src/HOL/Probability/Lebesgue_Integral_Substitution.thy
author wenzelm
Thu, 31 Dec 2015 19:53:19 +0100
changeset 62013 92a2372a226b
parent 61973 0c7e865fa7cb
child 62083 7582b39f51ed
permissions -rw-r--r--
discontinued documentation of old browser; tuned;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     1
(*  Title:      HOL/Probability/Lebesgue_Integral_Substitution.thy
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     2
    Author:     Manuel Eberl
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     3
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     4
    Provides lemmas for integration by substitution for the basic integral types.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     5
    Note that the substitution function must have a nonnegative derivative.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     6
    This could probably be weakened somehow.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     7
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     8
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
     9
section \<open>Integration by Substition\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    10
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    11
theory Lebesgue_Integral_Substitution
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    12
imports Interval_Integral
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    13
begin
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    14
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    15
lemma measurable_sets_borel:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    16
    "\<lbrakk>f \<in> measurable borel M; A \<in> sets M\<rbrakk> \<Longrightarrow> f -` A \<in> sets borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    17
  by (drule (1) measurable_sets) simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    18
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    19
lemma nn_integral_indicator_singleton[simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    20
  assumes [measurable]: "{y} \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    21
  shows "(\<integral>\<^sup>+x. f x * indicator {y} x \<partial>M) = max 0 (f y) * emeasure M {y}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    22
proof-
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    23
  have "(\<integral>\<^sup>+x. f x * indicator {y} x \<partial>M) = (\<integral>\<^sup>+x. max 0 (f y) * indicator {y} x \<partial>M)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    24
    by (subst nn_integral_max_0[symmetric]) (auto intro!: nn_integral_cong split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    25
  then show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    26
    by (simp add: nn_integral_cmult)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    27
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    28
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    29
lemma nn_integral_set_ereal:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    30
  "(\<integral>\<^sup>+x. ereal (f x) * indicator A x \<partial>M) = (\<integral>\<^sup>+x. ereal (f x * indicator A x) \<partial>M)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    31
  by (rule nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    32
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    33
lemma nn_integral_indicator_singleton'[simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    34
  assumes [measurable]: "{y} \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    35
  shows "(\<integral>\<^sup>+x. ereal (f x * indicator {y} x) \<partial>M) = max 0 (f y) * emeasure M {y}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    36
  by (subst nn_integral_set_ereal[symmetric]) simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    37
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    38
lemma set_borel_measurable_sets:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    39
  fixes f :: "_ \<Rightarrow> _::real_normed_vector"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    40
  assumes "set_borel_measurable M X f" "B \<in> sets borel" "X \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    41
  shows "f -` B \<inter> X \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    42
proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    43
  have "f \<in> borel_measurable (restrict_space M X)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    44
    using assms by (subst borel_measurable_restrict_space_iff) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    45
  then have "f -` B \<inter> space (restrict_space M X) \<in> sets (restrict_space M X)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    46
    by (rule measurable_sets) fact
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    47
  with \<open>X \<in> sets M\<close> show ?thesis
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    48
    by (subst (asm) sets_restrict_space_iff) (auto simp: space_restrict_space)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    49
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    50
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    51
lemma borel_set_induct[consumes 1, case_names empty interval compl union]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    52
  assumes "A \<in> sets borel" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    53
  assumes empty: "P {}" and int: "\<And>a b. a \<le> b \<Longrightarrow> P {a..b}" and compl: "\<And>A. A \<in> sets borel \<Longrightarrow> P A \<Longrightarrow> P (-A)" and
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    54
          un: "\<And>f. disjoint_family f \<Longrightarrow> (\<And>i. f i \<in> sets borel) \<Longrightarrow>  (\<And>i. P (f i)) \<Longrightarrow> P (\<Union>i::nat. f i)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    55
  shows "P (A::real set)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    56
proof-
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    57
  let ?G = "range (\<lambda>(a,b). {a..b::real})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    58
  have "Int_stable ?G" "?G \<subseteq> Pow UNIV" "A \<in> sigma_sets UNIV ?G" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    59
      using assms(1) by (auto simp add: borel_eq_atLeastAtMost Int_stable_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    60
  thus ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    61
  proof (induction rule: sigma_sets_induct_disjoint) 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    62
    case (union f)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    63
      from union.hyps(2) have "\<And>i. f i \<in> sets borel" by (auto simp: borel_eq_atLeastAtMost)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    64
      with union show ?case by (auto intro: un)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    65
  next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    66
    case (basic A)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    67
    then obtain a b where "A = {a .. b}" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    68
    then show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    69
      by (cases "a \<le> b") (auto intro: int empty)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    70
  qed (auto intro: empty compl simp: Compl_eq_Diff_UNIV[symmetric] borel_eq_atLeastAtMost)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    71
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    72
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    73
definition "mono_on f A \<equiv> \<forall>r s. r \<in> A \<and> s \<in> A \<and> r \<le> s \<longrightarrow> f r \<le> f s"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    74
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    75
lemma mono_onI:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    76
  "(\<And>r s. r \<in> A \<Longrightarrow> s \<in> A \<Longrightarrow> r \<le> s \<Longrightarrow> f r \<le> f s) \<Longrightarrow> mono_on f A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    77
  unfolding mono_on_def by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    78
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    79
lemma mono_onD:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    80
  "\<lbrakk>mono_on f A; r \<in> A; s \<in> A; r \<le> s\<rbrakk> \<Longrightarrow> f r \<le> f s"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    81
  unfolding mono_on_def by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    82
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    83
lemma mono_imp_mono_on: "mono f \<Longrightarrow> mono_on f A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    84
  unfolding mono_def mono_on_def by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    85
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    86
