| author | wenzelm | 
| Sun, 29 Nov 2020 15:23:18 +0100 | |
| changeset 72773 | 93b50b9e3494 | 
| parent 69555 | b07ccc6fb13f | 
| child 73253 | f6bb31879698 | 
| permissions | -rw-r--r-- | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 1 | (* Title: HOL/Probability/Independent_Family.thy | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 2 | Author: Johannes Hölzl, TU München | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 3 | Author: Sudeep Kanav, TU München | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 4 | *) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 5 | |
| 61808 | 6 | section \<open>Independent families of events, event sets, and random variables\<close> | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 7 | |
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 8 | theory Independent_Family | 
| 63626 
44ce6b524ff3
move measure theory from HOL-Probability to HOL-Multivariate_Analysis
 hoelzl parents: 
63040diff
changeset | 9 | imports Infinite_Product_Measure | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 10 | begin | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 11 | |
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 12 | definition (in prob_space) | 
| 42983 | 13 | "indep_sets F I \<longleftrightarrow> (\<forall>i\<in>I. F i \<subseteq> events) \<and> | 
| 42981 | 14 |     (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> (\<forall>A\<in>Pi J F. prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))))"
 | 
| 15 | ||
| 16 | definition (in prob_space) | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 17 | "indep_set A B \<longleftrightarrow> indep_sets (case_bool A B) UNIV" | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 18 | |
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 19 | definition (in prob_space) | 
| 49784 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 20 |   indep_events_def_alt: "indep_events A I \<longleftrightarrow> indep_sets (\<lambda>i. {A i}) I"
 | 
| 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 21 | |
| 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 22 | lemma (in prob_space) indep_events_def: | 
| 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 23 | "indep_events A I \<longleftrightarrow> (A`I \<subseteq> events) \<and> | 
| 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 24 |     (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j)))"
 | 
| 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 25 | unfolding indep_events_def_alt indep_sets_def | 
| 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 26 | apply (simp add: Ball_def Pi_iff image_subset_iff_funcset) | 
| 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 27 | apply (intro conj_cong refl arg_cong[where f=All] ext imp_cong) | 
| 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 28 | apply auto | 
| 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 29 | done | 
| 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 30 | |
| 59000 | 31 | lemma (in prob_space) indep_eventsI: | 
| 32 |   "(\<And>i. i \<in> I \<Longrightarrow> F i \<in> sets M) \<Longrightarrow> (\<And>J. J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> J \<noteq> {} \<Longrightarrow> prob (\<Inter>i\<in>J. F i) = (\<Prod>i\<in>J. prob (F i))) \<Longrightarrow> indep_events F I"
 | |
| 33 | by (auto simp: indep_events_def) | |
| 34 | ||
| 49784 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 35 | definition (in prob_space) | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 36 | "indep_event A B \<longleftrightarrow> indep_events (case_bool A B) UNIV" | 
| 49784 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 37 | |
| 47694 | 38 | lemma (in prob_space) indep_sets_cong: | 
| 42981 | 39 | "I = J \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> F i = G i) \<Longrightarrow> indep_sets F I \<longleftrightarrow> indep_sets G J" | 
| 40 | by (simp add: indep_sets_def, intro conj_cong all_cong imp_cong ball_cong) blast+ | |
| 41 | ||
| 42 | lemma (in prob_space) indep_events_finite_index_events: | |
| 43 |   "indep_events F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_events F J)"
 | |
| 44 | by (auto simp: indep_events_def) | |
| 45 | ||
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 46 | lemma (in prob_space) indep_sets_finite_index_sets: | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 47 |   "indep_sets F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J)"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 48 | proof (intro iffI allI impI) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 49 |   assume *: "\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 50 | show "indep_sets F I" unfolding indep_sets_def | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 51 | proof (intro conjI ballI allI impI) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 52 | fix i assume "i \<in> I" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 53 |     with *[THEN spec, of "{i}"] show "F i \<subseteq> events"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 54 | by (auto simp: indep_sets_def) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 55 | qed (insert *, auto simp: indep_sets_def) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 56 | qed (auto simp: indep_sets_def) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 57 | |
