author | blanchet |
Tue, 21 Jun 2011 17:17:39 +0200 | |
changeset 43496 | 92f5a4c78b37 |
parent 41959 | b460124855b8 |
child 46008 | c296c75f4cf4 |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: HOL/NSA/Filter.thy |
41589 | 2 |
Author: Jacques D. Fleuriot, University of Cambridge |
3 |
Author: Lawrence C Paulson |
|
4 |
Author: Brian Huffman |
|
27468 | 5 |
*) |
6 |
||
7 |
header {* Filters and Ultrafilters *} |
|
8 |
||
9 |
theory Filter |
|
10 |
imports "~~/src/HOL/Library/Zorn" "~~/src/HOL/Library/Infinite_Set" |
|
11 |
begin |
|
12 |
||
13 |
subsection {* Definitions and basic properties *} |
|
14 |
||
15 |
subsubsection {* Filters *} |
|
16 |
||
17 |
locale filter = |
|
18 |
fixes F :: "'a set set" |
|
19 |
assumes UNIV [iff]: "UNIV \<in> F" |
|
20 |
assumes empty [iff]: "{} \<notin> F" |
|
21 |
assumes Int: "\<lbrakk>u \<in> F; v \<in> F\<rbrakk> \<Longrightarrow> u \<inter> v \<in> F" |
|
22 |
assumes subset: "\<lbrakk>u \<in> F; u \<subseteq> v\<rbrakk> \<Longrightarrow> v \<in> F" |
|
23 |
||
24 |
lemma (in filter) memD: "A \<in> F \<Longrightarrow> - A \<notin> F" |
|
25 |
proof |
|
26 |
assume "A \<in> F" and "- A \<in> F" |
|
27 |
hence "A \<inter> (- A) \<in> F" by (rule Int) |
|
28 |
thus "False" by simp |
|
29 |
qed |
|
30 |
||
31 |
lemma (in filter) not_memI: "- A \<in> F \<Longrightarrow> A \<notin> F" |
|
32 |
by (drule memD, simp) |
|
33 |
||
34 |
lemma (in filter) Int_iff: "(x \<inter> y \<in> F) = (x \<in> F \<and> y \<in> F)" |
|
35 |
by (auto elim: subset intro: Int) |
|
36 |
||
37 |
subsubsection {* Ultrafilters *} |
|
38 |
||
39 |
locale ultrafilter = filter + |
|
40 |
assumes ultra: "A \<in> F \<or> - A \<in> F" |
|
41 |
||
42 |
lemma (in ultrafilter) memI: "- A \<notin> F \<Longrightarrow> A \<in> F" |
|
43 |
by (cut_tac ultra [of A], simp) |
|
44 |
||
45 |
lemma (in ultrafilter) not_memD: "A \<notin> F \<Longrightarrow> - A \<in> F" |
|
46 |
by (rule memI, simp) |
|
47 |
||
48 |
lemma (in ultrafilter) not_mem_iff: "(A \<notin> F) = (- A \<in> F)" |
|
49 |
by (rule iffI [OF not_memD not_memI]) |
|
50 |
||
51 |
lemma (in ultrafilter) Compl_iff: "(- A \<in> F) = (A \<notin> F)" |
|
52 |
by (rule iffI [OF not_memI not_memD]) |
|
53 |
||
54 |
lemma (in ultrafilter) Un_iff: "(x \<union> y \<in> F) = (x \<in> F \<or> y \<in> F)" |
|
55 |
apply (rule iffI) |
|
56 |
apply (erule contrapos_pp) |
|
57 |
apply (simp add: Int_iff not_mem_iff) |
|
58 |
apply (auto elim: subset) |
|
59 |
done |
|
60 |
||
61 |
subsubsection {* Free Ultrafilters *} |
|
62 |
||
63 |
locale freeultrafilter = ultrafilter + |
|
64 |
assumes infinite: "A \<in> F \<Longrightarrow> infinite A" |
|
65 |
||
66 |
lemma (in freeultrafilter) finite: "finite A \<Longrightarrow> A \<notin> F" |
|
67 |
by (erule contrapos_pn, erule infinite) |
|
68 |
||
69 |
lemma (in freeultrafilter) singleton: "{x} \<notin> F" |
|
70 |
by (rule finite, simp) |
|
71 |
||
72 |
lemma (in freeultrafilter) insert_iff [simp]: "(insert x A \<in> F) = (A \<in> F)" |
|
73 |
apply (subst insert_is_Un) |
|
74 |
apply (subst Un_iff) |