lemma mono_on_subset: "mono_on f A \<Longrightarrow> B \<subseteq> A \<Longrightarrow> mono_on f B"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    87
  unfolding mono_on_def by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    88
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    89
definition "strict_mono_on f A \<equiv> \<forall>r s. r \<in> A \<and> s \<in> A \<and> r < s \<longrightarrow> f r < f s"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    90
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    91
lemma strict_mono_onI:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    92
  "(\<And>r s. r \<in> A \<Longrightarrow> s \<in> A \<Longrightarrow> r < s \<Longrightarrow> f r < f s) \<Longrightarrow> strict_mono_on f A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    93
  unfolding strict_mono_on_def by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    94
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    95
lemma strict_mono_onD:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    96
  "\<lbrakk>strict_mono_on f A; r \<in> A; s \<in> A; r < s\<rbrakk> \<Longrightarrow> f r < f s"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    97
  unfolding strict_mono_on_def by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    98
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    99
lemma mono_on_greaterD:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   100
  assumes "mono_on g A" "x \<in> A" "y \<in> A" "g x > (g (y::_::linorder) :: _ :: linorder)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   101
  shows "x > y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   102
proof (rule ccontr)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   103
  assume "\<not>x > y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   104
  hence "x \<le> y" by (simp add: not_less)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   105
  from assms(1-3) and this have "g x \<le> g y" by (rule mono_onD)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   106
  with assms(4) show False by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   107
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   108
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   109
lemma strict_mono_inv:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   110
  fixes f :: "('a::linorder) \<Rightarrow> ('b::linorder)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   111
  assumes "strict_mono f" and "surj f" and inv: "\<And>x. g (f x) = x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   112
  shows "strict_mono g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   113
proof
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   114
  fix x y :: 'b assume "x < y"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   115
  from \<open>surj f\<close> obtain x' y' where [simp]: "x = f x'" "y = f y'" by blast
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   116
  with \<open>x < y\<close> and \<open>strict_mono f\<close> have "x' < y'" by (simp add: strict_mono_less)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   117
  with inv show "g x < g y" by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   118
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   119
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   120
lemma strict_mono_on_imp_inj_on:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   121
  assumes "strict_mono_on (f :: (_ :: linorder) \<Rightarrow> (_ :: preorder)) A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   122
  shows "inj_on f A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   123
proof (rule inj_onI)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   124
  fix x y assume "x \<in> A" "y \<in> A" "f x = f y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   125
  thus "x = y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   126
    by (cases x y rule: linorder_cases)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   127
       (auto dest: strict_mono_onD[OF assms, of x y] strict_mono_onD[OF assms, of y x]) 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   128
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   129
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   130
lemma strict_mono_on_leD:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   131
  assumes "strict_mono_on (f :: (_ :: linorder) \<Rightarrow> _ :: preorder) A" "x \<in> A" "y \<in> A" "x \<le> y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   132
  shows "f x \<le> f y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   133
proof (insert le_less_linear[of y x], elim disjE)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   134
  assume "x < y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   135
  with assms have "f x < f y" by (rule_tac strict_mono_onD[OF assms(1)]) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   136
  thus ?thesis by (rule less_imp_le)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   137
qed (insert assms, simp)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   138
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   139
lemma strict_mono_on_eqD:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   140
  fixes f :: "(_ :: linorder) \<Rightarrow> (_ :: preorder)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   141
  assumes "strict_mono_on f A" "f x = f y" "x \<in> A" "y \<in> A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   142
  shows "y = x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   143
  using assms by (rule_tac linorder_cases[of x y]) (auto dest: strict_mono_onD)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   144
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   145
lemma mono_on_imp_deriv_nonneg:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   146
  assumes mono: "mono_on f A" and deriv: "(f has_real_derivative D) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   147
  assumes "x \<in> interior A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   148
  shows "D \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   149
proof (rule tendsto_le_const)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   150
  let ?A' = "(\<lambda>y. y - x) ` interior A"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61880
diff changeset
   151
  from deriv show "((\<lambda>h. (f (x + h) - f x) / h) \<longlongrightarrow> D) (at 0)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   152
      by (simp add: field_has_derivative_at has_field_derivative_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   153
  from mono have mono': "mono_on f (interior A)" by (rule mono_on_subset) (rule interior_subset)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   154
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   155
  show "eventually (\<lambda>h. (f (x + h) - f x) / h \<ge> 0) (at 0)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   156
  proof (subst eventually_at_topological, intro exI conjI ballI impI)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   157
    have "open (interior A)" by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   158
    hence "open (op + (-x) ` interior A)" by (rule open_translation)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   159
    also have "(op + (-x) ` interior A) = ?A'" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   160
    finally show "open ?A'" .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   161
  next
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   162
    from \<open>x \<in> interior A\<close> show "0 \<in> ?A'" by auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   163
  next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   164
    fix h assume "h \<in> ?A'"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   165
    hence "x + h \<in> interior A" by auto
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   166
    with mono' and \<open>x \<in> interior A\<close> show "(f (x + h) - f x) / h \<ge> 0"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   167
      by (cases h rule: linorder_cases[of _ 0])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   168
         (simp_all add: divide_nonpos_neg divide_nonneg_pos mono_onD field_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   169
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   170
qed simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   171
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   172
lemma strict_mono_on_imp_mono_on: 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   173
  "strict_mono_on (f :: (_ :: linorder) \<Rightarrow> _ :: preorder) A \<Longrightarrow> mono_on f A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   174
  by (rule mono_onI, rule strict_mono_on_leD)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   175
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   176