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 58 | lemma (in prob_space) indep_sets_mono_index: | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 59 | "J \<subseteq> I \<Longrightarrow> indep_sets F I \<Longrightarrow> indep_sets F J" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 60 | unfolding indep_sets_def by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 61 | |
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 62 | lemma (in prob_space) indep_sets_mono_sets: | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 63 | assumes indep: "indep_sets F I" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 64 | assumes mono: "\<And>i. i\<in>I \<Longrightarrow> G i \<subseteq> F i" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 65 | shows "indep_sets G I" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 66 | proof - | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 67 | have "(\<forall>i\<in>I. F i \<subseteq> events) \<Longrightarrow> (\<forall>i\<in>I. G i \<subseteq> events)" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 68 | using mono by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 69 | moreover have "\<And>A J. J \<subseteq> I \<Longrightarrow> A \<in> (\<Pi> j\<in>J. G j) \<Longrightarrow> A \<in> (\<Pi> j\<in>J. F j)" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 70 | using mono by (auto simp: Pi_iff) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 71 | ultimately show ?thesis | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 72 | using indep by (auto simp: indep_sets_def) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 73 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 74 | |
| 49772 | 75 | lemma (in prob_space) indep_sets_mono: | 
| 76 | assumes indep: "indep_sets F I" | |
| 77 | assumes mono: "J \<subseteq> I" "\<And>i. i\<in>J \<Longrightarrow> G i \<subseteq> F i" | |
| 78 | shows "indep_sets G J" | |
| 79 | apply (rule indep_sets_mono_sets) | |
| 80 | apply (rule indep_sets_mono_index) | |
| 81 | apply (fact +) | |
| 82 | done | |
| 83 | ||
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 84 | lemma (in prob_space) indep_setsI: | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 85 | assumes "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 86 |     and "\<And>A J. J \<noteq> {} \<Longrightarrow> J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> (\<forall>j\<in>J. A j \<in> F j) \<Longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 87 | shows "indep_sets F I" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 88 | using assms unfolding indep_sets_def by (auto simp: Pi_iff) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 89 | |
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 90 | lemma (in prob_space) indep_setsD: | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 91 |   assumes "indep_sets F I" and "J \<subseteq> I" "J \<noteq> {}" "finite J" "\<forall>j\<in>J. A j \<in> F j"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 92 | shows "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 93 | using assms unfolding indep_sets_def by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 94 | |
| 42982 | 95 | lemma (in prob_space) indep_setI: | 
| 96 | assumes ev: "A \<subseteq> events" "B \<subseteq> events" | |
| 97 | and indep: "\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> prob (a \<inter> b) = prob a * prob b" | |
| 98 | shows "indep_set A B" | |
| 99 | unfolding indep_set_def | |
| 100 | proof (rule indep_setsI) | |
| 101 |   fix F J assume "J \<noteq> {}" "J \<subseteq> UNIV"
 | |
| 102 | and F: "\<forall>j\<in>J. F j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)" | |
| 103 | have "J \<in> Pow UNIV" by auto | |
| 61808 | 104 |   with F \<open>J \<noteq> {}\<close> indep[of "F True" "F False"]
 | 
| 42982 | 105 | show "prob (\<Inter>j\<in>J. F j) = (\<Prod>j\<in>J. prob (F j))" | 
| 106 | unfolding UNIV_bool Pow_insert by (auto simp: ac_simps) | |
| 107 | qed (auto split: bool.split simp: ev) | |
| 108 | ||
| 109 | lemma (in prob_space) indep_setD: | |
| 110 | assumes indep: "indep_set A B" and ev: "a \<in> A" "b \<in> B" | |
| 111 | shows "prob (a \<inter> b) = prob a * prob b" | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 112 | using indep[unfolded indep_set_def, THEN indep_setsD, of UNIV "case_bool a b"] ev | 
| 42982 | 113 | by (simp add: ac_simps UNIV_bool) | 
| 114 | ||
| 115 | lemma (in prob_space) | |
| 116 | assumes indep: "indep_set A B" | |
