| author | wenzelm | 
| Fri, 08 Apr 2016 20:52:40 +0200 | |
| changeset 62914 | 930a30c1a9af | 
| parent 62789 | ce15dd971965 | 
| child 63092 | a949b2a5f51d | 
| permissions | -rw-r--r-- | 
| 47317 
432b29a96f61
modernized obsolete old-style theory name with proper new-style underscore
 huffman parents: 
47222diff
changeset | 1 | (* Title: HOL/Set_Interval.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 2 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 3 | Author: Clemens Ballarin | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 4 | Author: Jeremy Avigad | 
| 8924 | 5 | |
| 13735 | 6 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 51334 | 7 | |
| 8 | Modern convention: Ixy stands for an interval where x and y | |
| 9 | describe the lower and upper bound and x,y : {c,o,i}
 | |
| 10 | where c = closed, o = open, i = infinite. | |
| 11 | Examples: Ico = {_ ..< _} and Ici = {_ ..}
 | |
| 8924 | 12 | *) | 
| 13 | ||
| 60758 | 14 | section \<open>Set intervals\<close> | 
| 14577 | 15 | |
| 47317 
432b29a96f61
modernized obsolete old-style theory name with proper new-style underscore
 huffman parents: 
47222diff
changeset | 16 | theory Set_Interval | 
| 55088 
57c82e01022b
moved 'bacc' back to 'Enum' (cf. 744934b818c7) -- reduces baggage loaded by 'Hilbert_Choice'
 blanchet parents: 
55085diff
changeset | 17 | imports Lattices_Big Nat_Transfer | 
| 15131 | 18 | begin | 
| 8924 | 19 | |
| 24691 | 20 | context ord | 
| 21 | begin | |
| 44008 | 22 | |
| 24691 | 23 | definition | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 24 |   lessThan    :: "'a => 'a set" ("(1{..<_})") where
 | 
| 25062 | 25 |   "{..<u} == {x. x < u}"
 | 
| 24691 | 26 | |
| 27 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 28 |   atMost      :: "'a => 'a set" ("(1{.._})") where
 | 
| 25062 | 29 |   "{..u} == {x. x \<le> u}"
 | 
| 24691 | 30 | |
| 31 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 32 |   greaterThan :: "'a => 'a set" ("(1{_<..})") where
 | 
| 25062 | 33 |   "{l<..} == {x. l<x}"
 | 
| 24691 | 34 | |
| 35 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 36 |   atLeast     :: "'a => 'a set" ("(1{_..})") where
 | 
| 25062 | 37 |   "{l..} == {x. l\<le>x}"
 | 
| 24691 | 38 | |
| 39 | definition | |
| 25062 | 40 |   greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
 | 
| 41 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 24691 | 42 | |
| 43 | definition | |
| 25062 | 44 |   atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
 | 
| 45 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 24691 | 46 | |
| 47 | definition | |
| 25062 | 48 |   greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
 | 
| 49 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 24691 | 50 | |
| 51 | definition | |
| 25062 | 52 |   atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
 | 
| 53 |   "{l..u} == {l..} Int {..u}"
 | |
| 24691 | 54 | |
| 55 | end | |
| 8924 | 56 | |
| 13735 | 57 | |
| 60758 | 58 | text\<open>A note of warning when using @{term"{..<n}"} on type @{typ
 | 
| 15048 | 59 | nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
 | 
| 60758 | 60 | @{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well.\<close>
 | 
| 15048 | 61 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 62 | syntax (ASCII) | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 63 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3UN _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 64 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3UN _<_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 65 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3INT _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 66 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3INT _<_./ _)" [0, 0, 10] 10)
 | 
| 14418 | 67 | |
| 30372 | 68 | syntax (latex output) | 
| 62789 | 69 |   "_UNION_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(\<open>unbreakable\<close>_ \<le> _)/ _)" [0, 0, 10] 10)
 | 
| 70 |   "_UNION_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(\<open>unbreakable\<close>_ < _)/ _)" [0, 0, 10] 10)
 | |
| 71 |   "_INTER_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(\<open>unbreakable\<close>_ \<le> _)/ _)" [0, 0, 10] 10)
 | |
| 72 |   "_INTER_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(\<open>unbreakable\<close>_ < _)/ _)" [0, 0, 10] 10)
 | |
| 14418 | 73 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 74 | syntax | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 75 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Union>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 76 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Union>_<_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 77 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 78 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter>_<_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 79 | |
| 14418 | 80 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 81 |   "\<Union>i\<le>n. A" \<rightleftharpoons> "\<Union>i\<in>{..n}. A"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 82 |   "\<Union>i<n. A" \<rightleftharpoons> "\<Union>i\<in>{..<n}. A"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 83 |   "\<Inter>i\<le>n. A" \<rightleftharpoons> "\<Inter>i\<in>{..n}. A"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 84 |   "\<Inter>i<n. A" \<rightleftharpoons> "\<Inter>i\<in>{..<n}. A"
 | 
| 14418 | 85 | |
| 86 | ||
| 60758 | 87 | subsection \<open>Various equivalences\<close> | 
| 13735 | 88 | |
| 25062 | 89 | lemma (in ord) lessThan_iff [iff]: "(i: lessThan k) = (i<k)" | 
| 13850 | 90 | by (simp add: lessThan_def) | 
| 13735 | 91 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 92 | lemma Compl_lessThan [simp]: | 
| 13735 | 93 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 13850 | 94 | apply (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 95 | done | 
| 96 | ||
| 13850 | 97 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
| 98 | by auto | |
| 13735 | 99 | |
| 25062 | 100 | lemma (in ord) greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)" | 
| 13850 | 101 | by (simp add: greaterThan_def) | 
| 13735 | 102 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 103 | lemma Compl_greaterThan [simp]: | 
| 13735 | 104 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 105 | by (auto simp add: greaterThan_def atMost_def) | 
| 13735 | 106 | |
| 13850 | 107 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 108 | apply (subst Compl_greaterThan [symmetric]) | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 109 | apply (rule double_complement) | 
| 13735 | 110 | done | 
| 111 | ||
| 25062 | 112 | lemma (in ord) atLeast_iff [iff]: "(i: atLeast k) = (k<=i)" | 
| 13850 | 113 | by (simp add: atLeast_def) | 
| 13735 | 114 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 115 | lemma Compl_atLeast [simp]: | 
| 13735 | 116 | "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 117 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 118 | |
| 25062 | 119 | lemma (in ord) atMost_iff [iff]: "(i: atMost k) = (i<=k)" | 
| 13850 | 120 | by (simp add: atMost_def) | 
| 13735 | 121 | |
| 14485 | 122 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 123 | by (blast intro: order_antisym) | |
| 13850 | 124 | |
| 50999 | 125 | lemma (in linorder) lessThan_Int_lessThan: "{ a <..} \<inter> { b <..} = { max a b <..}"
 | 
| 126 | by auto | |
| 127 | ||
| 128 | lemma (in linorder) greaterThan_Int_greaterThan: "{..< a} \<inter> {..< b} = {..< min a b}"
 | |
| 129 | by auto | |
| 13850 | 130 | |
| 60758 | 131 | subsection \<open>Logical Equivalences for Set Inclusion and Equality\<close> | 
| 13850 | 132 | |
| 133 | lemma atLeast_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 134 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 135 | by (blast intro: order_trans) | 
| 13850 | 136 | |
| 137 | lemma atLeast_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 138 | "(atLeast x = atLeast y) = (x = (y::'a::linorder))" | 
| 13850 | 139 | by (blast intro: order_antisym order_trans) | 
| 140 | ||
| 141 | lemma greaterThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 142 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 143 | apply (auto simp add: greaterThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 144 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 145 | done | 
| 146 | ||
| 147 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 148 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 149 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 150 | apply (erule equalityE) | 
| 29709 | 151 | apply simp_all | 
| 13850 | 152 | done | 
| 153 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 154 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))" | 
| 13850 | 155 | by (blast intro: order_trans) | 
| 156 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 157 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" | 
| 13850 | 158 | by (blast intro: order_antisym order_trans) | 
| 159 | ||
| 160 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 161 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 162 | apply (auto simp add: lessThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 163 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 164 | done | 
| 165 | ||
| 166 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 167 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 168 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 169 | apply (erule equalityE) | 
| 29709 | 170 | apply simp_all | 
| 13735 | 171 | done | 
| 172 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 173 | lemma lessThan_strict_subset_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 174 | fixes m n :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 175 |   shows "{..<m} < {..<n} \<longleftrightarrow> m < n"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 176 | by (metis leD lessThan_subset_iff linorder_linear not_less_iff_gr_or_eq psubset_eq) | 
| 13735 | 177 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 178 | lemma (in linorder) Ici_subset_Ioi_iff: "{a ..} \<subseteq> {b <..} \<longleftrightarrow> b < a"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 179 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 180 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 181 | lemma (in linorder) Iic_subset_Iio_iff: "{.. a} \<subseteq> {..< b} \<longleftrightarrow> a < b"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 182 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 183 | |
| 62369 | 184 | lemma (in preorder) Ioi_le_Ico: "{a <..} \<subseteq> {a ..}"
 | 
| 185 | by (auto intro: less_imp_le) | |
| 186 | ||
| 60758 | 187 | subsection \<open>Two-sided intervals\<close> | 
| 13735 | 188 | |
| 24691 | 189 | context ord | 
| 190 | begin | |
| 191 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 192 | lemma greaterThanLessThan_iff [simp]: | 
| 25062 | 193 |   "(i : {l<..<u}) = (l < i & i < u)"
 | 
| 13735 | 194 | by (simp add: greaterThanLessThan_def) | 
| 195 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 196 | lemma atLeastLessThan_iff [simp]: | 
| 25062 | 197 |   "(i : {l..<u}) = (l <= i & i < u)"
 | 
| 13735 | 198 | by (simp add: atLeastLessThan_def) | 
| 199 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 200 | lemma greaterThanAtMost_iff [simp]: | 
| 25062 | 201 |   "(i : {l<..u}) = (l < i & i <= u)"
 | 
| 13735 | 202 | by (simp add: greaterThanAtMost_def) | 
| 203 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 204 | lemma atLeastAtMost_iff [simp]: | 
| 25062 | 205 |   "(i : {l..u}) = (l <= i & i <= u)"
 | 
| 13735 | 206 | by (simp add: atLeastAtMost_def) | 
| 207 | ||
| 60758 | 208 | text \<open>The above four lemmas could be declared as iffs. Unfortunately this | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 209 | breaks many proofs. Since it only helps blast, it is better to leave them | 
| 60758 | 210 | alone.\<close> | 
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 211 | |
| 50999 | 212 | lemma greaterThanLessThan_eq: "{ a <..< b} = { a <..} \<inter> {..< b }"
 | 
| 213 | by auto | |
| 214 | ||
| 24691 | 215 | end | 
| 13735 | 216 | |
| 60758 | 217 | subsubsection\<open>Emptyness, singletons, subset\<close> | 
| 15554 | 218 | |
| 24691 | 219 | context order | 
| 220 | begin | |
| 15554 | 221 | |
| 32400 | 222 | lemma atLeastatMost_empty[simp]: | 
| 223 |   "b < a \<Longrightarrow> {a..b} = {}"
 | |
| 224 | by(auto simp: atLeastAtMost_def atLeast_def atMost_def) | |
| 225 | ||
| 226 | lemma atLeastatMost_empty_iff[simp]: | |
| 227 |   "{a..b} = {} \<longleftrightarrow> (~ a <= b)"
 | |
| 228 | by auto (blast intro: order_trans) | |
| 229 | ||
| 230 | lemma atLeastatMost_empty_iff2[simp]: | |
| 231 |   "{} = {a..b} \<longleftrightarrow> (~ a <= b)"
 | |
| 232 | by auto (blast intro: order_trans) | |
| 233 | ||
| 234 | lemma atLeastLessThan_empty[simp]: | |
| 235 |   "b <= a \<Longrightarrow> {a..<b} = {}"
 | |
| 236 | by(auto simp: atLeastLessThan_def) | |
| 24691 | 237 | |
| 32400 | 238 | lemma atLeastLessThan_empty_iff[simp]: | 
| 239 |   "{a..<b} = {} \<longleftrightarrow> (~ a < b)"
 | |
| 240 | by auto (blast intro: le_less_trans) | |
| 241 | ||
| 242 | lemma atLeastLessThan_empty_iff2[simp]: | |
| 243 |   "{} = {a..<b} \<longleftrightarrow> (~ a < b)"
 | |
| 244 | by auto (blast intro: le_less_trans) | |
| 15554 | 245 | |
| 32400 | 246 | lemma greaterThanAtMost_empty[simp]: "l \<le> k ==> {k<..l} = {}"
 | 
| 17719 | 247 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | 
| 248 | ||
| 32400 | 249 | lemma greaterThanAtMost_empty_iff[simp]: "{k<..l} = {} \<longleftrightarrow> ~ k < l"
 | 
| 250 | by auto (blast intro: less_le_trans) | |
| 251 | ||
| 252 | lemma greaterThanAtMost_empty_iff2[simp]: "{} = {k<..l} \<longleftrightarrow> ~ k < l"
 | |
| 253 | by auto (blast intro: less_le_trans) | |
| 254 | ||
| 29709 | 255 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..<l} = {}"
 | 
| 17719 | 256 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | 
| 257 | ||
| 25062 | 258 | lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
 | 
| 24691 | 259 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 260 | ||
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 261 | lemma atLeastAtMost_singleton': "a = b \<Longrightarrow> {a .. b} = {a}" by simp
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 262 | |
| 32400 | 263 | lemma atLeastatMost_subset_iff[simp]: | 
| 264 |   "{a..b} <= {c..d} \<longleftrightarrow> (~ a <= b) | c <= a & b <= d"
 | |
| 265 | unfolding atLeastAtMost_def atLeast_def atMost_def | |
| 266 | by (blast intro: order_trans) | |
| 267 | ||
| 268 | lemma atLeastatMost_psubset_iff: | |
| 269 |   "{a..b} < {c..d} \<longleftrightarrow>
 | |
| 270 | ((~ a <= b) | c <= a & b <= d & (c < a | b < d)) & c <= d" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 271 | by(simp add: psubset_eq set_eq_iff less_le_not_le)(blast intro: order_trans) | 
| 32400 | 272 | |
| 51334 | 273 | lemma Icc_eq_Icc[simp]: | 
| 274 |   "{l..h} = {l'..h'} = (l=l' \<and> h=h' \<or> \<not> l\<le>h \<and> \<not> l'\<le>h')"
 | |
| 275 | by(simp add: order_class.eq_iff)(auto intro: order_trans) | |
| 276 | ||
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 277 | lemma atLeastAtMost_singleton_iff[simp]: | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 278 |   "{a .. b} = {c} \<longleftrightarrow> a = b \<and> b = c"
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 279 | proof | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 280 |   assume "{a..b} = {c}"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 281 | hence *: "\<not> (\<not> a \<le> b)" unfolding atLeastatMost_empty_iff[symmetric] by simp | 