lemma has_real_derivative_imp_continuous_on:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   177
  assumes "\<And>x. x \<in> A \<Longrightarrow> (f has_real_derivative f' x) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   178
  shows "continuous_on A f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   179
  apply (intro differentiable_imp_continuous_on, unfold differentiable_on_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   180
  apply (intro ballI Deriv.differentiableI)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   181
  apply (rule has_field_derivative_subset[OF assms])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   182
  apply simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   183
  done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   184
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   185
lemma closure_contains_Sup:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   186
  fixes S :: "real set"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   187
  assumes "S \<noteq> {}" "bdd_above S"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   188
  shows "Sup S \<in> closure S"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   189
proof-
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   190
  have "Inf (uminus ` S) \<in> closure (uminus ` S)" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   191
      using assms by (intro closure_contains_Inf) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   192
  also have "Inf (uminus ` S) = -Sup S" by (simp add: Inf_real_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   193
  also have "closure (uminus ` S) = uminus ` closure S"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   194
      by (rule sym, intro closure_injective_linear_image) (auto intro: linearI)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   195
  finally show ?thesis by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   196
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   197
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   198
lemma closed_contains_Sup:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   199
  fixes S :: "real set"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   200
  shows "S \<noteq> {} \<Longrightarrow> bdd_above S \<Longrightarrow> closed S \<Longrightarrow> Sup S \<in> S"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   201
  by (subst closure_closed[symmetric], assumption, rule closure_contains_Sup)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   202
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   203
lemma deriv_nonneg_imp_mono:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   204
  assumes deriv: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   205
  assumes nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   206
  assumes ab: "a \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   207
  shows "g a \<le> g b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   208
proof (cases "a < b")
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   209
  assume "a < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   210
  from deriv have "\<forall>x. x \<ge> a \<and> x \<le> b \<longrightarrow> (g has_real_derivative g' x) (at x)" by simp
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   211
  from MVT2[OF \<open>a < b\<close> this] and deriv 
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   212
    obtain \<xi> where \<xi>_ab: "\<xi> > a" "\<xi> < b" and g_ab: "g b - g a = (b - a) * g' \<xi>" by blast
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   213
  from \<xi>_ab ab nonneg have "(b - a) * g' \<xi> \<ge> 0" by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   214
  with g_ab show ?thesis by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   215
qed (insert ab, simp)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   216
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   217
lemma continuous_interval_vimage_Int:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   218
  assumes "continuous_on {a::real..b} g" and mono: "\<And>x y. a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> b \<Longrightarrow> g x \<le> g y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   219
  assumes "a \<le> b" "(c::real) \<le> d" "{c..d} \<subseteq> {g a..g b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   220
  obtains c' d' where "{a..b} \<inter> g -` {c..d} = {c'..d'}" "c' \<le> d'" "g c' = c" "g d' = d"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   221
proof-
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   222
    let ?A = "{a..b} \<inter> g -` {c..d}"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   223
    from IVT'[of g a c b, OF _ _ \<open>a \<le> b\<close> assms(1)] assms(4,5) 
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   224
         obtain c'' where c'': "c'' \<in> ?A" "g c'' = c" by auto
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   225
    from IVT'[of g a d b, OF _ _ \<open>a \<le> b\<close> assms(1)] assms(4,5) 
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   226
         obtain d'' where d'': "d'' \<in> ?A" "g d'' = d" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   227
    hence [simp]: "?A \<noteq> {}" by blast
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   228
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   229
    def c' \<equiv> "Inf ?A" and d' \<equiv> "Sup ?A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   230
    have "?A \<subseteq> {c'..d'}" unfolding c'_def d'_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   231
        by (intro subsetI) (auto intro: cInf_lower cSup_upper)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   232
    moreover from assms have "closed ?A" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   233
        using continuous_on_closed_vimage[of "{a..b}" g] by (subst Int_commute) simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   234
    hence c'd'_in_set: "c' \<in> ?A" "d' \<in> ?A" unfolding c'_def d'_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   235
        by ((intro closed_contains_Inf closed_contains_Sup, simp_all)[])+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   236
    hence "{c'..d'} \<subseteq> ?A" using assms 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   237
        by (intro subsetI)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   238
           (auto intro!: order_trans[of c "g c'" "g x" for x] order_trans[of "g x" "g d'" d for x] 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   239
                 intro!: mono)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   240
    moreover have "c' \<le> d'" using c'd'_in_set(2) unfolding c'_def by (intro cInf_lower) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   241
    moreover have "g c' \<le> c" "g d' \<ge> d"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   242
      apply (insert c'' d'' c'd'_in_set)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   243
      apply (subst c''(2)[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   244
      apply (auto simp: c'_def intro!: mono cInf_lower c'') []
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   245
      apply (subst d''(2)[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   246
      apply (auto simp: d'_def intro!: mono cSup_upper d'') []
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   247
      done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   248
    with c'd'_in_set have "g c' = c" "g d' = d" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   249
    ultimately show ?thesis using that by blast
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   250
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   251
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   252
lemma nn_integral_substitution_aux:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   253
  fixes f :: "real \<Rightarrow> ereal"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   254
  assumes Mf: "f \<in> borel_measurable borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   255
  assumes nonnegf: "\<And>x. f x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   256
  assumes derivg: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   257
  assumes contg': "continuous_on {a..b} g'" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   258
  assumes derivg_nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   259
  assumes "a < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   260
  shows "(\<integral>\<^sup>+x. f x * indicator {g a..g b} x \<partial>lborel) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   261
             (\<integral>\<^sup>+x. f (g x) * g' x * indicator {a..b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   262
proof-
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   263
  from \<open>a < b\<close> have [simp]: "a \<le> b" by simp