|
75 |
apply (simp add: singleton) |
|
76 |
done |
|
77 |
||
28823 | 78 |
lemma (in freeultrafilter) filter: "filter F" .. |
27468 | 79 |
|
28823 | 80 |
lemma (in freeultrafilter) ultrafilter: "ultrafilter F" .. |
27468 | 81 |
|
82 |
||
83 |
subsection {* Collect properties *} |
|
84 |
||
85 |
lemma (in filter) Collect_ex: |
|
86 |
"({n. \<exists>x. P n x} \<in> F) = (\<exists>X. {n. P n (X n)} \<in> F)" |
|
87 |
proof |
|
88 |
assume "{n. \<exists>x. P n x} \<in> F" |
|
89 |
hence "{n. P n (SOME x. P n x)} \<in> F" |
|
90 |
by (auto elim: someI subset) |
|
91 |
thus "\<exists>X. {n. P n (X n)} \<in> F" by fast |
|
92 |
next |
|
93 |
show "\<exists>X. {n. P n (X n)} \<in> F \<Longrightarrow> {n. \<exists>x. P n x} \<in> F" |
|
94 |
by (auto elim: subset) |
|
95 |
qed |
|
96 |
||
97 |
lemma (in filter) Collect_conj: |
|
98 |
"({n. P n \<and> Q n} \<in> F) = ({n. P n} \<in> F \<and> {n. Q n} \<in> F)" |
|
99 |
by (subst Collect_conj_eq, rule Int_iff) |
|
100 |
||
101 |
lemma (in ultrafilter) Collect_not: |
|
102 |
"({n. \<not> P n} \<in> F) = ({n. P n} \<notin> F)" |
|
103 |
by (subst Collect_neg_eq, rule Compl_iff) |
|
104 |
||
105 |
lemma (in ultrafilter) Collect_disj: |
|
106 |
"({n. P n \<or> Q n} \<in> F) = ({n. P n} \<in> F \<or> {n. Q n} \<in> F)" |
|
107 |
by (subst Collect_disj_eq, rule Un_iff) |
|
108 |
||
109 |
lemma (in ultrafilter) Collect_all: |
|
110 |
"({n. \<forall>x. P n x} \<in> F) = (\<forall>X. {n. P n (X n)} \<in> F)" |
|
111 |
apply (rule Not_eq_iff [THEN iffD1]) |
|
112 |
apply (simp add: Collect_not [symmetric]) |
|
113 |
apply (rule Collect_ex) |
|
114 |
done |
|
115 |
||
116 |
subsection {* Maximal filter = Ultrafilter *} |
|
117 |
||
118 |
text {* |
|
119 |
A filter F is an ultrafilter iff it is a maximal filter, |
|
120 |
i.e. whenever G is a filter and @{term "F \<subseteq> G"} then @{term "F = G"} |
|
121 |
*} |
|
122 |
text {* |
|
123 |
Lemmas that shows existence of an extension to what was assumed to |
|
124 |
be a maximal filter. Will be used to derive contradiction in proof of |
|
125 |
property of ultrafilter. |
|
126 |
*} |
|
127 |
||
128 |
lemma extend_lemma1: "UNIV \<in> F \<Longrightarrow> A \<in> {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}" |
|
129 |
by blast |
|
130 |
||
131 |
lemma extend_lemma2: "F \<subseteq> {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}" |
|
132 |
by blast |
|
133 |
||
134 |
lemma (in filter) extend_filter: |
|
135 |
assumes A: "- A \<notin> F" |
|
136 |
shows "filter {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}" (is "filter ?X") |
|
137 |
proof (rule filter.intro) |
|
138 |
show "UNIV \<in> ?X" by blast |
|
139 |
next |
|
140 |
show "{} \<notin> ?X" |
|
141 |
proof (clarify) |
|
142 |
fix f assume f: "f \<in> F" and Af: "A \<inter> f \<subseteq> {}" |
|
143 |
from Af have fA: "f \<subseteq> - A" by blast |
|
144 |
from f fA have "- A \<in> F" by (rule subset) |
|
145 |
with A show "False" by simp |
|
146 |
qed |
|
147 |
next |
|
148 |
fix u and v |
|
149 |
assume u: "u \<in> ?X" and v: "v \<in> ?X" |