| 60758 | 282 |   with \<open>{a..b} = {c}\<close> have "c \<le> a \<and> b \<le> c" by auto
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 283 | with * show "a = b \<and> b = c" by auto | 
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 284 | qed simp | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 285 | |
| 51334 | 286 | lemma Icc_subset_Ici_iff[simp]: | 
| 287 |   "{l..h} \<subseteq> {l'..} = (~ l\<le>h \<or> l\<ge>l')"
 | |
| 288 | by(auto simp: subset_eq intro: order_trans) | |
| 289 | ||
| 290 | lemma Icc_subset_Iic_iff[simp]: | |
| 291 |   "{l..h} \<subseteq> {..h'} = (~ l\<le>h \<or> h\<le>h')"
 | |
| 292 | by(auto simp: subset_eq intro: order_trans) | |
| 293 | ||
| 294 | lemma not_Ici_eq_empty[simp]: "{l..} \<noteq> {}"
 | |
| 295 | by(auto simp: set_eq_iff) | |
| 296 | ||
| 297 | lemma not_Iic_eq_empty[simp]: "{..h} \<noteq> {}"
 | |
| 298 | by(auto simp: set_eq_iff) | |
| 299 | ||
| 300 | lemmas not_empty_eq_Ici_eq_empty[simp] = not_Ici_eq_empty[symmetric] | |
| 301 | lemmas not_empty_eq_Iic_eq_empty[simp] = not_Iic_eq_empty[symmetric] | |
| 302 | ||
| 24691 | 303 | end | 
| 14485 | 304 | |
| 51334 | 305 | context no_top | 
| 306 | begin | |
| 307 | ||
| 308 | (* also holds for no_bot but no_top should suffice *) | |
| 309 | lemma not_UNIV_le_Icc[simp]: "\<not> UNIV \<subseteq> {l..h}"
 | |
| 310 | using gt_ex[of h] by(auto simp: subset_eq less_le_not_le) | |
| 311 | ||
| 312 | lemma not_UNIV_le_Iic[simp]: "\<not> UNIV \<subseteq> {..h}"
 | |
| 313 | using gt_ex[of h] by(auto simp: subset_eq less_le_not_le) | |
| 314 | ||
| 315 | lemma not_Ici_le_Icc[simp]: "\<not> {l..} \<subseteq> {l'..h'}"
 | |
| 316 | using gt_ex[of h'] | |
| 317 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 318 | ||
| 319 | lemma not_Ici_le_Iic[simp]: "\<not> {l..} \<subseteq> {..h'}"
 | |
| 320 | using gt_ex[of h'] | |
| 321 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 322 | ||
| 323 | end | |
| 324 | ||
| 325 | context no_bot | |
| 326 | begin | |
| 327 | ||
| 328 | lemma not_UNIV_le_Ici[simp]: "\<not> UNIV \<subseteq> {l..}"
 | |
| 329 | using lt_ex[of l] by(auto simp: subset_eq less_le_not_le) | |
| 330 | ||
| 331 | lemma not_Iic_le_Icc[simp]: "\<not> {..h} \<subseteq> {l'..h'}"
 | |
| 332 | using lt_ex[of l'] | |
| 333 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 334 | ||
| 335 | lemma not_Iic_le_Ici[simp]: "\<not> {..h} \<subseteq> {l'..}"
 | |
| 336 | using lt_ex[of l'] | |
| 337 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 338 | ||
| 339 | end | |
| 340 | ||
| 341 | ||
| 342 | context no_top | |
| 343 | begin | |
| 344 | ||
| 345 | (* also holds for no_bot but no_top should suffice *) | |
| 346 | lemma not_UNIV_eq_Icc[simp]: "\<not> UNIV = {l'..h'}"
 | |
| 347 | using gt_ex[of h'] by(auto simp: set_eq_iff less_le_not_le) | |
| 348 | ||
| 349 | lemmas not_Icc_eq_UNIV[simp] = not_UNIV_eq_Icc[symmetric] | |
| 350 | ||
| 351 | lemma not_UNIV_eq_Iic[simp]: "\<not> UNIV = {..h'}"
 | |
| 352 | using gt_ex[of h'] by(auto simp: set_eq_iff less_le_not_le) | |
| 353 | ||
| 354 | lemmas not_Iic_eq_UNIV[simp] = not_UNIV_eq_Iic[symmetric] | |
| 355 | ||
| 356 | lemma not_Icc_eq_Ici[simp]: "\<not> {l..h} = {l'..}"
 | |
| 357 | unfolding atLeastAtMost_def using not_Ici_le_Iic[of l'] by blast | |
| 358 | ||
| 359 | lemmas not_Ici_eq_Icc[simp] = not_Icc_eq_Ici[symmetric] | |
| 360 | ||
| 361 | (* also holds for no_bot but no_top should suffice *) | |
| 362 | lemma not_Iic_eq_Ici[simp]: "\<not> {..h} = {l'..}"
 | |
| 363 | using not_Ici_le_Iic[of l' h] by blast | |
| 364 | ||
| 365 | lemmas not_Ici_eq_Iic[simp] = not_Iic_eq_Ici[symmetric] | |
| 366 | ||
| 367 | end | |
| 368 | ||
| 369 | context no_bot | |
| 370 | begin | |
| 371 | ||
| 372 | lemma not_UNIV_eq_Ici[simp]: "\<not> UNIV = {l'..}"
 | |
| 373 | using lt_ex[of l'] by(auto simp: set_eq_iff less_le_not_le) | |
| 374 | ||
| 375 | lemmas not_Ici_eq_UNIV[simp] = not_UNIV_eq_Ici[symmetric] | |
| 376 | ||
| 377 | lemma not_Icc_eq_Iic[simp]: "\<not> {l..h} = {..h'}"
 | |
| 378 | unfolding atLeastAtMost_def using not_Iic_le_Ici[of h'] by blast | |
| 379 | ||
| 380 | lemmas not_Iic_eq_Icc[simp] = not_Icc_eq_Iic[symmetric] | |
| 381 | ||
| 382 | end | |
| 383 | ||
| 384 | ||
| 53216 | 385 | context dense_linorder | 
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 386 | begin | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 387 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 388 | lemma greaterThanLessThan_empty_iff[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 389 |   "{ a <..< b } = {} \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 390 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 391 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 392 | lemma greaterThanLessThan_empty_iff2[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 393 |   "{} = { a <..< b } \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 394 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 395 | |
| 42901 | 396 | lemma atLeastLessThan_subseteq_atLeastAtMost_iff: | 
| 397 |   "{a ..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 398 | using dense[of "max a d" "b"] | |
| 399 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 400 | ||
| 401 | lemma greaterThanAtMost_subseteq_atLeastAtMost_iff: | |
| 402 |   "{a <.. b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 403 | using dense[of "a" "min c b"] | |
| 404 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 405 | ||
| 406 | lemma greaterThanLessThan_subseteq_atLeastAtMost_iff: | |
| 407 |   "{a <..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 408 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 409 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 410 | ||
| 43657 | 411 | lemma atLeastAtMost_subseteq_atLeastLessThan_iff: | 
| 412 |   "{a .. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a \<le> b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 413 | using dense[of "max a d" "b"] | |
| 414 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 62369 | 415 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 416 | lemma greaterThanLessThan_subseteq_greaterThanLessThan: | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 417 |   "{a <..< b} \<subseteq> {c <..< d} \<longleftrightarrow> (a < b \<longrightarrow> a \<ge> c \<and> b \<le> d)"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 418 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 419 | by (force simp: subset_eq Ball_def not_less[symmetric]) | 
| 43657 | 420 | |
| 421 | lemma greaterThanAtMost_subseteq_atLeastLessThan_iff: | |
| 422 |   "{a <.. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 423 | using dense[of "a" "min c b"] | |
| 424 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 425 | ||
| 426 | lemma greaterThanLessThan_subseteq_atLeastLessThan_iff: | |
| 427 |   "{a <..< b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 428 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 429 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 430 | ||
| 56328 | 431 | lemma greaterThanLessThan_subseteq_greaterThanAtMost_iff: | 
| 432 |   "{a <..< b} \<subseteq> { c <.. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 433 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 434 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 435 | ||
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 436 | end | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 437 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 438 | context no_top | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 439 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 440 | |
| 51334 | 441 | lemma greaterThan_non_empty[simp]: "{x <..} \<noteq> {}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 442 | using gt_ex[of x] by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 443 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 444 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 445 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 446 | context no_bot | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 447 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 448 | |
| 51334 | 449 | lemma lessThan_non_empty[simp]: "{..< x} \<noteq> {}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 450 | using lt_ex[of x] by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 451 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 452 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 453 | |
| 32408 | 454 | lemma (in linorder) atLeastLessThan_subset_iff: | 
| 455 |   "{a..<b} <= {c..<d} \<Longrightarrow> b <= a | c<=a & b<=d"
 | |
| 456 | apply (auto simp:subset_eq Ball_def) | |
| 457 | apply(frule_tac x=a in spec) | |
| 458 | apply(erule_tac x=d in allE) | |
| 459 | apply (simp add: less_imp_le) | |
| 460 | done | |
| 461 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 462 | lemma atLeastLessThan_inj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 463 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 464 |   assumes eq: "{a ..< b} = {c ..< d}" and "a < b" "c < d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 465 | shows "a = c" "b = d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 466 | using assms by (metis atLeastLessThan_subset_iff eq less_le_not_le linorder_antisym_conv2 subset_refl)+ | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 467 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 468 | lemma atLeastLessThan_eq_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 469 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 470 | assumes "a < b" "c < d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 471 |   shows "{a ..< b} = {c ..< d} \<longleftrightarrow> a = c \<and> b = d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 472 | using atLeastLessThan_inj assms by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 473 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 474 | lemma (in linorder) Ioc_inj: "{a <.. b} = {c <.. d} \<longleftrightarrow> (b \<le> a \<and> d \<le> c) \<or> a = c \<and> b = d"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 475 | by (metis eq_iff greaterThanAtMost_empty_iff2 greaterThanAtMost_iff le_cases not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 476 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 477 | lemma (in order) Iio_Int_singleton: "{..<k} \<inter> {x} = (if x < k then {x} else {})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 478 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 479 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 480 | lemma (in linorder) Ioc_subset_iff: "{a<..b} \<subseteq> {c<..d} \<longleftrightarrow> (b \<le> a \<or> c \<le> a \<and> b \<le> d)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 481 | by (auto simp: subset_eq Ball_def) (metis less_le not_less) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 482 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 483 | lemma (in order_bot) atLeast_eq_UNIV_iff: "{x..} = UNIV \<longleftrightarrow> x = bot"
 | 
| 51334 | 484 | by (auto simp: set_eq_iff intro: le_bot) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 485 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 486 | lemma (in order_top) atMost_eq_UNIV_iff: "{..x} = UNIV \<longleftrightarrow> x = top"
 | 
| 51334 | 487 | by (auto simp: set_eq_iff intro: top_le) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 488 | |
| 51334 | 489 | lemma (in bounded_lattice) atLeastAtMost_eq_UNIV_iff: | 
| 490 |   "{x..y} = UNIV \<longleftrightarrow> (x = bot \<and> y = top)"
 | |
| 491 | by (auto simp: set_eq_iff intro: top_le le_bot) | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 492 | |
| 56949 | 493 | lemma Iio_eq_empty_iff: "{..< n::'a::{linorder, order_bot}} = {} \<longleftrightarrow> n = bot"
 | 
| 494 | by (auto simp: set_eq_iff not_less le_bot) | |
| 495 | ||
| 496 | lemma Iio_eq_empty_iff_nat: "{..< n::nat} = {} \<longleftrightarrow> n = 0"
 | |
| 497 | by (simp add: Iio_eq_empty_iff bot_nat_def) | |
| 498 | ||
| 58970 | 499 | lemma mono_image_least: | 
| 500 |   assumes f_mono: "mono f" and f_img: "f ` {m ..< n} = {m' ..< n'}" "m < n"
 | |
| 501 | shows "f m = m'" | |
| 502 | proof - | |
| 503 |   from f_img have "{m' ..< n'} \<noteq> {}"
 | |
| 504 | by (metis atLeastLessThan_empty_iff image_is_empty) | |
| 505 |   with f_img have "m' \<in> f ` {m ..< n}" by auto
 | |
| 506 | then obtain k where "f k = m'" "m \<le> k" by auto | |
| 507 | moreover have "m' \<le> f m" using f_img by auto | |
| 508 | ultimately show "f m = m'" | |
| 509 | using f_mono by (auto elim: monoE[where x=m and y=k]) | |
| 510 | qed | |
| 511 | ||
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 512 | |
| 60758 | 513 | subsection \<open>Infinite intervals\<close> | 
| 56328 | 514 | |
| 515 | context dense_linorder | |
| 516 | begin | |
| 517 | ||
| 518 | lemma infinite_Ioo: | |
| 519 | assumes "a < b" | |
| 520 |   shows "\<not> finite {a<..<b}"
 | |
| 521 | proof | |
| 522 |   assume fin: "finite {a<..<b}"
 | |
| 523 |   moreover have ne: "{a<..<b} \<noteq> {}"
 | |
| 60758 | 524 | using \<open>a < b\<close> by auto | 
| 56328 | 525 |   ultimately have "a < Max {a <..< b}" "Max {a <..< b} < b"
 | 
| 526 |     using Max_in[of "{a <..< b}"] by auto
 | |
| 527 |   then obtain x where "Max {a <..< b} < x" "x < b"
 | |
| 528 |     using dense[of "Max {a<..<b}" b] by auto
 | |
| 529 |   then have "x \<in> {a <..< b}"
 | |
| 60758 | 530 |     using \<open>a < Max {a <..< b}\<close> by auto
 | 
| 56328 | 531 |   then have "x \<le> Max {a <..< b}"
 | 
| 532 | using fin by auto | |
| 60758 | 533 |   with \<open>Max {a <..< b} < x\<close> show False by auto
 | 
| 56328 | 534 | qed | 
| 535 | ||
| 536 | lemma infinite_Icc: "a < b \<Longrightarrow> \<not> finite {a .. b}"
 | |
| 537 | using greaterThanLessThan_subseteq_atLeastAtMost_iff[of a b a b] infinite_Ioo[of a b] | |
| 538 | by (auto dest: finite_subset) | |
| 539 | ||
| 540 | lemma infinite_Ico: "a < b \<Longrightarrow> \<not> finite {a ..< b}"
 | |
| 541 | using greaterThanLessThan_subseteq_atLeastLessThan_iff[of a b a b] infinite_Ioo[of a b] | |
| 542 | by (auto dest: finite_subset) | |
| 543 | ||
| 544 | lemma infinite_Ioc: "a < b \<Longrightarrow> \<not> finite {a <.. b}"
 | |
| 545 | using greaterThanLessThan_subseteq_greaterThanAtMost_iff[of a b a b] infinite_Ioo[of a b] | |
| 546 | by (auto dest: finite_subset) | |
| 547 | ||
| 548 | end | |
| 549 | ||
| 550 | lemma infinite_Iio: "\<not> finite {..< a :: 'a :: {no_bot, linorder}}"
 | |
| 551 | proof | |
| 552 |   assume "finite {..< a}"
 | |
| 553 |   then have *: "\<And>x. x < a \<Longrightarrow> Min {..< a} \<le> x"
 | |
| 554 | by auto | |
| 555 | obtain x where "x < a" | |
| 556 | using lt_ex by auto | |
| 557 | ||
| 558 |   obtain y where "y < Min {..< a}"
 | |
| 559 | using lt_ex by auto | |
| 560 |   also have "Min {..< a} \<le> x"
 | |
| 60758 | 561 | using \<open>x < a\<close> by fact | 
| 562 | also note \<open>x < a\<close> | |
| 56328 | 563 |   finally have "Min {..< a} \<le> y"
 | 
| 564 | by fact | |
| 60758 | 565 |   with \<open>y < Min {..< a}\<close> show False by auto
 | 
| 56328 | 566 | qed | 
| 567 | ||
| 568 | lemma infinite_Iic: "\<not> finite {.. a :: 'a :: {no_bot, linorder}}"
 | |
| 569 |   using infinite_Iio[of a] finite_subset[of "{..< a}" "{.. a}"]
 | |
| 570 | by (auto simp: subset_eq less_imp_le) | |
| 571 | ||
| 572 | lemma infinite_Ioi: "\<not> finite {a :: 'a :: {no_top, linorder} <..}"
 | |
| 573 | proof | |
| 574 |   assume "finite {a <..}"
 | |
| 575 |   then have *: "\<And>x. a < x \<Longrightarrow> x \<le> Max {a <..}"
 | |
| 576 | by auto | |
| 577 | ||
| 578 |   obtain y where "Max {a <..} < y"
 | |