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   264
  from derivg have contg: "continuous_on {a..b} g" by (rule has_real_derivative_imp_continuous_on)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   265
  from this and contg' have Mg: "set_borel_measurable borel {a..b} g" and 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   266
                             Mg': "set_borel_measurable borel {a..b} g'" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   267
      by (simp_all only: set_measurable_continuous_on_ivl)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   268
  from derivg have derivg': "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_vector_derivative g' x) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   269
    by (simp only: has_field_derivative_iff_has_vector_derivative)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   270
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59452
diff changeset
   271
  have real_ind[simp]: "\<And>A x. real_of_ereal (indicator A x :: ereal) = indicator A x" 
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   272
      by (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   273
  have ereal_ind[simp]: "\<And>A x. ereal (indicator A x) = indicator A x" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   274
      by (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   275
  have [simp]: "\<And>x A. indicator A (g x) = indicator (g -` A) x" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   276
      by (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   277
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   278
  from derivg derivg_nonneg have monog: "\<And>x y. a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> b \<Longrightarrow> g x \<le> g y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   279
    by (rule deriv_nonneg_imp_mono) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   280
  with monog have [simp]: "g a \<le> g b" by (auto intro: mono_onD)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   281
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   282
  show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   283
  proof (induction rule: borel_measurable_induct[OF Mf nonnegf, case_names cong set mult add sup])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   284
    case (cong f1 f2)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   285
    from cong.hyps(3) have "f1 = f2" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   286
    with cong show ?case by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   287
  next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   288
    case (set A)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   289
    from set.hyps show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   290
    proof (induction rule: borel_set_induct)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   291
      case empty
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   292
      thus ?case by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   293
    next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   294
      case (interval c d)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   295
      {
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   296
        fix u v :: real assume asm: "{u..v} \<subseteq> {g a..g b}" "u \<le> v"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   297
        
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   298
        obtain u' v' where u'v': "{a..b} \<inter> g-`{u..v} = {u'..v'}" "u' \<le> v'" "g u' = u" "g v' = v"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   299
             using asm by (rule_tac continuous_interval_vimage_Int[OF contg monog, of u v]) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   300
        hence "{u'..v'} \<subseteq> {a..b}" "{u'..v'} \<subseteq> g -` {u..v}" by blast+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   301
        with u'v'(2) have "u' \<in> g -` {u..v}" "v' \<in> g -` {u..v}" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   302
        from u'v'(1) have [simp]: "{a..b} \<inter> g -` {u..v} \<in> sets borel" by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   303
        
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   304
        have A: "continuous_on {min u' v'..max u' v'} g'"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   305
            by (simp only: u'v' max_absorb2 min_absorb1) 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   306
               (intro continuous_on_subset[OF contg'], insert u'v', auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   307
        have "\<And>x. x \<in> {u'..v'} \<Longrightarrow> (g has_real_derivative g' x) (at x within {u'..v'})"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   308
           using asm by (intro has_field_derivative_subset[OF derivg] set_mp[OF \<open>{u'..v'} \<subseteq> {a..b}\<close>]) auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   309
        hence B: "\<And>x. min u' v' \<le> x \<Longrightarrow> x \<le> max u' v' \<Longrightarrow> 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   310
                      (g has_vector_derivative g' x) (at x within {min u' v'..max u' v'})" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   311
            by (simp only: u'v' max_absorb2 min_absorb1) 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   312
               (auto simp: has_field_derivative_iff_has_vector_derivative)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   313
        have "integrable lborel (\<lambda>x. indicator ({a..b} \<inter> g -` {u..v}) x *\<^sub>R g' x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   314
          by (rule set_integrable_subset[OF borel_integrable_atLeastAtMost'[OF contg']]) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   315
        hence "(\<integral>\<^sup>+x. ereal (g' x) * indicator ({a..b} \<inter> g-` {u..v}) x \<partial>lborel) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   316
                   LBINT x:{a..b} \<inter> g-`{u..v}. g' x" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   317
          by (subst ereal_ind[symmetric], subst times_ereal.simps, subst nn_integral_eq_integral)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   318
             (auto intro: measurable_sets Mg simp: derivg_nonneg mult.commute split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   319
        also from interval_integral_FTC_finite[OF A B]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   320
            have "LBINT x:{a..b} \<inter> g-`{u..v}. g' x = v - u"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   321
                by (simp add: u'v' interval_integral_Icc \<open>u \<le> v\<close>)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   322
        finally have "(\<integral>\<^sup>+ x. ereal (g' x) * indicator ({a..b} \<inter> g -` {u..v}) x \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   323
                           ereal (v - u)" .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   324
      } note A = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   325
  
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   326
      have "(\<integral>\<^sup>+x. indicator {c..d} (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   327
               (\<integral>\<^sup>+ x. ereal (g' x) * indicator ({a..b} \<inter> g -` {c..d}) x \<partial>lborel)" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   328
        by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   329
      also have "{a..b} \<inter> g-`{c..d} = {a..b} \<inter> g-`{max (g a) c..min (g b) d}" 
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   330
        using \<open>a \<le> b\<close> \<open>c \<le> d\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   331
        by (auto intro!: monog intro: order.trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   332
      also have "(\<integral>\<^sup>+ x. ereal (g' x) * indicator ... x \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   333
        (if max (g a) c \<le> min (g b) d then min (g b) d - max (g a) c else 0)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   334
         using \<open>c \<le> d\<close> by (simp add: A)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   335
      also have "... = (\<integral>\<^sup>+ x. indicator ({g a..g b} \<inter> {c..d}) x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   336
        by (subst nn_integral_indicator) (auto intro!: measurable_sets Mg simp:)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   337
      also have "... = (\<integral>\<^sup>+ x. indicator {c..d} x * indicator {g a..g b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   338
        by (intro nn_integral_cong) (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   339
      finally show ?case ..