|
150 |
from u obtain f where f: "f \<in> F" and Af: "A \<inter> f \<subseteq> u" by blast |
|
151 |
from v obtain g where g: "g \<in> F" and Ag: "A \<inter> g \<subseteq> v" by blast |
|
152 |
from f g have fg: "f \<inter> g \<in> F" by (rule Int) |
|
153 |
from Af Ag have Afg: "A \<inter> (f \<inter> g) \<subseteq> u \<inter> v" by blast |
|
154 |
from fg Afg show "u \<inter> v \<in> ?X" by blast |
|
155 |
next |
|
156 |
fix u and v |
|
157 |
assume uv: "u \<subseteq> v" and u: "u \<in> ?X" |
|
158 |
from u obtain f where f: "f \<in> F" and Afu: "A \<inter> f \<subseteq> u" by blast |
|
159 |
from Afu uv have Afv: "A \<inter> f \<subseteq> v" by blast |
|
160 |
from f Afv have "\<exists>f\<in>F. A \<inter> f \<subseteq> v" by blast |
|
161 |
thus "v \<in> ?X" by simp |
|
162 |
qed |
|
163 |
||
164 |
lemma (in filter) max_filter_ultrafilter: |
|
165 |
assumes max: "\<And>G. \<lbrakk>filter G; F \<subseteq> G\<rbrakk> \<Longrightarrow> F = G" |
|
166 |
shows "ultrafilter_axioms F" |
|
167 |
proof (rule ultrafilter_axioms.intro) |
|
168 |
fix A show "A \<in> F \<or> - A \<in> F" |
|
169 |
proof (rule disjCI) |
|
170 |
let ?X = "{X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}" |
|
171 |
assume AF: "- A \<notin> F" |
|
172 |
from AF have X: "filter ?X" by (rule extend_filter) |
|
173 |
from UNIV have AX: "A \<in> ?X" by (rule extend_lemma1) |
|
174 |
have FX: "F \<subseteq> ?X" by (rule extend_lemma2) |
|
175 |
from X FX have "F = ?X" by (rule max) |
|
176 |
with AX show "A \<in> F" by simp |
|
177 |
qed |
|
178 |
qed |
|
179 |
||
180 |
lemma (in ultrafilter) max_filter: |
|
181 |
assumes G: "filter G" and sub: "F \<subseteq> G" shows "F = G" |
|
182 |
proof |
|
183 |
show "F \<subseteq> G" using sub . |
|
184 |
show "G \<subseteq> F" |
|
185 |
proof |
|
186 |
fix A assume A: "A \<in> G" |
|
187 |
from G A have "- A \<notin> G" by (rule filter.memD) |
|
188 |
with sub have B: "- A \<notin> F" by blast |
|
189 |
thus "A \<in> F" by (rule memI) |
|
190 |
qed |
|
191 |
qed |
|
192 |
||
193 |
subsection {* Ultrafilter Theorem *} |
|
194 |
||
195 |
text "A locale makes proof of ultrafilter Theorem more modular" |
|
27681 | 196 |
locale UFT = |
27468 | 197 |
fixes frechet :: "'a set set" |
198 |
and superfrechet :: "'a set set set" |
|
199 |
||
200 |
assumes infinite_UNIV: "infinite (UNIV :: 'a set)" |
|
201 |
||
202 |
defines frechet_def: "frechet \<equiv> {A. finite (- A)}" |
|
203 |
and superfrechet_def: "superfrechet \<equiv> {G. filter G \<and> frechet \<subseteq> G}" |
|
204 |
||
205 |
lemma (in UFT) superfrechetI: |
|
206 |
"\<lbrakk>filter G; frechet \<subseteq> G\<rbrakk> \<Longrightarrow> G \<in> superfrechet" |
|
207 |
by (simp add: superfrechet_def) |
|
208 |
||
209 |
lemma (in UFT) superfrechetD1: |
|
210 |
"G \<in> superfrechet \<Longrightarrow> filter G" |
|
211 |
by (simp add: superfrechet_def) |
|
212 |
||
213 |
lemma (in UFT) superfrechetD2: |
|
214 |
"G \<in> superfrechet \<Longrightarrow> frechet \<subseteq> G" |
|
215 |
by (simp add: superfrechet_def) |