| 579 | using gt_ex by auto | |
| 580 | ||
| 581 | obtain x where "a < x" | |
| 582 | using gt_ex by auto | |
| 583 |   also then have "x \<le> Max {a <..}"
 | |
| 584 | by fact | |
| 60758 | 585 |   also note \<open>Max {a <..} < y\<close>
 | 
| 56328 | 586 |   finally have "y \<le> Max { a <..}"
 | 
| 587 | by fact | |
| 60758 | 588 |   with \<open>Max {a <..} < y\<close> show False by auto
 | 
| 56328 | 589 | qed | 
| 590 | ||
| 591 | lemma infinite_Ici: "\<not> finite {a :: 'a :: {no_top, linorder} ..}"
 | |
| 592 |   using infinite_Ioi[of a] finite_subset[of "{a <..}" "{a ..}"]
 | |
| 593 | by (auto simp: subset_eq less_imp_le) | |
| 594 | ||
| 60758 | 595 | subsubsection \<open>Intersection\<close> | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 596 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 597 | context linorder | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 598 | begin | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 599 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 600 | lemma Int_atLeastAtMost[simp]: "{a..b} Int {c..d} = {max a c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 601 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 602 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 603 | lemma Int_atLeastAtMostR1[simp]: "{..b} Int {c..d} = {c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 604 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 605 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 606 | lemma Int_atLeastAtMostR2[simp]: "{a..} Int {c..d} = {max a c .. d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 607 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 608 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 609 | lemma Int_atLeastAtMostL1[simp]: "{a..b} Int {..d} = {a .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 610 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 611 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 612 | lemma Int_atLeastAtMostL2[simp]: "{a..b} Int {c..} = {max a c .. b}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 613 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 614 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 615 | lemma Int_atLeastLessThan[simp]: "{a..<b} Int {c..<d} = {max a c ..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 616 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 617 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 618 | lemma Int_greaterThanAtMost[simp]: "{a<..b} Int {c<..d} = {max a c <.. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 619 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 620 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 621 | lemma Int_greaterThanLessThan[simp]: "{a<..<b} Int {c<..<d} = {max a c <..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 622 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 623 | |
| 50417 | 624 | lemma Int_atMost[simp]: "{..a} \<inter> {..b} = {.. min a b}"
 | 
| 625 | by (auto simp: min_def) | |
| 626 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 627 | lemma Ioc_disjoint: "{a<..b} \<inter> {c<..d} = {} \<longleftrightarrow> b \<le> a \<or> d \<le> c \<or> b \<le> c \<or> d \<le> a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 628 | using assms by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 629 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 630 | end | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 631 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 632 | context complete_lattice | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 633 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 634 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 635 | lemma | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 636 |   shows Sup_atLeast[simp]: "Sup {x ..} = top"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 637 |     and Sup_greaterThanAtLeast[simp]: "x < top \<Longrightarrow> Sup {x <..} = top"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 638 |     and Sup_atMost[simp]: "Sup {.. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 639 |     and Sup_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Sup { x .. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 640 |     and Sup_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Sup { x <.. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 641 | by (auto intro!: Sup_eqI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 642 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 643 | lemma | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 644 |   shows Inf_atMost[simp]: "Inf {.. x} = bot"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 645 |     and Inf_atMostLessThan[simp]: "top < x \<Longrightarrow> Inf {..< x} = bot"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 646 |     and Inf_atLeast[simp]: "Inf {x ..} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 647 |     and Inf_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Inf { x .. y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 648 |     and Inf_atLeastLessThan[simp]: "x < y \<Longrightarrow> Inf { x ..< y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 649 | by (auto intro!: Inf_eqI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 650 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 651 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 652 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 653 | lemma | 
| 53216 | 654 |   fixes x y :: "'a :: {complete_lattice, dense_linorder}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 655 |   shows Sup_lessThan[simp]: "Sup {..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 656 |     and Sup_atLeastLessThan[simp]: "x < y \<Longrightarrow> Sup { x ..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 657 |     and Sup_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Sup { x <..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 658 |     and Inf_greaterThan[simp]: "Inf {x <..} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 659 |     and Inf_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Inf { x <.. y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 660 |     and Inf_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Inf { x <..< y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 661 | by (auto intro!: Inf_eqI Sup_eqI intro: dense_le dense_le_bounded dense_ge dense_ge_bounded) | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 662 | |
| 60758 | 663 | subsection \<open>Intervals of natural numbers\<close> | 
| 14485 | 664 | |
| 60758 | 665 | subsubsection \<open>The Constant @{term lessThan}\<close>
 | 
| 15047 | 666 | |
| 14485 | 667 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 668 | by (simp add: lessThan_def) | |
| 669 | ||
| 670 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 671 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 672 | ||
| 60758 | 673 | text \<open>The following proof is convenient in induction proofs where | 
| 39072 | 674 | new elements get indices at the beginning. So it is used to transform | 
| 60758 | 675 | @{term "{..<Suc n}"} to @{term "0::nat"} and @{term "{..< n}"}.\<close>
 | 
| 39072 | 676 | |
| 59000 | 677 | lemma zero_notin_Suc_image: "0 \<notin> Suc ` A" | 
| 678 | by auto | |
| 679 | ||
| 39072 | 680 | lemma lessThan_Suc_eq_insert_0: "{..<Suc n} = insert 0 (Suc ` {..<n})"
 | 
| 59000 | 681 | by (auto simp: image_iff less_Suc_eq_0_disj) | 
| 39072 | 682 | |
| 14485 | 683 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | 
| 684 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 685 | ||
| 59000 | 686 | lemma Iic_Suc_eq_insert_0: "{.. Suc n} = insert 0 (Suc ` {.. n})"
 | 
| 687 | unfolding lessThan_Suc_atMost[symmetric] lessThan_Suc_eq_insert_0[of "Suc n"] .. | |
| 688 | ||
| 14485 | 689 | lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" | 
| 690 | by blast | |
| 691 | ||
| 60758 | 692 | subsubsection \<open>The Constant @{term greaterThan}\<close>
 | 
| 15047 | 693 | |
| 14485 | 694 | lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc" | 
| 695 | apply (simp add: greaterThan_def) | |
| 696 | apply (blast dest: gr0_conv_Suc [THEN iffD1]) | |
| 697 | done | |
| 698 | ||
| 699 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 700 | apply (simp add: greaterThan_def) | |
| 701 | apply (auto elim: linorder_neqE) | |
| 702 | done | |
| 703 | ||
| 704 | lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | |
| 705 | by blast | |
| 706 | ||
| 60758 | 707 | subsubsection \<open>The Constant @{term atLeast}\<close>
 | 
| 15047 | 708 | |
| 14485 | 709 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 710 | by (unfold atLeast_def UNIV_def, simp) | |
| 711 | ||
| 712 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 713 | apply (simp add: atLeast_def) | |
| 714 | apply (simp add: Suc_le_eq) | |
| 715 | apply (simp add: order_le_less, blast) | |
| 716 | done | |
| 717 | ||
| 718 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 719 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 720 | ||
| 721 | lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" | |
| 722 | by blast | |
| 723 | ||
| 60758 | 724 | subsubsection \<open>The Constant @{term atMost}\<close>
 | 
| 15047 | 725 | |
| 14485 | 726 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 727 | by (simp add: atMost_def) | |
| 728 | ||
| 729 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 730 | apply (simp add: atMost_def) | |
| 731 | apply (simp add: less_Suc_eq order_le_less, blast) | |
| 732 | done | |
| 733 | ||
| 734 | lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" | |
| 735 | by blast | |
| 736 | ||
| 60758 | 737 | subsubsection \<open>The Constant @{term atLeastLessThan}\<close>
 | 
| 15047 | 738 | |
| 60758 | 739 | text\<open>The orientation of the following 2 rules is tricky. The lhs is | 
| 24449 | 740 | defined in terms of the rhs. Hence the chosen orientation makes sense | 
| 741 | in this theory --- the reverse orientation complicates proofs (eg | |
| 742 | nontermination). But outside, when the definition of the lhs is rarely | |
| 743 | used, the opposite orientation seems preferable because it reduces a | |
| 60758 | 744 | specific concept to a more general one.\<close> | 
| 28068 | 745 | |
| 15047 | 746 | lemma atLeast0LessThan: "{0::nat..<n} = {..<n}"
 | 
| 15042 | 747 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 24449 | 748 | |
| 28068 | 749 | lemma atLeast0AtMost: "{0..n::nat} = {..n}"
 | 
| 750 | by(simp add:atMost_def atLeastAtMost_def) | |
| 751 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31509diff
changeset | 752 | declare atLeast0LessThan[symmetric, code_unfold] | 
| 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31509diff
changeset | 753 | atLeast0AtMost[symmetric, code_unfold] | 
| 24449 | 754 | |
| 755 | lemma atLeastLessThan0: "{m..<0::nat} = {}"
 | |
| 15047 | 756 | by (simp add: atLeastLessThan_def) | 
| 24449 | 757 | |
| 60758 | 758 | subsubsection \<open>Intervals of nats with @{term Suc}\<close>
 | 
| 15047 | 759 | |
| 60758 | 760 | text\<open>Not a simprule because the RHS is too messy.\<close> | 
| 15047 | 761 | lemma atLeastLessThanSuc: | 
| 762 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 763 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 764 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 765 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 766 | by (auto simp add: atLeastLessThan_def) | 
| 16041 | 767 | (* | 
| 15047 | 768 | lemma atLeast_sum_LessThan [simp]: "{m + k..<k::nat} = {}"
 | 
| 769 | by (induct k, simp_all add: atLeastLessThanSuc) | |
| 770 | ||
| 771 | lemma atLeastSucLessThan [simp]: "{Suc n..<n} = {}"
 | |
| 772 | by (auto simp add: atLeastLessThan_def) | |
| 16041 | 773 | *) | 
| 15045 | 774 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 775 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 776 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 777 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 778 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 14485 | 779 | greaterThanAtMost_def) | 
| 780 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 781 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 782 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 783 | greaterThanLessThan_def) | 
| 784 | ||
| 15554 | 785 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 786 | by (auto simp add: atLeastAtMost_def) | |
| 787 | ||
| 45932 | 788 | lemma atLeastAtMost_insertL: "m \<le> n \<Longrightarrow> insert m {Suc m..n} = {m ..n}"
 | 
| 789 | by auto | |
| 790 | ||
| 60758 | 791 | text \<open>The analogous result is useful on @{typ int}:\<close>
 | 
| 43157 | 792 | (* here, because we don't have an own int section *) | 
| 793 | lemma atLeastAtMostPlus1_int_conv: | |
| 794 |   "m <= 1+n \<Longrightarrow> {m..1+n} = insert (1+n) {m..n::int}"
 | |
| 795 | by (auto intro: set_eqI) | |
| 796 | ||
| 33044 | 797 | lemma atLeastLessThan_add_Un: "i \<le> j \<Longrightarrow> {i..<j+k} = {i..<j} \<union> {j..<j+k::nat}"
 | 
| 62369 | 798 | apply (induct k) | 
| 799 | apply (simp_all add: atLeastLessThanSuc) | |
| 33044 | 800 | done | 
| 801 | ||
| 60758 | 802 | subsubsection \<open>Intervals and numerals\<close> | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 803 | |
| 61799 | 804 | lemma lessThan_nat_numeral: \<comment>\<open>Evaluation for specific numerals\<close> | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 805 | "lessThan (numeral k :: nat) = insert (pred_numeral k) (lessThan (pred_numeral k))" | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 806 | by (simp add: numeral_eq_Suc lessThan_Suc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 807 | |
| 61799 | 808 | lemma atMost_nat_numeral: \<comment>\<open>Evaluation for specific numerals\<close> | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 809 | "atMost (numeral k :: nat) = insert (numeral k) (atMost (pred_numeral k))" | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 810 | by (simp add: numeral_eq_Suc atMost_Suc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 811 | |
| 61799 | 812 | lemma atLeastLessThan_nat_numeral: \<comment>\<open>Evaluation for specific numerals\<close> | 
| 62369 | 813 | "atLeastLessThan m (numeral k :: nat) = | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 814 | (if m \<le> (pred_numeral k) then insert (pred_numeral k) (atLeastLessThan m (pred_numeral k)) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 815 |                  else {})"
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 816 | by (simp add: numeral_eq_Suc atLeastLessThanSuc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 817 | |
| 60758 | 818 | subsubsection \<open>Image\<close> | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 819 | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 820 | lemma image_add_atLeastAtMost [simp]: | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 821 | fixes k ::"'a::linordered_semidom" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 822 |   shows "(\<lambda>n. n+k) ` {i..j} = {i+k..j+k}" (is "?A = ?B")
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 823 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 824 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 825 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 826 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 827 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 828 | fix n assume a: "n : ?B" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 829 |     hence "n - k : {i..j}"
 | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 830 | by (auto simp: add_le_imp_le_diff add_le_add_imp_diff_le) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 831 | moreover have "n = (n - k) + k" using a | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 832 | proof - | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 833 | have "k + i \<le> n" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 834 | by (metis a add.commute atLeastAtMost_iff) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 835 | hence "k + (n - k) = n" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 836 | by (metis (no_types) ab_semigroup_add_class.add_ac(1) add_diff_cancel_left' le_add_diff_inverse) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 837 | thus ?thesis | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 838 | by (simp add: add.commute) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 839 | qed | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 840 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 841 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 842 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 843 | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 844 | lemma image_diff_atLeastAtMost [simp]: | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 845 |   fixes d::"'a::linordered_idom" shows "(op - d ` {a..b}) = {d-b..d-a}"
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 846 | apply auto | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 847 | apply (rule_tac x="d-x" in rev_image_eqI, auto) | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 848 | done | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 849 | |
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 850 | lemma image_mult_atLeastAtMost [simp]: | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 851 | fixes d::"'a::linordered_field" | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 852 |   assumes "d>0" shows "(op * d ` {a..b}) = {d*a..d*b}"
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 853 | using assms | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 854 | by (auto simp: field_simps mult_le_cancel_right intro: rev_image_eqI [where x="x/d" for x]) | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 855 | |
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 856 | lemma image_affinity_atLeastAtMost: | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 857 | fixes c :: "'a::linordered_field" | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 858 |   shows "((\<lambda>x. m*x + c) ` {a..b}) = (if {a..b}={} then {}
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 859 |             else if 0 \<le> m then {m*a + c .. m *b + c}
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 860 |             else {m*b + c .. m*a + c})"
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 861 | apply (case_tac "m=0", auto simp: mult_le_cancel_left) | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 862 | apply (rule_tac x="inverse m*(x-c)" in rev_image_eqI, auto simp: field_simps) | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 863 | apply (rule_tac x="inverse m*(x-c)" in rev_image_eqI, auto simp: field_simps) | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 864 | done | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 865 | |
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 866 | lemma image_affinity_atLeastAtMost_diff: | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 867 | fixes c :: "'a::linordered_field" | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 868 |   shows "((\<lambda>x. m*x - c) ` {a..b}) = (if {a..b}={} then {}
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 869 |             else if 0 \<le> m then {m*a - c .. m*b - c}
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 870 |             else {m*b - c .. m*a - c})"
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 871 | using image_affinity_atLeastAtMost [of m "-c" a b] | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 872 | by simp | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 873 | |
| 61204 | 874 | lemma image_affinity_atLeastAtMost_div: | 
| 875 | fixes c :: "'a::linordered_field" | |
| 876 |   shows "((\<lambda>x. x/m + c) ` {a..b}) = (if {a..b}={} then {}
 | |
| 877 |             else if 0 \<le> m then {a/m + c .. b/m + c}
 | |
| 878 |             else {b/m + c .. a/m + c})"
 | |
| 879 | using image_affinity_atLeastAtMost [of "inverse m" c a b] | |
| 880 | by (simp add: field_class.field_divide_inverse algebra_simps) | |
| 62369 | 881 | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 882 | lemma image_affinity_atLeastAtMost_div_diff: | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 883 | fixes c :: "'a::linordered_field" | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 884 |   shows "((\<lambda>x. x/m - c) ` {a..b}) = (if {a..b}={} then {}
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 885 |             else if 0 \<le> m then {a/m - c .. b/m - c}
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 886 |             else {b/m - c .. a/m - c})"
 | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 887 | using image_affinity_atLeastAtMost_diff [of "inverse m" c a b] | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 888 | by (simp add: field_class.field_divide_inverse algebra_simps) | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 889 | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 890 | lemma image_add_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 891 |   "(%n::nat. n+k) ` {i..<j} = {i+k..<j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 892 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 893 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 894 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 895 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 896 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 897 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 898 |     hence "n - k : {i..<j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 899 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 900 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 901 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 902 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 903 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 904 | corollary image_Suc_atLeastAtMost[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 905 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 906 | using image_add_atLeastAtMost[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 907 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 908 | corollary image_Suc_atLeastLessThan[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 909 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 910 | using image_add_atLeastLessThan[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 911 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 912 | lemma image_add_int_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 913 |     "(%x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 914 | apply (auto simp add: image_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 915 | apply (rule_tac x = "x - l" in bexI) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 916 | apply auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 917 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 918 | |
| 37664 | 919 | lemma image_minus_const_atLeastLessThan_nat: | 
| 920 | fixes c :: nat | |
| 921 |   shows "(\<lambda>i. i - c) ` {x ..< y} =
 | |
| 922 |       (if c < y then {x - c ..< y - c} else if x < y then {0} else {})"
 | |
| 923 | (is "_ = ?right") | |
| 924 | proof safe | |
| 925 | fix a assume a: "a \<in> ?right" | |
| 926 |   show "a \<in> (\<lambda>i. i - c) ` {x ..< y}"
 | |
| 927 | proof cases | |
| 928 | assume "c < y" with a show ?thesis | |
| 929 | by (auto intro!: image_eqI[of _ _ "a + c"]) | |
| 930 | next | |
| 931 | assume "\<not> c < y" with a show ?thesis | |
| 62390 | 932 | by (auto intro!: image_eqI[of _ _ x] split: if_split_asm) | 
| 37664 | 933 | qed | 
| 934 | qed auto | |
| 935 | ||
| 51152 | 936 | lemma image_int_atLeastLessThan: "int ` {a..<b} = {int a..<int b}"
 | 
| 55143 
04448228381d
explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
 wenzelm parents: 
55088diff
changeset | 937 | by (auto intro!: image_eqI [where x = "nat x" for x]) | 
| 51152 | 938 | |
| 35580 | 939 | context ordered_ab_group_add | 
| 940 | begin | |
| 941 | ||
| 942 | lemma | |
| 943 | fixes x :: 'a | |
| 944 |   shows image_uminus_greaterThan[simp]: "uminus ` {x<..} = {..<-x}"
 | |
| 945 |   and image_uminus_atLeast[simp]: "uminus ` {x..} = {..-x}"
 | |
| 946 | proof safe | |
| 947 | fix y assume "y < -x" | |
| 948 | hence *: "x < -y" using neg_less_iff_less[of "-y" x] by simp | |
| 949 |   have "- (-y) \<in> uminus ` {x<..}"
 | |
| 950 | by (rule imageI) (simp add: *) | |
| 951 |   thus "y \<in> uminus ` {x<..}" by simp
 | |
| 952 | next | |
| 953 | fix y assume "y \<le> -x" | |
| 954 |   have "- (-y) \<in> uminus ` {x..}"
 | |
| 60758 | 955 | by (rule imageI) (insert \<open>y \<le> -x\<close>[THEN le_imp_neg_le], simp) | 
| 35580 | 956 |   thus "y \<in> uminus ` {x..}" by simp
 | 
| 957 | qed simp_all | |
| 958 | ||
| 959 | lemma | |
| 960 | fixes x :: 'a | |
| 961 |   shows image_uminus_lessThan[simp]: "uminus ` {..<x} = {-x<..}"
 | |
| 962 |   and image_uminus_atMost[simp]: "uminus ` {..x} = {-x..}"
 | |
| 963 | proof - | |
| 964 |   have "uminus ` {..<x} = uminus ` uminus ` {-x<..}"
 | |
| 965 |     and "uminus ` {..x} = uminus ` uminus ` {-x..}" by simp_all
 | |
| 966 |   thus "uminus ` {..<x} = {-x<..}" and "uminus ` {..x} = {-x..}"
 | |
| 967 | by (simp_all add: image_image | |
| 968 | del: image_uminus_greaterThan image_uminus_atLeast) | |
| 969 | qed | |
| 970 | ||
| 971 | lemma | |
| 972 | fixes x :: 'a | |
| 973 |   shows image_uminus_atLeastAtMost[simp]: "uminus ` {x..y} = {-y..-x}"
 | |
| 974 |   and image_uminus_greaterThanAtMost[simp]: "uminus ` {x<..y} = {-y..<-x}"
 | |
| 975 |   and image_uminus_atLeastLessThan[simp]: "uminus ` {x..<y} = {-y<..-x}"
 | |
| 976 |   and image_uminus_greaterThanLessThan[simp]: "uminus ` {x<..<y} = {-y<..<-x}"
 | |
| 977 | by (simp_all add: atLeastAtMost_def greaterThanAtMost_def atLeastLessThan_def | |
| 978 | greaterThanLessThan_def image_Int[OF inj_uminus] Int_commute) | |
| 979 | end | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 980 | |
| 60758 | 981 | subsubsection \<open>Finiteness\<close> | 
| 14485 | 982 | |
| 15045 | 983 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 984 | by (induct k) (simp_all add: lessThan_Suc) | 
| 985 | ||
| 986 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 987 | by (induct k) (simp_all add: atMost_Suc) | |
| 988 | ||
| 989 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 990 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 14485 | 991 | by (simp add: greaterThanLessThan_def) | 
| 992 | ||
| 993 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 994 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 14485 | 995 | by (simp add: atLeastLessThan_def) | 
| 996 | ||
| 997 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 998 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 14485 | 999 | by (simp add: greaterThanAtMost_def) | 
| 1000 | ||
| 1001 | lemma finite_atLeastAtMost [iff]: | |
| 1002 |   fixes l :: nat shows "finite {l..u}"
 | |
| 1003 | by (simp add: atLeastAtMost_def) | |
| 1004 | ||
| 60758 | 1005 | text \<open>A bounded set of natural numbers is finite.\<close> | 
| 14485 | 1006 | lemma bounded_nat_set_is_finite: | 
| 24853 | 1007 | "(ALL i:N. i < (n::nat)) ==> finite N" | 
| 28068 | 1008 | apply (rule finite_subset) | 
| 1009 | apply (rule_tac [2] finite_lessThan, auto) | |
| 1010 | done | |
| 1011 | ||
| 60758 | 1012 | text \<open>A set of natural numbers is finite iff it is bounded.\<close> | 
| 31044 | 1013 | lemma finite_nat_set_iff_bounded: | 
| 1014 | "finite(N::nat set) = (EX m. ALL n:N. n<m)" (is "?F = ?B") | |
| 1015 | proof | |
| 1016 | assume f:?F show ?B | |
| 60758 | 1017 | using Max_ge[OF \<open>?F\<close>, simplified less_Suc_eq_le[symmetric]] by blast | 
| 31044 | 1018 | next | 
| 60758 | 1019 | assume ?B show ?F using \<open>?B\<close> by(blast intro:bounded_nat_set_is_finite) | 
| 31044 | 1020 | qed | 
| 1021 | ||
| 1022 | lemma finite_nat_set_iff_bounded_le: | |
| 1023 | "finite(N::nat set) = (EX m. ALL n:N. n<=m)" | |
| 1024 | apply(simp add:finite_nat_set_iff_bounded) | |
| 1025 | apply(blast dest:less_imp_le_nat le_imp_less_Suc) | |
| 1026 | done | |
| 1027 | ||
| 28068 | 1028 | lemma finite_less_ub: | 
| 1029 |      "!!f::nat=>nat. (!!n. n \<le> f n) ==> finite {n. f n \<le> u}"
 | |
| 1030 | by (rule_tac B="{..u}" in finite_subset, auto intro: order_trans)
 | |
| 14485 | 1031 | |
| 56328 | 1032 | |
| 60758 | 1033 | text\<open>Any subset of an interval of natural numbers the size of the | 
| 1034 | subset is exactly that interval.\<close> | |
| 24853 | 1035 | |
| 1036 | lemma subset_card_intvl_is_intvl: | |
| 55085 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 1037 |   assumes "A \<subseteq> {k..<k + card A}"
 | 
| 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 1038 |   shows "A = {k..<k + card A}"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1039 | proof (cases "finite A") | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1040 | case True | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1041 | from this and assms show ?thesis | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1042 | proof (induct A rule: finite_linorder_max_induct) | 
| 24853 | 1043 | case empty thus ?case by auto | 
| 1044 | next | |
| 33434 | 1045 | case (insert b A) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1046 | hence *: "b \<notin> A" by auto | 
| 55085 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 1047 |     with insert have "A <= {k..<k + card A}" and "b = k + card A"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1048 | by fastforce+ | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1049 | with insert * show ?case by auto | 
| 24853 | 1050 | qed | 
| 1051 | next | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1052 | case False | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1053 | with assms show ?thesis by simp | 
| 24853 | 1054 | qed | 
| 1055 | ||
| 1056 | ||
| 60758 | 1057 | subsubsection \<open>Proving Inclusions and Equalities between Unions\<close> | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1058 | |
| 36755 | 1059 | lemma UN_le_eq_Un0: | 
| 1060 |   "(\<Union>i\<le>n::nat. M i) = (\<Union>i\<in>{1..n}. M i) \<union> M 0" (is "?A = ?B")
 | |
| 1061 | proof | |
| 1062 | show "?A <= ?B" | |
| 1063 | proof | |
| 1064 | fix x assume "x : ?A" | |
| 1065 | then obtain i where i: "i\<le>n" "x : M i" by auto | |
| 1066 | show "x : ?B" | |
| 1067 | proof(cases i) | |
| 1068 | case 0 with i show ?thesis by simp | |
| 1069 | next | |
| 1070 | case (Suc j) with i show ?thesis by auto | |
| 1071 | qed | |
| 1072 | qed | |
| 1073 | next | |
| 1074 | show "?B <= ?A" by auto | |
| 1075 | qed | |
| 1076 | ||
| 1077 | lemma UN_le_add_shift: | |
| 1078 |   "(\<Union>i\<le>n::nat. M(i+k)) = (\<Union>i\<in>{k..n+k}. M i)" (is "?A = ?B")
 | |
| 1079 | proof | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 1080 | show "?A <= ?B" by fastforce | 
| 36755 | 1081 | next | 
| 1082 | show "?B <= ?A" | |
| 1083 | proof | |
| 1084 | fix x assume "x : ?B" | |
| 1085 |     then obtain i where i: "i : {k..n+k}" "x : M(i)" by auto
 | |
| 1086 | hence "i-k\<le>n & x : M((i-k)+k)" by auto | |
| 1087 | thus "x : ?A" by blast | |
| 1088 | qed | |
| 1089 | qed | |
| 1090 | ||
| 62369 | 1091 | lemma UN_UN_finite_eq: "(\<Union>n::nat. \<Union>i\<in>{0..<n}. A i) = (\<Union>n. A n)"
 | 