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   340
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   341
      next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   342
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   343
      case (compl A)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   344
      note \<open>A \<in> sets borel\<close>[measurable]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   345
      from emeasure_mono[of "A \<inter> {g a..g b}" "{g a..g b}" lborel]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   346
          have [simp]: "emeasure lborel (A \<inter> {g a..g b}) \<noteq> \<infinity>" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   347
      have [simp]: "g -` A \<inter> {a..b} \<in> sets borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   348
        by (rule set_borel_measurable_sets[OF Mg]) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   349
      have [simp]: "g -` (-A) \<inter> {a..b} \<in> sets borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   350
        by (rule set_borel_measurable_sets[OF Mg]) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   351
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   352
      have "(\<integral>\<^sup>+x. indicator (-A) x * indicator {g a..g b} x \<partial>lborel) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   353
                (\<integral>\<^sup>+x. indicator (-A \<inter> {g a..g b}) x \<partial>lborel)" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   354
        by (rule nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   355
      also from compl have "... = emeasure lborel ({g a..g b} - A)" using derivg_nonneg
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   356
        by (simp add: vimage_Compl diff_eq Int_commute[of "-A"])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   357
      also have "{g a..g b} - A = {g a..g b} - A \<inter> {g a..g b}" by blast
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   358
      also have "emeasure lborel ... = g b - g a - emeasure lborel (A \<inter> {g a..g b})"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   359
             using \<open>A \<in> sets borel\<close> by (subst emeasure_Diff) (auto simp: real_of_ereal_minus)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   360
     also have "emeasure lborel (A \<inter> {g a..g b}) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   361
                    \<integral>\<^sup>+x. indicator A x * indicator {g a..g b} x \<partial>lborel" 
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   362
       using \<open>A \<in> sets borel\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   363
       by (subst nn_integral_indicator[symmetric], simp, intro nn_integral_cong)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   364
          (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   365
      also have "... = \<integral>\<^sup>+ x. indicator (g-`A \<inter> {a..b}) x * ereal (g' x * indicator {a..b} x) \<partial>lborel" (is "_ = ?I")
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   366
        by (subst compl.IH, intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   367
      also have "g b - g a = LBINT x:{a..b}. g' x" using derivg'
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   368
        by (intro integral_FTC_atLeastAtMost[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   369
           (auto intro: continuous_on_subset[OF contg'] has_field_derivative_subset[OF derivg]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   370
                 has_vector_derivative_at_within)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   371
      also have "ereal ... = \<integral>\<^sup>+ x. g' x * indicator {a..b} x \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   372
        using borel_integrable_atLeastAtMost'[OF contg']
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   373
        by (subst nn_integral_eq_integral)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   374
           (simp_all add: mult.commute derivg_nonneg split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   375
      also have Mg'': "(\<lambda>x. indicator (g -` A \<inter> {a..b}) x * ereal (g' x * indicator {a..b} x))
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   376
                            \<in> borel_measurable borel" using Mg'
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   377
        by (intro borel_measurable_ereal_times borel_measurable_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   378
           (simp_all add: mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   379
      have le: "(\<integral>\<^sup>+x. indicator (g-`A \<inter> {a..b}) x * ereal (g' x * indicator {a..b} x) \<partial>lborel) \<le>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   380
                        (\<integral>\<^sup>+x. ereal (g' x) * indicator {a..b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   381
         by (intro nn_integral_mono) (simp split: split_indicator add: derivg_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   382
      note integrable = borel_integrable_atLeastAtMost'[OF contg']
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   383
      with le have notinf: "(\<integral>\<^sup>+x. indicator (g-`A \<inter> {a..b}) x * ereal (g' x * indicator {a..b} x) \<partial>lborel) \<noteq> \<infinity>"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   384
          by (auto simp: real_integrable_def nn_integral_set_ereal mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   385
      have "(\<integral>\<^sup>+ x. g' x * indicator {a..b} x \<partial>lborel) - ?I = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   386
                  \<integral>\<^sup>+ x. ereal (g' x * indicator {a..b} x) - 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   387
                        indicator (g -` A \<inter> {a..b}) x * ereal (g' x * indicator {a..b} x) \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   388
        apply (intro nn_integral_diff[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   389
        apply (insert Mg', simp add: mult.commute) []
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   390
        apply (insert Mg'', simp) []
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   391
        apply (simp split: split_indicator add: derivg_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   392
        apply (rule notinf)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   393
        apply (simp split: split_indicator add: derivg_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   394
        done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   395
      also have "... = \<integral>\<^sup>+ x. indicator (-A) (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   396
        by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   397
      finally show ?case .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   398
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   399
    next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   400
      case (union f)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   401
      then have [simp]: "\<And>i. {a..b} \<inter> g -` f i \<in> sets borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   402
        by (subst Int_commute, intro set_borel_measurable_sets[OF Mg]) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   403
      have "g -` (\<Union>i. f i) \<inter> {a..b} = (\<Union>i. {a..b} \<inter> g -` f i)" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   404
      hence "g -` (\<Union>i. f i) \<inter> {a..b} \<in> sets borel" by (auto simp del: UN_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   405
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   406
      have "(\<integral>\<^sup>+x. indicator (\<Union>i. f i) x * indicator {g a..g b} x \<partial>lborel) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   407
                \<integral>\<^sup>+x. indicator (\<Union>i. {g a..g b} \<inter> f i) x \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   408
          by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   409
      also from union have "... = emeasure lborel (\<Union>i. {g a..g b} \<inter> f i)" by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   410
      also from union have "... = (\<Sum>i. emeasure lborel ({g a..g b} \<inter> f i))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   411
        by (intro suminf_emeasure[symmetric]) (auto simp: disjoint_family_on_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   412
      also from union have "... = (\<Sum>i. \<integral>\<^sup>+x. indicator ({g a..g b} \<inter> f i) x \<partial>lborel)" by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   413
      also have "(\<lambda>i. \<integral>\<^sup>+x. indicator ({g a..g b} \<inter> f i) x \<partial>lborel) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   414