|
216 |
||
217 |
text {* A few properties of free filters *} |
|
218 |
||
219 |
lemma filter_cofinite: |
|
220 |
assumes inf: "infinite (UNIV :: 'a set)" |
|
221 |
shows "filter {A:: 'a set. finite (- A)}" (is "filter ?F") |
|
222 |
proof (rule filter.intro) |
|
223 |
show "UNIV \<in> ?F" by simp |
|
224 |
next |
|
225 |
show "{} \<notin> ?F" using inf by simp |
|
226 |
next |
|
227 |
fix u v assume "u \<in> ?F" and "v \<in> ?F" |
|
228 |
thus "u \<inter> v \<in> ?F" by simp |
|
229 |
next |
|
230 |
fix u v assume uv: "u \<subseteq> v" and u: "u \<in> ?F" |
|
231 |
from uv have vu: "- v \<subseteq> - u" by simp |
|
232 |
from u show "v \<in> ?F" |
|
233 |
by (simp add: finite_subset [OF vu]) |
|
234 |
qed |
|
235 |
||
236 |
text {* |
|
237 |
We prove: 1. Existence of maximal filter i.e. ultrafilter; |
|
238 |
2. Freeness property i.e ultrafilter is free. |
|
239 |
Use a locale to prove various lemmas and then |
|
240 |
export main result: The ultrafilter Theorem |
|
241 |
*} |
|
242 |
||
243 |
lemma (in UFT) filter_frechet: "filter frechet" |
|
244 |
by (unfold frechet_def, rule filter_cofinite [OF infinite_UNIV]) |
|
245 |
||
246 |
lemma (in UFT) frechet_in_superfrechet: "frechet \<in> superfrechet" |
|
247 |
by (rule superfrechetI [OF filter_frechet subset_refl]) |
|
248 |
||
249 |
lemma (in UFT) lemma_mem_chain_filter: |
|
250 |
"\<lbrakk>c \<in> chain superfrechet; x \<in> c\<rbrakk> \<Longrightarrow> filter x" |
|
251 |
by (unfold chain_def superfrechet_def, blast) |
|
252 |
||
253 |
||
254 |
subsubsection {* Unions of chains of superfrechets *} |
|
255 |
||
256 |
text "In this section we prove that superfrechet is closed |
|
257 |
with respect to unions of non-empty chains. We must show |
|
258 |
1) Union of a chain is a filter, |
|
259 |
2) Union of a chain contains frechet. |
|
260 |
||
261 |
Number 2 is trivial, but 1 requires us to prove all the filter rules." |
|
262 |
||
263 |
lemma (in UFT) Union_chain_UNIV: |
|
264 |
"\<lbrakk>c \<in> chain superfrechet; c \<noteq> {}\<rbrakk> \<Longrightarrow> UNIV \<in> \<Union>c" |
|
265 |
proof - |
|
266 |
assume 1: "c \<in> chain superfrechet" and 2: "c \<noteq> {}" |
|
267 |
from 2 obtain x where 3: "x \<in> c" by blast |
|
268 |
from 1 3 have "filter x" by (rule lemma_mem_chain_filter) |
|
269 |
hence "UNIV \<in> x" by (rule filter.UNIV) |
|
270 |
with 3 show "UNIV \<in> \<Union>c" by blast |
|
271 |
qed |
|
272 |
||
273 |
lemma (in UFT) Union_chain_empty: |
|
274 |
"c \<in> chain superfrechet \<Longrightarrow> {} \<notin> \<Union>c" |
|
275 |
proof |
|
276 |
assume 1: "c \<in> chain superfrechet" and 2: "{} \<in> \<Union>c" |
|
277 |
from 2 obtain x where 3: "x \<in> c" and 4: "{} \<in> x" .. |
|
278 |
from 1 3 have "filter x" by (rule lemma_mem_chain_filter) |
|
279 |
hence "{} \<notin> x" by (rule filter.empty) |
|
280 |
with 4 show "False" by simp |
|
281 |
qed |
|
282 |
||
283 |
lemma (in UFT) Union_chain_Int: |
|
284 |
"\<lbrakk>c \<in> chain superfrechet; u \<in> \<Union>c; v \<in> \<Union>c\<rbrakk> \<Longrightarrow> u \<inter> v \<in> \<Union>c" |