| 1092 | by (auto simp add: atLeast0LessThan) | |
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1093 | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1094 | lemma UN_finite_subset: | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1095 |   "(\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> C) \<Longrightarrow> (\<Union>n. A n) \<subseteq> C"
 | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1096 | by (subst UN_UN_finite_eq [symmetric]) blast | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1097 | |
| 62369 | 1098 | lemma UN_finite2_subset: | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1099 |   assumes "\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n + k}. B i)"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1100 | shows "(\<Union>n. A n) \<subseteq> (\<Union>n. B n)" | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1101 | proof (rule UN_finite_subset, rule) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1102 | fix n and a | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1103 |   from assms have "(\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n + k}. B i)" .
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1104 |   moreover assume "a \<in> (\<Union>i\<in>{0..<n}. A i)"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1105 |   ultimately have "a \<in> (\<Union>i\<in>{0..<n + k}. B i)" by blast
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1106 | then show "a \<in> (\<Union>i. B i)" by (auto simp add: UN_UN_finite_eq) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1107 | qed | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1108 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1109 | lemma UN_finite2_eq: | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1110 |   "(\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) = (\<Union>i\<in>{0..<n + k}. B i)) \<Longrightarrow>
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1111 | (\<Union>n. A n) = (\<Union>n. B n)" | 
| 33044 | 1112 | apply (rule subset_antisym) | 
| 1113 | apply (rule UN_finite2_subset, blast) | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1114 | apply (rule UN_finite2_subset [where k=k]) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1115 | apply (force simp add: atLeastLessThan_add_Un [of 0]) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1116 | done | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1117 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1118 | |
| 60758 | 1119 | subsubsection \<open>Cardinality\<close> | 
| 14485 | 1120 | |
| 15045 | 1121 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 1122 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 1123 | |
| 1124 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 1125 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 1126 | ||
| 15045 | 1127 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1128 | proof - | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1129 |   have "{l..<u} = (%x. x + l) ` {..<u-l}"
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1130 | apply (auto simp add: image_def atLeastLessThan_def lessThan_def) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1131 | apply (rule_tac x = "x - l" in exI) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1132 | apply arith | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1133 | done | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1134 |   then have "card {l..<u} = card {..<u-l}"
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1135 | by (simp add: card_image inj_on_def) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1136 | then show ?thesis | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1137 | by simp | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1138 | qed | 
| 14485 | 1139 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1140 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 1141 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 1142 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1143 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 1144 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 1145 | ||
| 15045 | 1146 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 1147 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 1148 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1149 | lemma ex_bij_betw_nat_finite: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1150 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1151 | apply(drule finite_imp_nat_seg_image_inj_on) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1152 | apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1153 | done | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1154 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1155 | lemma ex_bij_betw_finite_nat: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1156 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1157 | by (blast dest: ex_bij_betw_nat_finite bij_betw_inv) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1158 | |
| 31438 | 1159 | lemma finite_same_card_bij: | 
| 1160 | "finite A \<Longrightarrow> finite B \<Longrightarrow> card A = card B \<Longrightarrow> EX h. bij_betw h A B" | |
| 1161 | apply(drule ex_bij_betw_finite_nat) | |
| 1162 | apply(drule ex_bij_betw_nat_finite) | |
| 1163 | apply(auto intro!:bij_betw_trans) | |
| 1164 | done | |
| 1165 | ||
| 1166 | lemma ex_bij_betw_nat_finite_1: | |
| 1167 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {1 .. card M} M"
 | |
| 1168 | by (rule finite_same_card_bij) auto | |
| 1169 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1170 | lemma bij_betw_iff_card: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1171 | assumes FIN: "finite A" and FIN': "finite B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1172 | shows BIJ: "(\<exists>f. bij_betw f A B) \<longleftrightarrow> (card A = card B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1173 | using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1174 | proof(auto simp add: bij_betw_same_card) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1175 | assume *: "card A = card B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1176 |   obtain f where "bij_betw f A {0 ..< card A}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1177 | using FIN ex_bij_betw_finite_nat by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1178 |   moreover obtain g where "bij_betw g {0 ..< card B} B"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1179 | using FIN' ex_bij_betw_nat_finite by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1180 | ultimately have "bij_betw (g o f) A B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1181 | using * by (auto simp add: bij_betw_trans) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1182 | thus "(\<exists>f. bij_betw f A B)" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1183 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1184 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1185 | lemma inj_on_iff_card_le: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1186 | assumes FIN: "finite A" and FIN': "finite B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1187 | shows "(\<exists>f. inj_on f A \<and> f ` A \<le> B) = (card A \<le> card B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1188 | proof (safe intro!: card_inj_on_le) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1189 | assume *: "card A \<le> card B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1190 |   obtain f where 1: "inj_on f A" and 2: "f ` A = {0 ..< card A}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1191 | using FIN ex_bij_betw_finite_nat unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1192 |   moreover obtain g where "inj_on g {0 ..< card B}" and 3: "g ` {0 ..< card B} = B"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1193 | using FIN' ex_bij_betw_nat_finite unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1194 | ultimately have "inj_on g (f ` A)" using subset_inj_on[of g _ "f ` A"] * by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1195 | hence "inj_on (g o f) A" using 1 comp_inj_on by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1196 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1197 |   {have "{0 ..< card A} \<le> {0 ..< card B}" using * by force
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1198 |    with 2 have "f ` A  \<le> {0 ..< card B}" by blast
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1199 | hence "(g o f) ` A \<le> B" unfolding comp_def using 3 by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1200 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1201 | ultimately show "(\<exists>f. inj_on f A \<and> f ` A \<le> B)" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1202 | qed (insert assms, auto) | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1203 | |
| 60758 | 1204 | subsection \<open>Intervals of integers\<close> | 
| 14485 | 1205 | |
| 15045 | 1206 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 1207 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 1208 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1209 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 1210 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 1211 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1212 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1213 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 1214 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 1215 | ||
| 60758 | 1216 | subsubsection \<open>Finiteness\<close> | 
| 14485 | 1217 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1218 | lemma image_atLeastZeroLessThan_int: "0 \<le> u ==> | 
| 15045 | 1219 |     {(0::int)..<u} = int ` {..<nat u}"
 | 
| 14485 | 1220 | apply (unfold image_def lessThan_def) | 
| 1221 | apply auto | |
| 1222 | apply (rule_tac x = "nat x" in exI) | |
| 35216 | 1223 | apply (auto simp add: zless_nat_eq_int_zless [THEN sym]) | 
| 14485 | 1224 | done | 
| 1225 | ||
| 15045 | 1226 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 47988 | 1227 | apply (cases "0 \<le> u") | 
| 14485 | 1228 | apply (subst image_atLeastZeroLessThan_int, assumption) | 
| 1229 | apply (rule finite_imageI) | |
| 1230 | apply auto | |
| 1231 | done | |
| 1232 | ||
| 15045 | 1233 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 1234 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | |
| 14485 | 1235 | apply (erule subst) | 
| 1236 | apply (rule finite_imageI) | |
| 1237 | apply (rule finite_atLeastZeroLessThan_int) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1238 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 1239 | done | 
| 1240 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1241 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 1242 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 1243 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1244 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 1245 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 1246 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1247 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 1248 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 1249 | ||
| 24853 | 1250 | |
| 60758 | 1251 | subsubsection \<open>Cardinality\<close> | 
| 14485 | 1252 | |
| 15045 | 1253 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 47988 | 1254 | apply (cases "0 \<le> u") | 
| 14485 | 1255 | apply (subst image_atLeastZeroLessThan_int, assumption) | 
| 1256 | apply (subst card_image) | |
| 1257 | apply (auto simp add: inj_on_def) | |
| 1258 | done | |
| 1259 | ||
| 15045 | 1260 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 1261 |   apply (subgoal_tac "card {l..<u} = card {0..<u-l}")
 | |
| 14485 | 1262 | apply (erule ssubst, rule card_atLeastZeroLessThan_int) | 
| 15045 | 1263 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | 
| 14485 | 1264 | apply (erule subst) | 
| 1265 | apply (rule card_image) | |
| 1266 | apply (simp add: inj_on_def) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1267 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 1268 | done | 
| 1269 | ||
| 1270 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 29667 | 1271 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | 
| 1272 | apply (auto simp add: algebra_simps) | |
| 1273 | done | |
| 14485 | 1274 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1275 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 29667 | 1276 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 14485 | 1277 | |
| 15045 | 1278 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 29667 | 1279 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 14485 | 1280 | |
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1281 | lemma finite_M_bounded_by_nat: "finite {k. P k \<and> k < (i::nat)}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1282 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1283 |   have "{k. P k \<and> k < i} \<subseteq> {..<i}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1284 | with finite_lessThan[of "i"] show ?thesis by (simp add: finite_subset) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1285 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1286 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1287 | lemma card_less: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1288 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1289 | shows "card {k \<in> M. k < Suc i} \<noteq> 0"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1290 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1291 |   from zero_in_M have "{k \<in> M. k < Suc i} \<noteq> {}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1292 | with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1293 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1294 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1295 | lemma card_less_Suc2: "0 \<notin> M \<Longrightarrow> card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
 | 
| 37388 | 1296 | apply (rule card_bij_eq [of Suc _ _ "\<lambda>x. x - Suc 0"]) | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1297 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1298 | apply (rule inj_on_diff_nat) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1299 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1300 | apply (case_tac x) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1301 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1302 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1303 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1304 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1305 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1306 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1307 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1308 | lemma card_less_Suc: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1309 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1310 |     shows "Suc (card {k. Suc k \<in> M \<and> k < i}) = card {k \<in> M. k < Suc i}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1311 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1312 |   from assms have a: "0 \<in> {k \<in> M. k < Suc i}" by simp
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1313 |   hence c: "{k \<in> M. k < Suc i} = insert 0 ({k \<in> M. k < Suc i} - {0})"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1314 | by (auto simp only: insert_Diff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1315 |   have b: "{k \<in> M. k < Suc i} - {0} = {k \<in> M - {0}. k < Suc i}"  by auto
 | 