| 42983 | 117 | shows indep_setD_ev1: "A \<subseteq> events" | 
| 118 | and indep_setD_ev2: "B \<subseteq> events" | |
| 42982 | 119 | using indep unfolding indep_set_def indep_sets_def UNIV_bool by auto | 
| 120 | ||
| 69555 | 121 | lemma (in prob_space) indep_sets_Dynkin: | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 122 | assumes indep: "indep_sets F I" | 
| 69555 | 123 | shows "indep_sets (\<lambda>i. Dynkin (space M) (F i)) I" | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 124 | (is "indep_sets ?F I") | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 125 | proof (subst indep_sets_finite_index_sets, intro allI impI ballI) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 126 |   fix J assume "finite J" "J \<subseteq> I" "J \<noteq> {}"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 127 | with indep have "indep_sets F J" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 128 | by (subst (asm) indep_sets_finite_index_sets) auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 129 |   { fix J K assume "indep_sets F K"
 | 
| 46731 | 130 | let ?G = "\<lambda>S i. if i \<in> S then ?F i else F i" | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 131 | assume "finite J" "J \<subseteq> K" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 132 | then have "indep_sets (?G J) K" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 133 | proof induct | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 134 | case (insert j J) | 
| 63040 | 135 | moreover define G where "G = ?G J" | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 136 | ultimately have G: "indep_sets G K" "\<And>i. i \<in> K \<Longrightarrow> G i \<subseteq> events" and "j \<in> K" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 137 | by (auto simp: indep_sets_def) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 138 |       let ?D = "{E\<in>events. indep_sets (G(j := {E})) K }"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 139 |       { fix X assume X: "X \<in> events"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 140 |         assume indep: "\<And>J A. J \<noteq> {} \<Longrightarrow> J \<subseteq> K \<Longrightarrow> finite J \<Longrightarrow> j \<notin> J \<Longrightarrow> (\<forall>i\<in>J. A i \<in> G i)
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 141 | \<Longrightarrow> prob ((\<Inter>i\<in>J. A i) \<inter> X) = prob X * (\<Prod>i\<in>J. prob (A i))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 142 |         have "indep_sets (G(j := {X})) K"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 143 | proof (rule indep_setsI) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 144 |           fix i assume "i \<in> K" then show "(G(j:={X})) i \<subseteq> events"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 145 | using G X by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 146 | next | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 147 |           fix A J assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "\<forall>i\<in>J. A i \<in> (G(j := {X})) i"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 148 | show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 149 | proof cases | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 150 | assume "j \<in> J" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 151 | with J have "A j = X" by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 152 | show ?thesis | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 153 | proof cases | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 154 |               assume "J = {j}" then show ?thesis by simp
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 155 | next | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 156 |               assume "J \<noteq> {j}"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 157 |               have "prob (\<Inter>i\<in>J. A i) = prob ((\<Inter>i\<in>J-{j}. A i) \<inter> X)"
 | 
| 62390 | 158 | using \<open>j \<in> J\<close> \<open>A j = X\<close> by (auto intro!: arg_cong[where f=prob] split: if_split_asm) | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 159 |               also have "\<dots> = prob X * (\<Prod>i\<in>J-{j}. prob (A i))"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 160 | proof (rule indep) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 161 |                 show "J - {j} \<noteq> {}" "J - {j} \<subseteq> K" "finite (J - {j})" "j \<notin> J - {j}"
 | 
| 61808 | 162 |                   using J \<open>J \<noteq> {j}\<close> \<open>j \<in> J\<close> by auto
 | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 163 |                 show "\<forall>i\<in>J - {j}. A i \<in> G i"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 164 | using J by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 165 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 166 |               also have "\<dots> = prob (A j) * (\<Prod>i\<in>J-{j}. prob (A i))"