|
285 |
proof - |
|
286 |
assume c: "c \<in> chain superfrechet" |
|
287 |
assume "u \<in> \<Union>c" |
|
288 |
then obtain x where ux: "u \<in> x" and xc: "x \<in> c" .. |
|
289 |
assume "v \<in> \<Union>c" |
|
290 |
then obtain y where vy: "v \<in> y" and yc: "y \<in> c" .. |
|
291 |
from c xc yc have "x \<subseteq> y \<or> y \<subseteq> x" by (rule chainD) |
|
292 |
with xc yc have xyc: "x \<union> y \<in> c" |
|
293 |
by (auto simp add: Un_absorb1 Un_absorb2) |
|
294 |
with c have fxy: "filter (x \<union> y)" by (rule lemma_mem_chain_filter) |
|
295 |
from ux have uxy: "u \<in> x \<union> y" by simp |
|
296 |
from vy have vxy: "v \<in> x \<union> y" by simp |
|
297 |
from fxy uxy vxy have "u \<inter> v \<in> x \<union> y" by (rule filter.Int) |
|
298 |
with xyc show "u \<inter> v \<in> \<Union>c" .. |
|
299 |
qed |
|
300 |
||
301 |
lemma (in UFT) Union_chain_subset: |
|
302 |
"\<lbrakk>c \<in> chain superfrechet; u \<in> \<Union>c; u \<subseteq> v\<rbrakk> \<Longrightarrow> v \<in> \<Union>c" |
|
303 |
proof - |
|
304 |
assume c: "c \<in> chain superfrechet" |
|
305 |
and u: "u \<in> \<Union>c" and uv: "u \<subseteq> v" |
|
306 |
from u obtain x where ux: "u \<in> x" and xc: "x \<in> c" .. |
|
307 |
from c xc have fx: "filter x" by (rule lemma_mem_chain_filter) |
|
308 |
from fx ux uv have vx: "v \<in> x" by (rule filter.subset) |
|
309 |
with xc show "v \<in> \<Union>c" .. |
|
310 |
qed |
|
311 |
||
312 |
lemma (in UFT) Union_chain_filter: |
|
313 |
assumes chain: "c \<in> chain superfrechet" and nonempty: "c \<noteq> {}" |
|
314 |
shows "filter (\<Union>c)" |
|
315 |
proof (rule filter.intro) |
|
316 |
show "UNIV \<in> \<Union>c" using chain nonempty by (rule Union_chain_UNIV) |
|
317 |
next |
|
318 |
show "{} \<notin> \<Union>c" using chain by (rule Union_chain_empty) |
|
319 |
next |
|
320 |
fix u v assume "u \<in> \<Union>c" and "v \<in> \<Union>c" |
|
321 |
with chain show "u \<inter> v \<in> \<Union>c" by (rule Union_chain_Int) |
|
322 |
next |
|
323 |
fix u v assume "u \<in> \<Union>c" and "u \<subseteq> v" |
|
324 |
with chain show "v \<in> \<Union>c" by (rule Union_chain_subset) |
|
325 |
qed |
|
326 |
||
327 |
lemma (in UFT) lemma_mem_chain_frechet_subset: |
|
328 |
"\<lbrakk>c \<in> chain superfrechet; x \<in> c\<rbrakk> \<Longrightarrow> frechet \<subseteq> x" |
|
329 |
by (unfold superfrechet_def chain_def, blast) |
|
330 |
||
331 |
lemma (in UFT) Union_chain_superfrechet: |
|
332 |
"\<lbrakk>c \<noteq> {}; c \<in> chain superfrechet\<rbrakk> \<Longrightarrow> \<Union>c \<in> superfrechet" |
|
333 |
proof (rule superfrechetI) |
|
334 |
assume 1: "c \<in> chain superfrechet" and 2: "c \<noteq> {}" |
|
335 |
thus "filter (\<Union>c)" by (rule Union_chain_filter) |
|
336 |
from 2 obtain x where 3: "x \<in> c" by blast |
|
337 |
from 1 3 have "frechet \<subseteq> x" by (rule lemma_mem_chain_frechet_subset) |
|
338 |
also from 3 have "x \<subseteq> \<Union>c" by blast |
|
339 |
finally show "frechet \<subseteq> \<Union>c" . |
|
340 |
qed |
|