| 62369 | 1316 | from finite_M_bounded_by_nat[of "\<lambda>x. x \<in> M" "Suc i"] | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1317 |   have "Suc (card {k. Suc k \<in> M \<and> k < i}) = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
 | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1318 | apply (subst card_insert) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1319 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1320 | apply (subst b) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1321 | apply (subst card_less_Suc2[symmetric]) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1322 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1323 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1324 | with c show ?thesis by simp | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1325 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1326 | |
| 14485 | 1327 | |
| 60758 | 1328 | subsection \<open>Lemmas useful with the summation operator setsum\<close> | 
| 13850 | 1329 | |
| 60758 | 1330 | text \<open>For examples, see Algebra/poly/UnivPoly2.thy\<close> | 
| 13735 | 1331 | |
| 60758 | 1332 | subsubsection \<open>Disjoint Unions\<close> | 
| 13735 | 1333 | |
| 60758 | 1334 | text \<open>Singletons and open intervals\<close> | 
| 13735 | 1335 | |
| 1336 | lemma ivl_disj_un_singleton: | |
| 15045 | 1337 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 1338 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 1339 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 1340 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 1341 |   "(l::'a::linorder) <= u ==> {l} Un {l<..u} = {l..u}"
 | |
| 1342 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1343 | by auto | 
| 13735 | 1344 | |
| 60758 | 1345 | text \<open>One- and two-sided intervals\<close> | 
| 13735 | 1346 | |
| 1347 | lemma ivl_disj_un_one: | |
| 15045 | 1348 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 1349 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..<u} = {..<u}"
 | |
| 1350 |   "(l::'a::linorder) <= u ==> {..l} Un {l<..u} = {..u}"
 | |
| 1351 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..u} = {..u}"
 | |
| 1352 |   "(l::'a::linorder) <= u ==> {l<..u} Un {u<..} = {l<..}"
 | |
| 1353 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | |
| 1354 |   "(l::'a::linorder) <= u ==> {l..u} Un {u<..} = {l..}"
 | |
| 1355 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u..} = {l..}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1356 | by auto | 
| 13735 | 1357 | |
| 60758 | 1358 | text \<open>Two- and two-sided intervals\<close> | 
| 13735 | 1359 | |
| 1360 | lemma ivl_disj_un_two: | |
| 15045 | 1361 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 1362 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | |
| 1363 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | |
| 1364 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | |
| 1365 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | |
| 1366 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | |
| 1367 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..u} = {l..u}"
 | |
| 1368 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m<..u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1369 | by auto | 
| 13735 | 1370 | |
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1371 | lemma ivl_disj_un_two_touch: | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1372 |   "[| (l::'a::linorder) < m; m < u |] ==> {l<..m} Un {m..<u} = {l<..<u}"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1373 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m..<u} = {l..<u}"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1374 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..m} Un {m..u} = {l<..u}"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1375 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m..u} = {l..u}"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1376 | by auto | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1377 | |
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1378 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two ivl_disj_un_two_touch | 
| 13735 | 1379 | |
| 60758 | 1380 | subsubsection \<open>Disjoint Intersections\<close> | 
| 13735 | 1381 | |
| 60758 | 1382 | text \<open>One- and two-sided intervals\<close> | 
| 13735 | 1383 | |
| 1384 | lemma ivl_disj_int_one: | |
| 15045 | 1385 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 1386 |   "{..<l} Int {l..<u} = {}"
 | |
| 1387 |   "{..l} Int {l<..u} = {}"
 | |
| 1388 |   "{..<l} Int {l..u} = {}"
 | |
| 1389 |   "{l<..u} Int {u<..} = {}"
 | |
| 1390 |   "{l<..<u} Int {u..} = {}"
 | |
| 1391 |   "{l..u} Int {u<..} = {}"
 | |
| 1392 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1393 | by auto | 
| 13735 | 1394 | |
| 60758 | 1395 | text \<open>Two- and two-sided intervals\<close> | 
| 13735 | 1396 | |
| 1397 | lemma ivl_disj_int_two: | |
| 15045 | 1398 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 1399 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 1400 |   "{l..<m} Int {m..<u} = {}"
 | |
| 1401 |   "{l..m} Int {m<..<u} = {}"
 | |
| 1402 |   "{l<..<m} Int {m..u} = {}"
 | |
| 1403 |   "{l<..m} Int {m<..u} = {}"
 | |
| 1404 |   "{l..<m} Int {m..u} = {}"
 | |
| 1405 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1406 | by auto | 
| 13735 | 1407 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 1408 | lemmas ivl_disj_int = ivl_disj_int_one ivl_disj_int_two | 
| 13735 | 1409 | |
| 60758 | 1410 | subsubsection \<open>Some Differences\<close> | 
| 15542 | 1411 | |
| 1412 | lemma ivl_diff[simp]: | |
| 1413 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 1414 | by(auto) | |
| 1415 | ||
| 56194 | 1416 | lemma (in linorder) lessThan_minus_lessThan [simp]: | 
| 1417 |   "{..< n} - {..< m} = {m ..< n}"
 | |
| 1418 | by auto | |
| 1419 | ||
| 60762 | 1420 | lemma (in linorder) atLeastAtMost_diff_ends: | 
| 1421 |   "{a..b} - {a, b} = {a<..<b}"
 | |
| 1422 | by auto | |
| 1423 | ||
| 15542 | 1424 | |
| 60758 | 1425 | subsubsection \<open>Some Subset Conditions\<close> | 
| 15542 | 1426 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1427 | lemma ivl_subset [simp]: | 
| 15542 | 1428 |  "({i..<j} \<subseteq> {m..<n}) = (j \<le> i | m \<le> i & j \<le> (n::'a::linorder))"
 | 
| 1429 | apply(auto simp:linorder_not_le) | |
| 1430 | apply(rule ccontr) | |
| 1431 | apply(insert linorder_le_less_linear[of i n]) | |
| 1432 | apply(clarsimp simp:linorder_not_le) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 1433 | apply(fastforce) | 
| 15542 | 1434 | done | 
| 1435 | ||
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1436 | |
| 60758 | 1437 | subsection \<open>Summation indexed over intervals\<close> | 
| 15042 | 1438 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1439 | syntax (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1440 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1441 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1442 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _<_./ _)" [0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1443 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _<=_./ _)" [0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1444 | |
| 15056 | 1445 | syntax (latex_sum output) | 
| 15052 | 1446 | "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 1447 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 1448 | "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | |
| 1449 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 16052 | 1450 | "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 1451 |  ("(3\<^raw:$\sum_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | |
| 15052 | 1452 | "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 16052 | 1453 |  ("(3\<^raw:$\sum_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1454 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1455 | syntax | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1456 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1457 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1458 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1459 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1460 | |
| 15048 | 1461 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1462 |   "\<Sum>x=a..b. t" == "CONST setsum (\<lambda>x. t) {a..b}"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1463 |   "\<Sum>x=a..<b. t" == "CONST setsum (\<lambda>x. t) {a..<b}"
 | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1464 |   "\<Sum>i\<le>n. t" == "CONST setsum (\<lambda>i. t) {..n}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1465 |   "\<Sum>i<n. t" == "CONST setsum (\<lambda>i. t) {..<n}"
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1466 | |
| 60758 | 1467 | text\<open>The above introduces some pretty alternative syntaxes for | 
| 15056 | 1468 | summation over intervals: | 
| 15052 | 1469 | \begin{center}
 | 
| 1470 | \begin{tabular}{lll}
 | |
| 15056 | 1471 | Old & New & \LaTeX\\ | 
| 1472 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | |
| 1473 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 16052 | 1474 | @{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | 
| 15056 | 1475 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | 
| 15052 | 1476 | \end{tabular}
 | 
| 1477 | \end{center}
 | |
| 15056 | 1478 | The left column shows the term before introduction of the new syntax, | 
| 1479 | the middle column shows the new (default) syntax, and the right column | |
| 1480 | shows a special syntax. The latter is only meaningful for latex output | |
| 1481 | and has to be activated explicitly by setting the print mode to | |
| 61799 | 1482 | \<open>latex_sum\<close> (e.g.\ via \<open>mode = latex_sum\<close> in | 
| 15056 | 1483 | antiquotations). It is not the default \LaTeX\ output because it only | 
| 1484 | works well with italic-style formulae, not tt-style. | |
| 15052 | 1485 | |
| 1486 | Note that for uniformity on @{typ nat} it is better to use
 | |
| 61799 | 1487 | @{term"\<Sum>x::nat=0..<n. e"} rather than \<open>\<Sum>x<n. e\<close>: \<open>setsum\<close> may
 | 
| 15052 | 1488 | not provide all lemmas available for @{term"{m..<n}"} also in the
 | 
| 60758 | 1489 | special form for @{term"{..<n}"}.\<close>
 | 
| 15052 | 1490 | |
| 60758 | 1491 | text\<open>This congruence rule should be used for sums over intervals as | 
| 57418 | 1492 | the standard theorem @{text[source]setsum.cong} does not work well
 | 
| 15542 | 1493 | with the simplifier who adds the unsimplified premise @{term"x:B"} to
 | 
| 60758 | 1494 | the context.\<close> | 
| 15542 | 1495 | |
| 1496 | lemma setsum_ivl_cong: | |
| 1497 | "\<lbrakk>a = c; b = d; !!x. \<lbrakk> c \<le> x; x < d \<rbrakk> \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> | |
| 1498 |  setsum f {a..<b} = setsum g {c..<d}"
 | |
| 57418 | 1499 | by(rule setsum.cong, simp_all) | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1500 | |
| 16041 | 1501 | (* FIXME why are the following simp rules but the corresponding eqns | 
| 1502 | on intervals are not? *) | |
| 1503 | ||
| 16052 | 1504 | lemma setsum_atMost_Suc[simp]: "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f(Suc n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1505 | by (simp add:atMost_Suc ac_simps) | 
| 16052 | 1506 | |
| 16041 | 1507 | lemma setsum_lessThan_Suc[simp]: "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1508 | by (simp add:lessThan_Suc ac_simps) | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1509 | |
| 15911 | 1510 | lemma setsum_cl_ivl_Suc[simp]: | 
| 15561 | 1511 |   "setsum f {m..Suc n} = (if Suc n < m then 0 else setsum f {m..n} + f(Suc n))"
 | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1512 | by (auto simp:ac_simps atLeastAtMostSuc_conv) | 
| 15561 | 1513 | |
| 15911 | 1514 | lemma setsum_op_ivl_Suc[simp]: | 
| 15561 | 1515 |   "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
 | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1516 | by (auto simp:ac_simps atLeastLessThanSuc) | 
| 16041 | 1517 | (* | 
| 15561 | 1518 | lemma setsum_cl_ivl_add_one_nat: "(n::nat) <= m + 1 ==> | 
| 1519 | (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1520 | by (auto simp:ac_simps atLeastAtMostSuc_conv) | 
| 16041 | 1521 | *) | 
| 28068 | 1522 | |
| 1523 | lemma setsum_head: | |
| 1524 | fixes n :: nat | |
| 62369 | 1525 | assumes mn: "m <= n" | 
| 28068 | 1526 |   shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
 | 
| 1527 | proof - | |
| 1528 | from mn | |
| 1529 |   have "{m..n} = {m} \<union> {m<..n}"
 | |
| 1530 | by (auto intro: ivl_disj_un_singleton) | |
| 1531 |   hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
 | |
| 1532 | by (simp add: atLeast0LessThan) | |
| 1533 | also have "\<dots> = ?rhs" by simp | |
| 1534 | finally show ?thesis . | |
| 1535 | qed | |
| 1536 | ||
| 1537 | lemma setsum_head_Suc: | |
| 1538 |   "m \<le> n \<Longrightarrow> setsum f {m..n} = f m + setsum f {Suc m..n}"
 | |
| 1539 | by (simp add: setsum_head atLeastSucAtMost_greaterThanAtMost) | |
| 1540 | ||
| 1541 | lemma setsum_head_upt_Suc: | |
| 1542 |   "m < n \<Longrightarrow> setsum f {m..<n} = f m + setsum f {Suc m..<n}"
 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1543 | apply(insert setsum_head_Suc[of m "n - Suc 0" f]) | 
| 29667 | 1544 | apply (simp add: atLeastLessThanSuc_atLeastAtMost[symmetric] algebra_simps) | 
| 28068 | 1545 | done | 
| 1546 | ||
| 31501 | 1547 | lemma setsum_ub_add_nat: assumes "(m::nat) \<le> n + 1" | 
| 1548 |   shows "setsum f {m..n + p} = setsum f {m..n} + setsum f {n + 1..n + p}"
 | |
| 1549 | proof- | |
| 60758 | 1550 |   have "{m .. n+p} = {m..n} \<union> {n+1..n+p}" using \<open>m \<le> n+1\<close> by auto
 | 
| 57418 | 1551 | thus ?thesis by (auto simp: ivl_disj_int setsum.union_disjoint | 
| 31501 | 1552 | atLeastSucAtMost_greaterThanAtMost) | 
| 1553 | qed | |
| 28068 | 1554 | |
| 15539 | 1555 | lemma setsum_add_nat_ivl: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | 
| 1556 |   setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
 | |
| 57418 | 1557 | by (simp add:setsum.union_disjoint[symmetric] ivl_disj_int ivl_disj_un) | 
| 15539 | 1558 | |
| 1559 | lemma setsum_diff_nat_ivl: | |
| 1560 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | |
| 1561 | shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | |
| 1562 |   setsum f {m..<p} - setsum f {m..<n} = setsum f {n..<p}"
 | |
| 1563 | using setsum_add_nat_ivl [of m n p f,symmetric] | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1564 | apply (simp add: ac_simps) | 
| 15539 | 1565 | done | 
| 1566 | ||
| 31505 | 1567 | lemma setsum_natinterval_difff: | 
| 1568 |   fixes f:: "nat \<Rightarrow> ('a::ab_group_add)"
 | |
| 1569 |   shows  "setsum (\<lambda>k. f k - f(k + 1)) {(m::nat) .. n} =
 | |
| 1570 | (if m <= n then f m - f(n + 1) else 0)" | |
| 1571 | by (induct n, auto simp add: algebra_simps not_le le_Suc_eq) | |
| 1572 | ||
| 56194 | 1573 | lemma setsum_nat_group: "(\<Sum>m<n::nat. setsum f {m * k ..< m*k + k}) = setsum f {..< n * k}"
 | 
| 1574 | apply (subgoal_tac "k = 0 | 0 < k", auto) | |
| 1575 | apply (induct "n") | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1576 | apply (simp_all add: setsum_add_nat_ivl add.commute atLeast0LessThan[symmetric]) | 
| 56194 | 1577 | done | 
| 28068 | 1578 | |
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1579 | lemma setsum_triangle_reindex: | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1580 | fixes n :: nat | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1581 |   shows "(\<Sum>(i,j)\<in>{(i,j). i+j < n}. f i j) = (\<Sum>k<n. \<Sum>i\<le>k. f i (k - i))"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1582 | apply (simp add: setsum.Sigma) | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1583 | apply (rule setsum.reindex_bij_witness[where j="\<lambda>(i, j). (i+j, i)" and i="\<lambda>(k, i). (i, k - i)"]) | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1584 | apply auto | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1585 | done | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1586 | |