 | 
| 61808 | 167 | using \<open>A j = X\<close> by simp | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 168 | also have "\<dots> = (\<Prod>i\<in>J. prob (A i))" | 
| 64272 | 169 | unfolding prod.insert_remove[OF \<open>finite J\<close>, symmetric, of "\<lambda>i. prob (A i)"] | 
| 61808 | 170 | using \<open>j \<in> J\<close> by (simp add: insert_absorb) | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 171 | finally show ?thesis . | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 172 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 173 | next | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 174 | assume "j \<notin> J" | 
| 62390 | 175 | with J have "\<forall>i\<in>J. A i \<in> G i" by (auto split: if_split_asm) | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 176 | with J show ?thesis | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 177 | by (intro indep_setsD[OF G(1)]) auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 178 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 179 | qed } | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 180 | note indep_sets_insert = this | 
| 69555 | 181 | have "Dynkin_system (space M) ?D" | 
| 182 | proof (rule Dynkin_systemI', simp_all cong del: indep_sets_cong, safe) | |
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 183 |         show "indep_sets (G(j := {{}})) K"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 184 | by (rule indep_sets_insert) auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 185 | next | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 186 |         fix X assume X: "X \<in> events" and G': "indep_sets (G(j := {X})) K"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 187 |         show "indep_sets (G(j := {space M - X})) K"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 188 | proof (rule indep_sets_insert) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 189 |           fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 190 | then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 191 | using G by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 192 | have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 193 | prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))" | 
| 61808 | 194 |             using A_sets sets.sets_into_space[of _ M] X \<open>J \<noteq> {}\<close>
 | 
| 62390 | 195 | by (auto intro!: arg_cong[where f=prob] split: if_split_asm) | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 196 | also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)" | 
| 61808 | 197 |             using J \<open>J \<noteq> {}\<close> \<open>j \<notin> J\<close> A_sets X sets.sets_into_space
 | 
| 62390 | 198 | by (auto intro!: finite_measure_Diff sets.finite_INT split: if_split_asm) | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 199 | finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 200 | prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)" . | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 201 |           moreover {
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 202 | have "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" | 
| 61808 | 203 | using J A \<open>finite J\<close> by (intro indep_setsD[OF G(1)]) auto | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 204 | then have "prob (\<Inter>j\<in>J. A j) = prob (space M) * (\<Prod>i\<in>J. prob (A i))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 205 | using prob_space by simp } | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 206 |           moreover {
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 207 | have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = (\<Prod>i\<in>insert j J. prob ((A(j := X)) i))" | 
| 61808 | 208 | using J A \<open>j \<in> K\<close> by (intro indep_setsD[OF G']) auto | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 209 | then have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = prob X * (\<Prod>i\<in>J. prob (A i))" | 
| 64272 | 210 | using \<open>finite J\<close> \<open>j \<notin> J\<close> by (auto intro!: prod.cong) } | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 211 | ultimately have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = (prob (space M) - prob X) * (\<Prod>i\<in>J. prob (A i))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 212 | by (simp add: field_simps) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 213 | also have "\<dots> = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 214 | using X A by (simp add: finite_measure_compl) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 215 | finally show "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))" . | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 216 | qed (insert X, auto) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 217 | next | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 218 | fix F :: "nat \<Rightarrow> 'a set" assume disj: "disjoint_family F" and "range F \<subseteq> ?D" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 219 |         then have F: "\<And>i. F i \<in> events" "\<And>i. indep_sets (G(j:={F i})) K" by auto