341 |
||
342 |
subsubsection {* Existence of free ultrafilter *} |
|
343 |
||
344 |
lemma (in UFT) max_cofinite_filter_Ex: |
|
345 |
"\<exists>U\<in>superfrechet. \<forall>G\<in>superfrechet. U \<subseteq> G \<longrightarrow> U = G" |
|
346 |
proof (rule Zorn_Lemma2 [rule_format]) |
|
347 |
fix c assume c: "c \<in> chain superfrechet" |
|
348 |
show "\<exists>U\<in>superfrechet. \<forall>G\<in>c. G \<subseteq> U" (is "?U") |
|
349 |
proof (cases) |
|
350 |
assume "c = {}" |
|
351 |
with frechet_in_superfrechet show "?U" by blast |
|
352 |
next |
|
353 |
assume A: "c \<noteq> {}" |
|
354 |
from A c have "\<Union>c \<in> superfrechet" |
|
355 |
by (rule Union_chain_superfrechet) |
|
356 |
thus "?U" by blast |
|
357 |
qed |
|
358 |
qed |
|
359 |
||
360 |
lemma (in UFT) mem_superfrechet_all_infinite: |
|
361 |
"\<lbrakk>U \<in> superfrechet; A \<in> U\<rbrakk> \<Longrightarrow> infinite A" |
|
362 |
proof |
|
363 |
assume U: "U \<in> superfrechet" and A: "A \<in> U" and fin: "finite A" |
|
364 |
from U have fil: "filter U" and fre: "frechet \<subseteq> U" |
|
365 |
by (simp_all add: superfrechet_def) |
|
366 |
from fin have "- A \<in> frechet" by (simp add: frechet_def) |
|
367 |
with fre have cA: "- A \<in> U" by (rule subsetD) |
|
368 |
from fil A cA have "A \<inter> - A \<in> U" by (rule filter.Int) |
|
369 |
with fil show "False" by (simp add: filter.empty) |
|
370 |
qed |
|
371 |
||
372 |
text {* There exists a free ultrafilter on any infinite set *} |
|
373 |
||
374 |
lemma (in UFT) freeultrafilter_ex: |
|
375 |
"\<exists>U::'a set set. freeultrafilter U" |
|
376 |
proof - |
|
377 |
from max_cofinite_filter_Ex obtain U |
|
378 |
where U: "U \<in> superfrechet" |
|
379 |
and max [rule_format]: "\<forall>G\<in>superfrechet. U \<subseteq> G \<longrightarrow> U = G" .. |
|
380 |
from U have fil: "filter U" by (rule superfrechetD1) |
|
381 |
from U have fre: "frechet \<subseteq> U" by (rule superfrechetD2) |
|
382 |
have ultra: "ultrafilter_axioms U" |
|
383 |
proof (rule filter.max_filter_ultrafilter [OF fil]) |
|
384 |
fix G assume G: "filter G" and UG: "U \<subseteq> G" |
|
385 |
from fre UG have "frechet \<subseteq> G" by simp |
|
386 |
with G have "G \<in> superfrechet" by (rule superfrechetI) |
|
387 |
from this UG show "U = G" by (rule max) |
|
388 |
qed |
|
389 |
have free: "freeultrafilter_axioms U" |
|
390 |
proof (rule freeultrafilter_axioms.intro) |
|
391 |
fix A assume "A \<in> U" |
|
392 |
with U show "infinite A" by (rule mem_superfrechet_all_infinite) |
|
393 |
qed |
|
394 |
show ?thesis |
|
395 |
proof |
|
396 |
from fil ultra free show "freeultrafilter U" |
|
397 |
by (rule freeultrafilter.intro [OF ultrafilter.intro]) |
|
398 |
(* FIXME: unfold_locales should use chained facts *) |
|
399 |
qed |
|
400 |
qed |
|
401 |
||
27681 | 402 |
lemmas freeultrafilter_Ex = UFT.freeultrafilter_ex [OF UFT.intro] |
27468 | 403 |
|
36176
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
wenzelm
parents:
28823
diff
changeset
|
404 |
hide_const (open) filter |
27468 | 405 |
|
406 |
end |