                           (\<lambda>i. \<integral>\<^sup>+x. indicator (f i) x * indicator {g a..g b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   415
        by (intro ext nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   416
      also from union.IH have "(\<Sum>i. \<integral>\<^sup>+x. indicator (f i) x * indicator {g a..g b} x \<partial>lborel) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   417
          (\<Sum>i. \<integral>\<^sup>+ x. indicator (f i) (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel)" by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   418
      also have "(\<lambda>i. \<integral>\<^sup>+ x. indicator (f i) (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   419
                         (\<lambda>i. \<integral>\<^sup>+ x. ereal (g' x * indicator {a..b} x) * indicator ({a..b} \<inter> g -` f i) x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   420
        by (intro ext nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   421
      also have "(\<Sum>i. ... i) = \<integral>\<^sup>+ x. (\<Sum>i. ereal (g' x * indicator {a..b} x) * indicator ({a..b} \<inter> g -` f i) x) \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   422
        using Mg'
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   423
        apply (intro nn_integral_suminf[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   424
        apply (rule borel_measurable_ereal_times, simp add: borel_measurable_ereal mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   425
        apply (rule borel_measurable_indicator, subst sets_lborel)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   426
        apply (simp_all split: split_indicator add: derivg_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   427
        done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   428
      also have "(\<lambda>x i. ereal (g' x * indicator {a..b} x) * indicator ({a..b} \<inter> g -` f i) x) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   429
                      (\<lambda>x i. ereal (g' x * indicator {a..b} x) * indicator (g -` f i) x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   430
        by (intro ext) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   431
      also have "(\<integral>\<^sup>+ x. (\<Sum>i. ereal (g' x * indicator {a..b} x) * indicator (g -` f i) x) \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   432
                     \<integral>\<^sup>+ x. ereal (g' x * indicator {a..b} x) * (\<Sum>i. indicator (g -` f i) x) \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   433
        by (intro nn_integral_cong suminf_cmult_ereal) (auto split: split_indicator simp: derivg_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   434
      also from union have "(\<lambda>x. \<Sum>i. indicator (g -` f i) x :: ereal) = (\<lambda>x. indicator (\<Union>i. g -` f i) x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   435
        by (intro ext suminf_indicator) (auto simp: disjoint_family_on_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   436
      also have "(\<integral>\<^sup>+x. ereal (g' x * indicator {a..b} x) * ... x \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   437
                    (\<integral>\<^sup>+x. indicator (\<Union>i. f i) (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   438
       by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   439
      finally show ?case .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   440
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   441
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   442
next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   443
  case (mult f c)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   444
    note Mf[measurable] = \<open>f \<in> borel_measurable borel\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   445
    let ?I = "indicator {a..b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   446
    have "(\<lambda>x. f (g x * ?I x) * ereal (g' x * ?I x)) \<in> borel_measurable borel" using Mg Mg'
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   447
      by (intro borel_measurable_ereal_times measurable_compose[OF _ Mf])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   448
         (simp_all add: borel_measurable_ereal mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   449
    also have "(\<lambda>x. f (g x * ?I x) * ereal (g' x * ?I x)) = (\<lambda>x. f (g x) * ereal (g' x) * ?I x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   450
      by (intro ext) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   451
    finally have Mf': "(\<lambda>x. f (g x) * ereal (g' x) * ?I x) \<in> borel_measurable borel" .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   452
    with mult show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   453
      by (subst (1 2 3) mult_ac, subst (1 2) nn_integral_cmult) (simp_all add: mult_ac)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   454
 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   455
next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   456
  case (add f2 f1)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   457
    let ?I = "indicator {a..b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   458
    {
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   459
      fix f :: "real \<Rightarrow> ereal" assume Mf: "f \<in> borel_measurable borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   460
      have "(\<lambda>x. f (g x * ?I x) * ereal (g' x * ?I x)) \<in> borel_measurable borel" using Mg Mg'
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   461
        by (intro borel_measurable_ereal_times measurable_compose[OF _ Mf])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   462
           (simp_all add: borel_measurable_ereal mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   463
      also have "(\<lambda>x. f (g x * ?I x) * ereal (g' x * ?I x)) = (\<lambda>x. f (g x) * ereal (g' x) * ?I x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   464
        by (intro ext) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   465
      finally have "(\<lambda>x. f (g x) * ereal (g' x) * ?I x) \<in> borel_measurable borel" .
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   466
    } note Mf' = this[OF \<open>f1 \<in> borel_measurable borel\<close>] this[OF \<open>f2 \<in> borel_measurable borel\<close>]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   467
    from add have not_neginf: "\<And>x. f1 x \<noteq> -\<infinity>" "\<And>x. f2 x \<noteq> -\<infinity>" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   468
      by (metis Infty_neq_0(1) ereal_0_le_uminus_iff ereal_infty_less_eq(1))+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   469
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   470
    have "(\<integral>\<^sup>+ x. (f1 x + f2 x) * indicator {g a..g b} x \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   471
             (\<integral>\<^sup>+ x. f1 x * indicator {g a..g b} x + f2 x * indicator {g a..g b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   472
      by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   473
    also from add have "... = (\<integral>\<^sup>+ x. f1 (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel) +
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   474
                                (\<integral>\<^sup>+ x. f2 (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   475
      by (simp_all add: nn_integral_add)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   476
    also from add have "... = (\<integral>\<^sup>+ x. f1 (g x) * ereal (g' x) * indicator {a..b} x + 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   477
                                      f2 (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   478
      by (intro nn_integral_add[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   479
         (auto simp add: Mf' derivg_nonneg split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   480
    also from not_neginf have "... = \<integral>\<^sup>+ x. (f1 (g x) + f2 (g x)) * ereal (g' x) * indicator {a..b} x \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   481
      by (intro nn_integral_cong) (simp split: split_indicator add: ereal_distrib)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   482
    finally show ?case .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   483
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   484
next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   485
  case (sup F)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   486
  {
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   487
    fix i
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   488
    let ?I = "indicator {a..b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   489
    have "(\<lambda>x. F i (g x * ?I x) * ereal (g' x * ?I x)) \<in> borel_measurable borel" using Mg Mg'
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   490