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 220 |         show "indep_sets (G(j := {\<Union>k. F k})) K"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 221 | proof (rule indep_sets_insert) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 222 |           fix J A assume J: "j \<notin> J" "J \<noteq> {}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> G i"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 223 | then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 224 | using G by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 225 | have "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))" | 
| 62390 | 226 |             using \<open>J \<noteq> {}\<close> \<open>j \<notin> J\<close> \<open>j \<in> K\<close> by (auto intro!: arg_cong[where f=prob] split: if_split_asm)
 | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 227 | moreover have "(\<lambda>k. prob (\<Inter>i\<in>insert j J. (A(j := F k)) i)) sums prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 228 | proof (rule finite_measure_UNION) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 229 | show "disjoint_family (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i)" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 230 | using disj by (rule disjoint_family_on_bisimulation) auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 231 | show "range (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i) \<subseteq> events" | 
| 61808 | 232 |               using A_sets F \<open>finite J\<close> \<open>J \<noteq> {}\<close> \<open>j \<notin> J\<close> by (auto intro!: sets.Int)
 | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 233 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 234 |           moreover { fix k
 | 
| 61808 | 235 | from J A \<open>j \<in> K\<close> have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * (\<Prod>i\<in>J. prob (A i))" | 
| 64272 | 236 | by (subst indep_setsD[OF F(2)]) (auto intro!: prod.cong split: if_split_asm) | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 237 | also have "\<dots> = prob (F k) * prob (\<Inter>i\<in>J. A i)" | 
| 61808 | 238 | using J A \<open>j \<in> K\<close> by (subst indep_setsD[OF G(1)]) auto | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 239 | finally have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * prob (\<Inter>i\<in>J. A i)" . } | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 240 | ultimately have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 241 | by simp | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 242 | moreover | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 243 | have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * prob (\<Inter>i\<in>J. A i))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 244 | using disj F(1) by (intro finite_measure_UNION sums_mult2) auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 245 | then have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * (\<Prod>i\<in>J. prob (A i)))" | 
| 61808 | 246 | using J A \<open>j \<in> K\<close> by (subst indep_setsD[OF G(1), symmetric]) auto | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 247 | ultimately | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 248 | show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 249 | by (auto dest!: sums_unique) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 250 | qed (insert F, auto) | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 251 | qed (insert sets.sets_into_space, auto) | 
| 69555 | 252 |       then have mono: "Dynkin (space M) (G j) \<subseteq> {E \<in> events. indep_sets (G(j := {E})) K}"
 | 
| 253 | proof (rule Dynkin_system.Dynkin_subset, safe) | |
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 254 | fix X assume "X \<in> G j" | 
| 61808 | 255 | then show "X \<in> events" using G \<open>j \<in> K\<close> by auto | 
| 256 | from \<open>indep_sets G K\<close> | |
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 257 |         show "indep_sets (G(j := {X})) K"
 | 
| 61808 | 258 | by (rule indep_sets_mono_sets) (insert \<open>X \<in> G j\<close>, auto) | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 259 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 260 | have "indep_sets (G(j:=?D)) K" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 261 | proof (rule indep_setsI) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 262 | fix i assume "i \<in> K" then show "(G(j := ?D)) i \<subseteq> events" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 263 | using G(2) by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 264 | next | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 265 |         fix A J assume J: "J\<noteq>{}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> (G(j := ?D)) i"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 266 | show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 267 | proof cases | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 268 | assume "j \<in> J" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 269 |           with A have indep: "indep_sets (G(j := {A j})) K" by auto