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1587 | lemma setsum_triangle_reindex_eq: | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1588 | fixes n :: nat | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1589 |   shows "(\<Sum>(i,j)\<in>{(i,j). i+j \<le> n}. f i j) = (\<Sum>k\<le>n. \<Sum>i\<le>k. f i (k - i))"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1590 | using setsum_triangle_reindex [of f "Suc n"] | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1591 | by (simp only: Nat.less_Suc_eq_le lessThan_Suc_atMost) | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1592 | |
| 60162 | 1593 | lemma nat_diff_setsum_reindex: "(\<Sum>i<n. f (n - Suc i)) = (\<Sum>i<n. f i)" | 
| 1594 | by (rule setsum.reindex_bij_witness[where i="\<lambda>i. n - Suc i" and j="\<lambda>i. n - Suc i"]) auto | |
| 1595 | ||
| 60758 | 1596 | subsection\<open>Shifting bounds\<close> | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1597 | |
| 15539 | 1598 | lemma setsum_shift_bounds_nat_ivl: | 
| 1599 |   "setsum f {m+k..<n+k} = setsum (%i. f(i + k)){m..<n::nat}"
 | |
| 1600 | by (induct "n", auto simp:atLeastLessThanSuc) | |
| 1601 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1602 | lemma setsum_shift_bounds_cl_nat_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1603 |   "setsum f {m+k..n+k} = setsum (%i. f(i + k)){m..n::nat}"
 | 
| 57129 
7edb7550663e
introduce more powerful reindexing rules for big operators
 hoelzl parents: 
57113diff
changeset | 1604 | by (rule setsum.reindex_bij_witness[where i="\<lambda>i. i + k" and j="\<lambda>i. i - k"]) auto | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1605 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1606 | corollary setsum_shift_bounds_cl_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1607 |   "setsum f {Suc m..Suc n} = setsum (%i. f(Suc i)){m..n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1608 | by (simp add:setsum_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1609 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1610 | corollary setsum_shift_bounds_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1611 |   "setsum f {Suc m..<Suc n} = setsum (%i. f(Suc i)){m..<n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1612 | by (simp add:setsum_shift_bounds_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1613 | |
| 28068 | 1614 | lemma setsum_shift_lb_Suc0_0: | 
| 1615 |   "f(0::nat) = (0::nat) \<Longrightarrow> setsum f {Suc 0..k} = setsum f {0..k}"
 | |
| 1616 | by(simp add:setsum_head_Suc) | |
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 1617 | |
| 28068 | 1618 | lemma setsum_shift_lb_Suc0_0_upt: | 
| 1619 |   "f(0::nat) = 0 \<Longrightarrow> setsum f {Suc 0..<k} = setsum f {0..<k}"
 | |
| 1620 | apply(cases k)apply simp | |
| 1621 | apply(simp add:setsum_head_upt_Suc) | |
| 1622 | done | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1623 | |
| 52380 | 1624 | lemma setsum_atMost_Suc_shift: | 
| 1625 | fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add" | |
| 1626 | shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))" | |
| 1627 | proof (induct n) | |
| 1628 | case 0 show ?case by simp | |
| 1629 | next | |
| 1630 | case (Suc n) note IH = this | |
| 1631 | have "(\<Sum>i\<le>Suc (Suc n). f i) = (\<Sum>i\<le>Suc n. f i) + f (Suc (Suc n))" | |
| 1632 | by (rule setsum_atMost_Suc) | |
| 1633 | also have "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))" | |
| 1634 | by (rule IH) | |
| 1635 | also have "f 0 + (\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = | |
| 1636 | f 0 + ((\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)))" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1637 | by (rule add.assoc) | 
| 52380 | 1638 | also have "(\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = (\<Sum>i\<le>Suc n. f (Suc i))" | 
| 1639 | by (rule setsum_atMost_Suc [symmetric]) | |
| 1640 | finally show ?case . | |
| 1641 | qed | |
| 1642 | ||
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 1643 | lemma setsum_atMost_shift: | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 1644 | fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 1645 | shows "(\<Sum>i\<le>n. f i) = f 0 + (\<Sum>i<n. f (Suc i))" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 1646 | by (metis atLeast0AtMost atLeast0LessThan atLeastLessThanSuc_atLeastAtMost atLeastSucAtMost_greaterThanAtMost le0 setsum_head setsum_shift_bounds_Suc_ivl) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 1647 | |
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1648 | lemma setsum_last_plus: fixes n::nat shows "m <= n \<Longrightarrow> (\<Sum>i = m..n. f i) = f n + (\<Sum>i = m..<n. f i)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1649 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost add.commute) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1650 | |
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1651 | lemma setsum_Suc_diff: | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1652 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1653 | assumes "m \<le> Suc n" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1654 | shows "(\<Sum>i = m..n. f(Suc i) - f i) = f (Suc n) - f m" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1655 | using assms by (induct n) (auto simp: le_Suc_eq) | 
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 1656 | |
| 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 1657 | lemma nested_setsum_swap: | 
| 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 1658 | "(\<Sum>i = 0..n. (\<Sum>j = 0..<i. a i j)) = (\<Sum>j = 0..<n. \<Sum>i = Suc j..n. a i j)" | 
| 57418 | 1659 | by (induction n) (auto simp: setsum.distrib) | 
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 1660 | |
| 56215 | 1661 | lemma nested_setsum_swap': | 
| 1662 | "(\<Sum>i\<le>n. (\<Sum>j<i. a i j)) = (\<Sum>j<n. \<Sum>i = Suc j..n. a i j)" | |
| 57418 | 1663 | by (induction n) (auto simp: setsum.distrib) | 
| 56215 | 1664 | |
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1665 | lemma setsum_zero_power' [simp]: | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1666 | fixes c :: "nat \<Rightarrow> 'a::field" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1667 | shows "(\<Sum>i\<in>A. c i * 0^i / d i) = (if finite A \<and> 0 \<in> A then c 0 / d 0 else 0)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1668 | using setsum_zero_power [of "\<lambda>i. c i / d i" A] | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1669 | by auto | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1670 | |
| 52380 | 1671 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1672 | subsection \<open>Telescoping\<close> | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1673 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1674 | lemma setsum_telescope: | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1675 | fixes f::"nat \<Rightarrow> 'a::ab_group_add" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1676 |   shows "setsum (\<lambda>i. f i - f (Suc i)) {.. i} = f 0 - f (Suc i)"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1677 | by (induct i) simp_all | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1678 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1679 | lemma setsum_telescope'': | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1680 | assumes "m \<le> n" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1681 |   shows   "(\<Sum>k\<in>{Suc m..n}. f k - f (k - 1)) = f n - (f m :: 'a :: ab_group_add)"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1682 | by (rule dec_induct[OF assms]) (simp_all add: algebra_simps) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1683 | |
| 60758 | 1684 | subsection \<open>The formula for geometric sums\<close> | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1685 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1686 | lemma geometric_sum: | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1687 | assumes "x \<noteq> 1" | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
55719diff
changeset | 1688 | shows "(\<Sum>i<n. x ^ i) = (x ^ n - 1) / (x - 1::'a::field)" | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1689 | proof - | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1690 | from assms obtain y where "y = x - 1" and "y \<noteq> 0" by simp_all | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
55719diff
changeset | 1691 | moreover have "(\<Sum>i<n. (y + 1) ^ i) = ((y + 1) ^ n - 1) / y" | 
| 60758 | 1692 | by (induct n) (simp_all add: power_Suc field_simps \<open>y \<noteq> 0\<close>) | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1693 | ultimately show ?thesis by simp | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1694 | qed | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1695 | |
| 60162 | 1696 | lemma diff_power_eq_setsum: | 
| 1697 |   fixes y :: "'a::{comm_ring,monoid_mult}"
 | |
| 1698 | shows | |
| 1699 | "x ^ (Suc n) - y ^ (Suc n) = | |
| 1700 | (x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))" | |
| 1701 | proof (induct n) | |
| 1702 | case (Suc n) | |
| 1703 | have "x ^ Suc (Suc n) - y ^ Suc (Suc n) = x * (x * x^n) - y * (y * y ^ n)" | |
| 1704 | by (simp add: power_Suc) | |
| 1705 | also have "... = y * (x ^ (Suc n) - y ^ (Suc n)) + (x - y) * (x * x^n)" | |
| 1706 | by (simp add: power_Suc algebra_simps) | |
| 1707 | also have "... = y * ((x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)" | |
| 1708 | by (simp only: Suc) | |
| 1709 | also have "... = (x - y) * (y * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)" | |
| 1710 | by (simp only: mult.left_commute) | |
| 1711 | also have "... = (x - y) * (\<Sum>p<Suc (Suc n). x ^ p * y ^ (Suc n - p))" | |
| 1712 | by (simp add: power_Suc field_simps Suc_diff_le setsum_left_distrib setsum_right_distrib) | |
| 1713 | finally show ?case . | |
| 1714 | qed simp | |
| 1715 | ||
| 61799 | 1716 | corollary power_diff_sumr2: \<comment>\<open>\<open>COMPLEX_POLYFUN\<close> in HOL Light\<close> | 
| 60162 | 1717 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 1718 | shows "x^n - y^n = (x - y) * (\<Sum>i<n. y^(n - Suc i) * x^i)" | |
| 1719 | using diff_power_eq_setsum[of x "n - 1" y] | |
| 1720 | by (cases "n = 0") (simp_all add: field_simps) | |
| 1721 | ||
| 1722 | lemma power_diff_1_eq: | |
| 1723 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 1724 | shows "n \<noteq> 0 \<Longrightarrow> x^n - 1 = (x - 1) * (\<Sum>i<n. (x^i))" | |
| 1725 | using diff_power_eq_setsum [of x _ 1] | |
| 1726 | by (cases n) auto | |
| 1727 | ||
| 1728 | lemma one_diff_power_eq': | |
| 1729 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 1730 | shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^(n - Suc i))" | |
| 1731 | using diff_power_eq_setsum [of 1 _ x] | |
| 1732 | by (cases n) auto | |
| 1733 | ||
| 1734 | lemma one_diff_power_eq: | |
| 1735 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 1736 | shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^i)" | |
| 1737 | by (metis one_diff_power_eq' [of n x] nat_diff_setsum_reindex) | |
| 1738 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1739 | |
| 60758 | 1740 | subsection \<open>The formula for arithmetic sums\<close> | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1741 | |
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1742 | lemma gauss_sum: | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
55719diff
changeset | 1743 |   "(2::'a::comm_semiring_1)*(\<Sum>i\<in>{1..n}. of_nat i) = of_nat n*((of_nat n)+1)"
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1744 | proof (induct n) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1745 | case 0 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1746 | show ?case by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1747 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1748 | case (Suc n) | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1749 | then show ?case | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1750 | by (simp add: algebra_simps add: one_add_one [symmetric] del: one_add_one) | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1751 | (* FIXME: make numeral cancellation simprocs work for semirings *) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1752 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1753 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1754 | theorem arith_series_general: | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1755 |   "(2::'a::comm_semiring_1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1756 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1757 | proof cases | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1758 | assume ngt1: "n > 1" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1759 | let ?I = "\<lambda>i. of_nat i" and ?n = "of_nat n" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1760 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1761 |     "(\<Sum>i\<in>{..<n}. a+?I i*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1762 |      ((\<Sum>i\<in>{..<n}. a) + (\<Sum>i\<in>{..<n}. ?I i*d))"
 | 
| 57418 | 1763 | by (rule setsum.distrib) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1764 |   also from ngt1 have "\<dots> = ?n*a + (\<Sum>i\<in>{..<n}. ?I i*d)" by simp
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1765 |   also from ngt1 have "\<dots> = (?n*a + d*(\<Sum>i\<in>{1..<n}. ?I i))"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1766 | unfolding One_nat_def | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1767 | by (simp add: setsum_right_distrib atLeast0LessThan[symmetric] setsum_shift_lb_Suc0_0_upt ac_simps) | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1768 |   also have "2*\<dots> = 2*?n*a + d*2*(\<Sum>i\<in>{1..<n}. ?I i)"
 | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1769 | by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1770 |   also from ngt1 have "{1..<n} = {1..n - 1}"
 | 
| 28068 | 1771 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost) | 
| 1772 | also from ngt1 | |
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1773 |   have "2*?n*a + d*2*(\<Sum>i\<in>{1..n - 1}. ?I i) = (2*?n*a + d*?I (n - 1)*?I n)"
 | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1774 | by (simp only: mult.assoc gauss_sum [of "n - 1"], unfold One_nat_def) | 
| 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1775 | (simp add: mult.commute trans [OF add.commute of_nat_Suc [symmetric]]) | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1776 | finally show ?thesis | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1777 | unfolding mult_2 by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1778 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1779 | assume "\<not>(n > 1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1780 | hence "n = 1 \<or> n = 0" by auto | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1781 | thus ?thesis by (auto simp: mult_2) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1782 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1783 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1784 | lemma arith_series_nat: | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1785 |   "(2::nat) * (\<Sum>i\<in>{..<n}. a+i*d) = n * (a + (a+(n - 1)*d))"