      by (rule_tac borel_measurable_ereal_times, rule_tac measurable_compose[OF _ sup.hyps(1)])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   491
         (simp_all add: mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   492
    also have "(\<lambda>x. F i (g x * ?I x) * ereal (g' x * ?I x)) = (\<lambda>x. F i (g x) * ereal (g' x) * ?I x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   493
      by (intro ext) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   494
     finally have "... \<in> borel_measurable borel" .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   495
  } note Mf' = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   496
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   497
    have "(\<integral>\<^sup>+x. (SUP i. F i x) * indicator {g a..g b} x \<partial>lborel) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   498
               \<integral>\<^sup>+x. (SUP i. F i x* indicator {g a..g b} x) \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   499
      by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   500
    also from sup have "... = (SUP i. \<integral>\<^sup>+x. F i x* indicator {g a..g b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   501
      by (intro nn_integral_monotone_convergence_SUP)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   502
         (auto simp: incseq_def le_fun_def split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   503
    also from sup have "... = (SUP i. \<integral>\<^sup>+x. F i (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   504
      by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   505
    also from sup have "... =  \<integral>\<^sup>+x. (SUP i. F i (g x) * ereal (g' x) * indicator {a..b} x) \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   506
      by (intro nn_integral_monotone_convergence_SUP[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   507
         (auto simp: incseq_def le_fun_def derivg_nonneg Mf' split: split_indicator
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   508
               intro!: ereal_mult_right_mono)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   509
    also from sup have "... = \<integral>\<^sup>+x. (SUP i. F i (g x)) * ereal (g' x) * indicator {a..b} x \<partial>lborel"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59092
diff changeset
   510
      by (subst mult.assoc, subst mult.commute, subst SUP_ereal_mult_left)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   511
         (auto split: split_indicator simp: derivg_nonneg mult_ac)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   512
    finally show ?case by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   513
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   514
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   515
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   516
lemma nn_integral_substitution:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   517
  fixes f :: "real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   518
  assumes Mf[measurable]: "set_borel_measurable borel {g a..g b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   519
  assumes derivg: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   520
  assumes contg': "continuous_on {a..b} g'" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   521
  assumes derivg_nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   522
  assumes "a \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   523
  shows "(\<integral>\<^sup>+x. f x * indicator {g a..g b} x \<partial>lborel) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   524
             (\<integral>\<^sup>+x. f (g x) * g' x * indicator {a..b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   525
proof (cases "a = b")
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   526
  assume "a \<noteq> b"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   527
  with \<open>a \<le> b\<close> have "a < b" by auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   528
  let ?f' = "\<lambda>x. max 0 (f x * indicator {g a..g b} x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   529
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   530
  from derivg derivg_nonneg have monog: "\<And>x y. a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> b \<Longrightarrow> g x \<le> g y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   531
    by (rule deriv_nonneg_imp_mono) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   532
  have bounds: "\<And>x. x \<ge> a \<Longrightarrow> x \<le> b \<Longrightarrow> g x \<ge> g a" "\<And>x. x \<ge> a \<Longrightarrow> x \<le> b \<Longrightarrow> g x \<le> g b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   533
    by (auto intro: monog)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   534
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   535
  from derivg_nonneg have nonneg: 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   536
    "\<And>f x. x \<ge> a \<Longrightarrow> x \<le> b \<Longrightarrow> g' x \<noteq> 0 \<Longrightarrow> f x * ereal (g' x) \<ge> 0 \<Longrightarrow> f x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   537
    by (force simp: ereal_zero_le_0_iff field_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   538
  have nonneg': "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<not> 0 \<le> f (g x) \<Longrightarrow> 0 \<le> f (g x) * g' x \<Longrightarrow> g' x = 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   539
    by (metis atLeastAtMost_iff derivg_nonneg eq_iff mult_eq_0_iff mult_le_0_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   540
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   541
  have "(\<integral>\<^sup>+x. f x * indicator {g a..g b} x \<partial>lborel) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   542
            (\<integral>\<^sup>+x. ereal (?f' x) * indicator {g a..g b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   543
    by (subst nn_integral_max_0[symmetric], intro nn_integral_cong) 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   544
       (auto split: split_indicator simp: zero_ereal_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   545
  also have "... = \<integral>\<^sup>+ x. ?f' (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel" using Mf
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   546
    by (subst nn_integral_substitution_aux[OF _ _ derivg contg' derivg_nonneg \<open>a < b\<close>]) 
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   547
       (auto simp add: zero_ereal_def mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   548
  also have "... = \<integral>\<^sup>+ x. max 0 (f (g x)) * ereal (g' x) * indicator {a..b} x \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   549
    by (intro nn_integral_cong) 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   550
       (auto split: split_indicator simp: max_def dest: bounds)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   551
  also have "... = \<integral>\<^sup>+ x. max 0 (f (g x) * ereal (g' x) * indicator {a..b} x) \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   552
    by (intro nn_integral_cong)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   553
       (auto simp: max_def derivg_nonneg split: split_indicator intro!: nonneg')
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   554
  also have "... = \<integral>\<^sup>+ x. f (g x) * ereal (g' x) * indicator {a..b} x \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   555
    by (rule nn_integral_max_0)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   556
  also have "... = \<integral>\<^sup>+x. ereal (f (g x) * g' x * indicator {a..b} x) \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   557
    by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   558
  finally show ?thesis .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   559
qed auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   560
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   561
lemma integral_substitution:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   562
  assumes integrable: "set_integrable lborel {g a..g b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   563
  assumes derivg: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   564
  assumes contg': "continuous_on {a..b} g'" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   565
  assumes derivg_nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   566
  assumes "a \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   567
  shows "set_integrable lborel {a..b} (\<lambda>x. f (g x) * g' x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   568
    and "(LBINT x. f x * indicator {g a..g b} x) = (LBINT x. f (g x) * g' x * indicator {a..b} x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   569
proof-
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   570