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 270 | from J A show ?thesis | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 271 | by (intro indep_setsD[OF indep]) auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 272 | next | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 273 | assume "j \<notin> J" | 
| 62390 | 274 | with J A have "\<forall>i\<in>J. A i \<in> G i" by (auto split: if_split_asm) | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 275 | with J show ?thesis | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 276 | by (intro indep_setsD[OF G(1)]) auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 277 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 278 | qed | 
| 69555 | 279 | then have "indep_sets (G(j := Dynkin (space M) (G j))) K" | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 280 | by (rule indep_sets_mono_sets) (insert mono, auto) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 281 | then show ?case | 
| 61808 | 282 | by (rule indep_sets_mono_sets) (insert \<open>j \<in> K\<close> \<open>j \<notin> J\<close>, auto simp: G_def) | 
| 283 | qed (insert \<open>indep_sets F K\<close>, simp) } | |
| 284 | from this[OF \<open>indep_sets F J\<close> \<open>finite J\<close> subset_refl] | |
| 47694 | 285 | show "indep_sets ?F J" | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 286 | by (rule indep_sets_mono_sets) auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 287 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 288 | |
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 289 | lemma (in prob_space) indep_sets_sigma: | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 290 | assumes indep: "indep_sets F I" | 
| 47694 | 291 | assumes stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (F i)" | 
| 292 | shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I" | |
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 293 | proof - | 
| 69555 | 294 | from indep_sets_Dynkin[OF indep] | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 295 | show ?thesis | 
| 69555 | 296 | proof (rule indep_sets_mono_sets, subst sigma_eq_Dynkin, simp_all add: stable) | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 297 | fix i assume "i \<in> I" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 298 | with indep have "F i \<subseteq> events" by (auto simp: indep_sets_def) | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 299 | with sets.sets_into_space show "F i \<subseteq> Pow (space M)" by auto | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 300 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 301 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 302 | |
| 42987 | 303 | lemma (in prob_space) indep_sets_sigma_sets_iff: | 
| 47694 | 304 | assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable (F i)" | 
| 42987 | 305 | shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I \<longleftrightarrow> indep_sets F I" | 
| 306 | proof | |
| 307 | assume "indep_sets F I" then show "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I" | |
| 47694 | 308 | by (rule indep_sets_sigma) fact | 
| 42987 | 309 | next | 
| 310 | assume "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I" then show "indep_sets F I" | |
| 311 | by (rule indep_sets_mono_sets) (intro subsetI sigma_sets.Basic) | |
| 312 | qed | |
| 313 | ||
| 49794 | 314 | definition (in prob_space) | 
| 315 | indep_vars_def2: "indep_vars M' X I \<longleftrightarrow> | |
| 49781 | 316 | (\<forall>i\<in>I. random_variable (M' i) (X i)) \<and> | 
| 317 |     indep_sets (\<lambda>i. { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
 | |
| 49794 | 318 | |
| 319 | definition (in prob_space) | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 320 | "indep_var Ma A Mb B \<longleftrightarrow> indep_vars (case_bool Ma Mb) (case_bool A B) UNIV" | 
| 49794 | 321 | |
| 322 | lemma (in prob_space) indep_vars_def: | |
| 323 | "indep_vars M' X I \<longleftrightarrow> | |
| 324 | (\<forall>i\<in>I. random_variable (M' i) (X i)) \<and> | |
| 325 |     indep_sets (\<lambda>i. sigma_sets (space M) { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
 | |
| 326 | unfolding indep_vars_def2 | |
| 49781 | 327 | apply (rule conj_cong[OF refl]) | 
| 49794 | 328 | apply (rule indep_sets_sigma_sets_iff[symmetric]) | 
| 49781 | 329 | apply (auto simp: Int_stable_def) | 
| 330 | apply (rule_tac x="A \<inter> Aa" in exI) | |
| 331 | apply auto | |
| 332 | done | |