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1786 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1787 | have | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1788 |     "2 * (\<Sum>i\<in>{..<n::nat}. a + of_nat(i)*d) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1789 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1790 | by (rule arith_series_general) | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1791 | thus ?thesis | 
| 35216 | 1792 | unfolding One_nat_def by auto | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1793 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1794 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1795 | lemma arith_series_int: | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1796 |   "2 * (\<Sum>i\<in>{..<n}. a + int i * d) = int n * (a + (a + int(n - 1)*d))"
 | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1797 | by (fact arith_series_general) (* FIXME: duplicate *) | 
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1798 | |
| 59416 
fde2659085e1
generalized sum_diff_distrib to setsum_subtractf_nat
 hoelzl parents: 
59000diff
changeset | 1799 | lemma sum_diff_distrib: "\<forall>x. Q x \<le> P x \<Longrightarrow> (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x :: nat)" | 
| 
fde2659085e1
generalized sum_diff_distrib to setsum_subtractf_nat
 hoelzl parents: 
59000diff
changeset | 1800 | by (subst setsum_subtractf_nat) auto | 
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1801 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1802 | |
| 60758 | 1803 | subsection \<open>Products indexed over intervals\<close> | 
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1804 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1805 | syntax (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1806 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1807 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1808 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _<_./ _)" [0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1809 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _<=_./ _)" [0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1810 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1811 | syntax (latex_prod output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1812 | "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1813 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1814 | "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1815 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1816 | "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1817 |  ("(3\<^raw:$\prod_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1818 | "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1819 |  ("(3\<^raw:$\prod_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1820 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1821 | syntax | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1822 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1823 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1824 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1825 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1826 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1827 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1828 |   "\<Prod>x=a..b. t" \<rightleftharpoons> "CONST setprod (\<lambda>x. t) {a..b}"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1829 |   "\<Prod>x=a..<b. t" \<rightleftharpoons> "CONST setprod (\<lambda>x. t) {a..<b}"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1830 |   "\<Prod>i\<le>n. t" \<rightleftharpoons> "CONST setprod (\<lambda>i. t) {..n}"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1831 |   "\<Prod>i<n. t" \<rightleftharpoons> "CONST setprod (\<lambda>i. t) {..<n}"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1832 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1833 | |
| 60758 | 1834 | subsection \<open>Transfer setup\<close> | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1835 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1836 | lemma transfer_nat_int_set_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1837 |     "{..n} = nat ` {0..int n}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1838 |     "{m..n} = nat ` {int m..int n}"  (* need all variants of these! *)
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1839 | apply (auto simp add: image_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1840 | apply (rule_tac x = "int x" in bexI) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1841 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1842 | apply (rule_tac x = "int x" in bexI) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1843 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1844 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1845 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1846 | lemma transfer_nat_int_set_function_closures: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1847 |     "x >= 0 \<Longrightarrow> nat_set {x..y}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1848 | by (simp add: nat_set_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1849 | |
| 35644 | 1850 | declare transfer_morphism_nat_int[transfer add | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1851 | return: transfer_nat_int_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1852 | transfer_nat_int_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1853 | ] | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1854 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1855 | lemma transfer_int_nat_set_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1856 |     "is_nat m \<Longrightarrow> is_nat n \<Longrightarrow> {m..n} = int ` {nat m..nat n}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1857 | by (simp only: is_nat_def transfer_nat_int_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1858 | transfer_nat_int_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1859 | transfer_nat_int_set_return_embed nat_0_le | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1860 | cong: transfer_nat_int_set_cong) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1861 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1862 | lemma transfer_int_nat_set_function_closures: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1863 |     "is_nat x \<Longrightarrow> nat_set {x..y}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1864 | by (simp only: transfer_nat_int_set_function_closures is_nat_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1865 | |
| 35644 | 1866 | declare transfer_morphism_int_nat[transfer add | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1867 | return: transfer_int_nat_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1868 | transfer_int_nat_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1869 | ] | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1870 | |
| 55242 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1871 | lemma setprod_int_plus_eq: "setprod int {i..i+j} =  \<Prod>{int i..int (i+j)}"
 | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1872 | by (induct j) (auto simp add: atLeastAtMostSuc_conv atLeastAtMostPlus1_int_conv) | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1873 | |
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1874 | lemma setprod_int_eq: "setprod int {i..j} =  \<Prod>{int i..int j}"
 | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1875 | proof (cases "i \<le> j") | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1876 | case True | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1877 | then show ?thesis | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62369diff
changeset | 1878 | by (metis le_iff_add setprod_int_plus_eq) | 
| 55242 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1879 | next | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1880 | case False | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1881 | then show ?thesis | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1882 | by auto | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1883 | qed | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1884 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1885 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1886 | subsection \<open>Shifting bounds\<close> | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1887 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1888 | lemma setprod_shift_bounds_nat_ivl: | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1889 |   "setprod f {m+k..<n+k} = setprod (%i. f(i + k)){m..<n::nat}"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1890 | by (induct "n", auto simp:atLeastLessThanSuc) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1891 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1892 | lemma setprod_shift_bounds_cl_nat_ivl: | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1893 |   "setprod f {m+k..n+k} = setprod (%i. f(i + k)){m..n::nat}"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1894 | by (rule setprod.reindex_bij_witness[where i="\<lambda>i. i + k" and j="\<lambda>i. i - k"]) auto | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1895 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1896 | corollary setprod_shift_bounds_cl_Suc_ivl: | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1897 |   "setprod f {Suc m..Suc n} = setprod (%i. f(Suc i)){m..n}"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1898 | by (simp add:setprod_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1899 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1900 | corollary setprod_shift_bounds_Suc_ivl: | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1901 |   "setprod f {Suc m..<Suc n} = setprod (%i. f(Suc i)){m..<n}"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1902 | by (simp add:setprod_shift_bounds_nat_ivl[where k="Suc 0", simplified]) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1903 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1904 | lemma setprod_lessThan_Suc: "setprod f {..<Suc n} = setprod f {..<n} * f n"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1905 | by (simp add: lessThan_Suc mult.commute) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1906 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1907 | lemma setprod_atLeastLessThan_Suc: "a \<le> b \<Longrightarrow> setprod f {a..<Suc b} = setprod f {a..<b} * f b"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1908 | by (simp add: atLeastLessThanSuc mult.commute) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1909 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1910 | lemma setprod_nat_ivl_Suc': | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1911 | assumes "m \<le> Suc n" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1912 |   shows   "setprod f {m..Suc n} = f (Suc n) * setprod f {m..n}"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1913 | proof - | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1914 |   from assms have "{m..Suc n} = insert (Suc n) {m..n}" by auto
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1915 |   also have "setprod f \<dots> = f (Suc n) * setprod f {m..n}" by simp
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1916 | finally show ?thesis . | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1917 | qed | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 1918 | |
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1919 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1920 | subsection \<open>Efficient folding over intervals\<close> | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1921 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1922 | function fold_atLeastAtMost_nat where | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1923 | [simp del]: "fold_atLeastAtMost_nat f a (b::nat) acc = | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1924 | (if a > b then acc else fold_atLeastAtMost_nat f (a+1) b (f a acc))" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1925 | by pat_completeness auto | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1926 | termination by (relation "measure (\<lambda>(_,a,b,_). Suc b - a)") auto | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1927 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1928 | lemma fold_atLeastAtMost_nat: | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1929 | assumes "comp_fun_commute f" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1930 |   shows   "fold_atLeastAtMost_nat f a b acc = Finite_Set.fold f acc {a..b}"
 | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1931 | using assms | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1932 | proof (induction f a b acc rule: fold_atLeastAtMost_nat.induct, goal_cases) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1933 | case (1 f a b acc) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1934 | interpret comp_fun_commute f by fact | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1935 | show ?case | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1936 | proof (cases "a > b") | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1937 | case True | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1938 | thus ?thesis by (subst fold_atLeastAtMost_nat.simps) auto | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1939 | next | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1940 | case False | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1941 | with 1 show ?thesis | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1942 | by (subst fold_atLeastAtMost_nat.simps) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1943 | (auto simp: atLeastAtMost_insertL[symmetric] fold_fun_left_comm) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1944 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1945 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1946 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1947 | lemma setsum_atLeastAtMost_code: | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1948 |   "setsum f {a..b} = fold_atLeastAtMost_nat (\<lambda>a acc. f a + acc) a b 0"
 | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1949 | proof - | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1950 | have "comp_fun_commute (\<lambda>a. op + (f a))" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1951 | by unfold_locales (auto simp: o_def add_ac) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1952 | thus ?thesis | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1953 | by (simp add: setsum.eq_fold fold_atLeastAtMost_nat o_def) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1954 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1955 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1956 | lemma setprod_atLeastAtMost_code: | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1957 |   "setprod f {a..b} = fold_atLeastAtMost_nat (\<lambda>a acc. f a * acc) a b 1"
 | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1958 | proof - | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1959 | have "comp_fun_commute (\<lambda>a. op * (f a))" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1960 | by unfold_locales (auto simp: o_def mult_ac) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1961 | thus ?thesis | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1962 | by (simp add: setprod.eq_fold fold_atLeastAtMost_nat o_def) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1963 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1964 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1965 | (* TODO: Add support for more kinds of intervals here *) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 1966 | |
| 8924 | 1967 | end |