  from derivg have contg: "continuous_on {a..b} g" by (rule has_real_derivative_imp_continuous_on)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   571
  from this and contg' have Mg: "set_borel_measurable borel {a..b} g" and 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   572
                             Mg': "set_borel_measurable borel {a..b} g'" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   573
      by (simp_all only: set_measurable_continuous_on_ivl)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   574
  from derivg derivg_nonneg have monog: "\<And>x y. a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> b \<Longrightarrow> g x \<le> g y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   575
    by (rule deriv_nonneg_imp_mono) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   576
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   577
  have "(\<lambda>x. ereal (f x) * indicator {g a..g b} x) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   578
           (\<lambda>x. ereal (f x * indicator {g a..g b} x))" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   579
    by (intro ext) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   580
  with integrable have M1: "(\<lambda>x. f x * indicator {g a..g b} x) \<in> borel_measurable borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   581
    unfolding real_integrable_def by (force simp: mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   582
  have "(\<lambda>x. ereal (-f x) * indicator {g a..g b} x) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   583
           (\<lambda>x. -ereal (f x * indicator {g a..g b} x))" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   584
    by (intro ext) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   585
  with integrable have M2: "(\<lambda>x. -f x * indicator {g a..g b} x) \<in> borel_measurable borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   586
    unfolding real_integrable_def by (force simp: mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   587
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   588
  have "LBINT x. (f x :: real) * indicator {g a..g b} x = 
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59452
diff changeset
   589
          real_of_ereal (\<integral>\<^sup>+ x. ereal (f x) * indicator {g a..g b} x \<partial>lborel) -
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59452
diff changeset
   590
          real_of_ereal (\<integral>\<^sup>+ x. ereal (- (f x)) * indicator {g a..g b} x \<partial>lborel)" using integrable
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   591
    by (subst real_lebesgue_integral_def) (simp_all add: nn_integral_set_ereal mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   592
  also have "(\<integral>\<^sup>+x. ereal (f x) * indicator {g a..g b} x \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   593
               (\<integral>\<^sup>+x. ereal (f x * indicator {g a..g b} x) \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   594
    by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   595
  also with M1 have A: "(\<integral>\<^sup>+ x. ereal (f x * indicator {g a..g b} x) \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   596
                            (\<integral>\<^sup>+ x. ereal (f (g x) * g' x * indicator {a..b} x) \<partial>lborel)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   597
    by (subst nn_integral_substitution[OF _ derivg contg' derivg_nonneg \<open>a \<le> b\<close>]) 
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   598
       (auto simp: nn_integral_set_ereal mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   599
  also have "(\<integral>\<^sup>+ x. ereal (- (f x)) * indicator {g a..g b} x \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   600
               (\<integral>\<^sup>+ x. ereal (- (f x) * indicator {g a..g b} x) \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   601
    by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   602
  also with M2 have B: "(\<integral>\<^sup>+ x. ereal (- (f x) * indicator {g a..g b} x) \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   603
                            (\<integral>\<^sup>+ x. ereal (- (f (g x)) * g' x * indicator {a..b} x) \<partial>lborel)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   604
    by (subst nn_integral_substitution[OF _ derivg contg' derivg_nonneg \<open>a \<le> b\<close>])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   605
       (auto simp: nn_integral_set_ereal mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   606
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   607
  also {
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   608
    from integrable have Mf: "set_borel_measurable borel {g a..g b} f" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   609
      unfolding real_integrable_def by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   610
    from borel_measurable_times[OF measurable_compose[OF Mg Mf] Mg']
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   611
      have "(\<lambda>x. f (g x * indicator {a..b} x) * indicator {g a..g b} (g x * indicator {a..b} x) *
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   612
                     (g' x * indicator {a..b} x)) \<in> borel_measurable borel"  (is "?f \<in> _") 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   613
      by (simp add: mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   614
    also have "?f = (\<lambda>x. f (g x) * g' x * indicator {a..b} x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   615
      using monog by (intro ext) (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   616
    finally show "set_integrable lborel {a..b} (\<lambda>x. f (g x) * g' x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   617
      using A B integrable unfolding real_integrable_def 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   618
      by (simp_all add: nn_integral_set_ereal mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   619
  } note integrable' = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   620
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59452
diff changeset
   621
  have "real_of_ereal (\<integral>\<^sup>+ x. ereal (f (g x) * g' x * indicator {a..b} x) \<partial>lborel) -
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59452
diff changeset
   622
                  real_of_ereal (\<integral>\<^sup>+ x. ereal (-f (g x) * g' x * indicator {a..b} x) \<partial>lborel) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   623
                (LBINT x. f (g x) * g' x * indicator {a..b} x)" using integrable'
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   624
    by (subst real_lebesgue_integral_def) (simp_all add: field_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   625
  finally show "(LBINT x. f x * indicator {g a..g b} x) = 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   626
                     (LBINT x. f (g x) * g' x * indicator {a..b} x)" .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   627
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   628
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   629
lemma interval_integral_substitution:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   630
  assumes integrable: "set_integrable lborel {g a..g b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   631
  assumes derivg: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   632
  assumes contg': "continuous_on {a..b} g'" 
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   633
  assumes derivg_nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   634
  assumes "a \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   635
  shows "set_integrable lborel {a..b} (\<lambda>x. f (g x) * g' x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   636
    and "(LBINT x=g a..g b. f x) = (LBINT x=a..b. f (g x) * g' x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   637
  apply (rule integral_substitution[OF assms], simp, simp)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   638
  apply (subst (1 2) interval_integral_Icc, fact)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   639
  apply (rule deriv_nonneg_imp_mono[OF derivg derivg_nonneg], simp, simp, fact)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   640
  using integral_substitution(2)[OF assms]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   641
  apply (simp add: mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   642
  done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   643
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   644
lemma set_borel_integrable_singleton[simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   645
  "set_integrable lborel {x} (f :: real \<Rightarrow> real)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   646
  by (subst integrable_discrete_difference[where X="{x}" and g="\<lambda>_. 0"]) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   647
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   648
end