \<lhd> delta = N2 \<lhd> theta \<lhd> delta")
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   221
 apply (blast intro: subst_trans intro!: subst_cong comp_assoc[THEN subst_sym])
15648
f6da795ee27a x-symbols and other tidying
paulson
parents: 15635
diff changeset
   222
apply (simp add: subst_eq_iff)
15635
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   223
done
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   224
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   225
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   226
text{*Unify returns idempotent substitutions, when it succeeds.*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   227
theorem unify_gives_Idem [rule_format]:
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   228
     "\<forall>theta. unify(M,N) = Some theta --> Idem theta"
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   229
apply (rule_tac u = M and v = N in unify_induct0)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   230
apply (simp_all add: Var_Idem unify_tc2 split add: option.split)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   231
txt{*Comb-Comb case*}
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   232
apply safe
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   233
apply (drule spec, erule (1) notE impE)+
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   234
apply (safe dest!: unify_gives_MGU [unfolded MGUnifier_def])
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   235
apply (rule Idem_comp, assumption+)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   236
apply (force simp add: MoreGeneral_def subst_eq_iff Idem_def)
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   237
done
8408a06590a6 converted HOL-Subst to tactic scripts
paulson
parents: 12406
diff changeset
   238
3192
a75558a4ed37 New version, modified by Konrad Slind and LCP for TFL
paulson
parents:
diff changeset
   239
end