| 333 | ||
| 49794 | 334 | lemma (in prob_space) indep_var_eq: | 
| 335 | "indep_var S X T Y \<longleftrightarrow> | |
| 336 | (random_variable S X \<and> random_variable T Y) \<and> | |
| 337 | indep_set | |
| 338 |       (sigma_sets (space M) { X -` A \<inter> space M | A. A \<in> sets S})
 | |
| 339 |       (sigma_sets (space M) { Y -` A \<inter> space M | A. A \<in> sets T})"
 | |
| 340 | unfolding indep_var_def indep_vars_def indep_set_def UNIV_bool | |
| 67399 | 341 | by (intro arg_cong2[where f="(\<and>)"] arg_cong2[where f=indep_sets] ext) | 
| 49794 | 342 | (auto split: bool.split) | 
| 343 | ||
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 344 | lemma (in prob_space) indep_sets2_eq: | 
| 42981 | 345 | "indep_set A B \<longleftrightarrow> A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)" | 
| 346 | unfolding indep_set_def | |
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 347 | proof (intro iffI ballI conjI) | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 348 | assume indep: "indep_sets (case_bool A B) UNIV" | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 349 |   { fix a b assume "a \<in> A" "b \<in> B"
 | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 350 | with indep_setsD[OF indep, of UNIV "case_bool a b"] | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 351 | show "prob (a \<inter> b) = prob a * prob b" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 352 | unfolding UNIV_bool by (simp add: ac_simps) } | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 353 | from indep show "A \<subseteq> events" "B \<subseteq> events" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 354 | unfolding indep_sets_def UNIV_bool by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 355 | next | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 356 | assume *: "A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)" | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 357 | show "indep_sets (case_bool A B) UNIV" | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 358 | proof (rule indep_setsI) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 359 | fix i show "(case i of True \<Rightarrow> A | False \<Rightarrow> B) \<subseteq> events" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 360 | using * by (auto split: bool.split) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 361 | next | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 362 |     fix J X assume "J \<noteq> {}" "J \<subseteq> UNIV" and X: "\<forall>j\<in>J. X j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 363 |     then have "J = {True} \<or> J = {False} \<or> J = {True,False}"
 | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 364 | by (auto simp: UNIV_bool) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 365 | then show "prob (\<Inter>j\<in>J. X j) = (\<Prod>j\<in>J. prob (X j))" | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 366 | using X * by auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 367 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 368 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 369 | |
| 42981 | 370 | lemma (in prob_space) indep_set_sigma_sets: | 
| 371 | assumes "indep_set A B" | |
| 47694 | 372 | assumes A: "Int_stable A" and B: "Int_stable B" | 
| 42981 | 373 | shows "indep_set (sigma_sets (space M) A) (sigma_sets (space M) B)" | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 374 | proof - | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 375 | have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV" | 
| 47694 | 376 | proof (rule indep_sets_sigma) | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 377 | show "indep_sets (case_bool A B) UNIV" | 
| 61808 | 378 | by (rule \<open>indep_set A B\<close>[unfolded indep_set_def]) | 
| 47694 | 379 | fix i show "Int_stable (case i of True \<Rightarrow> A | False \<Rightarrow> B)" | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 380 | using A B by (cases i) auto | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 381 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 382 | then show ?thesis | 
| 42981 | 383 | unfolding indep_set_def | 
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 384 | by (rule indep_sets_mono_sets) (auto split: bool.split) | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 385 | qed | 
| 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 386 | |
| 59000 | 387 | lemma (in prob_space) indep_eventsI_indep_vars: | 
| 388 | assumes indep: "indep_vars N X I" | |
| 389 |   assumes P: "\<And>i. i \<in> I \<Longrightarrow> {x\<in>space (N i). P i x} \<in> sets (N i)"
 | |
| 390 |   shows "indep_events (\<lambda>i. {x\<in>space M. P i (X i x)}) I"
 | |
| 391 | proof - | |
| 392 |   have "indep_sets (\<lambda>i. {X i -` A \<inter> space M |A. A \<in> sets (N i)}) I"
 | |
| 393 | using indep unfolding indep_vars_def2 by auto | |
| 394 | then show ?thesis | |
| 395 | unfolding indep_events_def_alt | |
| 396 | proof (rule indep_sets_mono_sets) | |
| 397 | fix i assume "i \<in> I" | |
| 398 |     then have "{{x \<in> space M. P i (X i x)}} = {X i -` {x\<in>space (N i). P i x} \<inter> space M}"
 | |
| 399 | using indep by (auto simp: indep_vars_def dest: measurable_space) | |
| 400 |     also have "\<dots> \<subseteq> {X i -` A \<inter> space M |A. A \<in> sets (N i)}"
 | |
| 61808 | 401 | using P[OF \<open>i \<in> I\<close>] by blast | 
| 59000 | 402 |     finally show "{{x \<in> space M. P i (X i x)}} \<subseteq> {X i -` A \<inter> space M |A. A \<in> sets (N i)}" .
 | 
| 403 | qed | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 404 | qed | 
| 59000 | 405 | |
| 42981 | 406 | lemma (in prob_space) indep_sets_collect_sigma: | 
| 407 | fixes I :: "'j \<Rightarrow> 'i set" and J :: "'j set" and E :: "'i \<Rightarrow> 'a set set" | |
| 408 | assumes indep: "indep_sets E (\<Union>j\<in>J. I j)" | |
| 47694 | 409 | assumes Int_stable: "\<And>i j. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> Int_stable (E i)" | 
| 42981 | 410 | assumes disjoint: "disjoint_family_on I J" | 
| 411 | shows "indep_sets (\<lambda>j. sigma_sets (space M) (\<Union>i\<in>I j. E i)) J" | |
| 412 | proof - | |
| 46731 | 413 |   let ?E = "\<lambda>j. {\<Inter>k\<in>K. E' k| E' K. finite K \<and> K \<noteq> {} \<and> K \<subseteq> I j \<and> (\<forall>k\<in>K. E' k \<in> E k) }"
 | 
| 42981 | 414 | |
| 42983 | 415 | from indep have E: "\<And>j i. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> E i \<subseteq> events" | 
| 42981 | 416 | unfolding indep_sets_def by auto | 
| 417 |   { fix j
 | |
| 47694 | 418 | let ?S = "sigma_sets (space M) (\<Union>i\<in>I j. E i)" | 
| 42981 | 419 | assume "j \<in> J" | 
| 47694 | 420 | from E[OF this] interpret S: sigma_algebra "space M" ?S | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 421 | using sets.sets_into_space[of _ M] by (intro sigma_algebra_sigma_sets) auto | 
| 42981 | 422 | |
| 423 | have "sigma_sets (space M) (\<Union>i\<in>I j. E i) = sigma_sets (space M) (?E j)" | |
| 424 | proof (rule sigma_sets_eqI) | |
| 425 | fix A assume "A \<in> (\<Union>i\<in>I j. E i)" | |
| 426 | then guess i .. | |
| 427 | then show "A \<in> sigma_sets (space M) (?E j)" | |
| 47694 | 428 |         by (auto intro!: sigma_sets.intros(2-) exI[of _ "{i}"] exI[of _ "\<lambda>i. A"])
 | 
| 42981 | 429 | next | 
| 430 | fix A assume "A \<in> ?E j" | |
| 431 |       then obtain E' K where "finite K" "K \<noteq> {}" "K \<subseteq> I j" "\<And>k. k \<in> K \<Longrightarrow> E' k \<in> E k"
 | |
| 432 | and A: "A = (\<Inter>k\<in>K. E' k)" | |
| 433 | by auto | |
| 47694 | 434 | then have "A \<in> ?S" unfolding A | 
| 435 | by (safe intro!: S.finite_INT) auto | |
| 42981 | 436 | then show "A \<in> sigma_sets (space M) (\<Union>i\<in>I j. E i)" | 
| 47694 | 437 | by simp | 
| 42981 | 438 | qed } | 
| 439 | moreover have "indep_sets (\<lambda>j. sigma_sets (space M) (?E j)) J" | |
| 47694 | 440 | proof (rule indep_sets_sigma) | 
| 42981 | 441 | show "indep_sets ?E J" | 
| 442 | proof (intro indep_setsI) | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 443 | fix j assume "j \<in> J" with E show "?E j \<subseteq> events" by (force intro!: sets.finite_INT) | 
| 42981 | 444 | next | 
| 445 |       fix K A assume K: "K \<noteq> {}" "K \<subseteq> J" "finite K"
 | |
| 446 | and "\<forall>j\<in>K. A j \<in> ?E j" | |
| 447 |       then have "\<forall>j\<in>K. \<exists>E' L. A j = (\<Inter>l\<in>L. E' l) \<and> finite L \<and> L \<noteq> {} \<and> L \<subseteq> I j \<and> (\<forall>l\<in>L. E' l \<in> E l)"
 | |
| 448 | by simp | |
| 449 | from bchoice[OF this] guess E' .. | |
| 450 | from bchoice[OF this] obtain L | |
| 451 | where A: "\<And>j. j\<in>K \<Longrightarrow> A j = (\<Inter>l\<in>L j. E' j l)" | |
| 452 |         and L: "\<And>j. j\<in>K \<Longrightarrow> finite (L j)" "\<And>j. j\<in>K \<Longrightarrow> L j \<noteq> {}" "\<And>j. j\<in>K \<Longrightarrow> L j \<subseteq> I j"
 | |
| 453 | and E': "\<And>j l. j\<in>K \<Longrightarrow> l \<in> L j \<Longrightarrow> E' j l \<in> E l" | |
| 454 | by auto | |
| 455 | ||
| 456 |       { fix k l j assume "k \<in> K" "j \<in> K" "l \<in> L j" "l \<in> L k"
 | |
| 457 | have "k = j" | |
| 458 | proof (rule ccontr) | |
| 459 | assume "k \<noteq> j" | |
| 61808 | 460 |           with disjoint \<open>K \<subseteq> J\<close> \<open>k \<in> K\<close> \<open>j \<in> K\<close> have "I k \<inter> I j = {}"
 | 
| 42981 | 461 | unfolding disjoint_family_on_def by auto | 
| 61808 | 462 | with L(2,3)[OF \<open>j \<in> K\<close>] L(2,3)[OF \<open>k \<in> K\<close>] | 
| 463 | show False using \<open>l \<in> L k\<close> \<open>l \<in> L j\<close> by auto | |
| 42981 | 464 | qed } | 
| 465 | note L_inj = this | |
| 466 | ||
| 63040 | 467 | define k where "k l = (SOME k. k \<in> K \<and> l \<in> L k)" for l | 
| 42981 | 468 |       { fix x j l assume *: "j \<in> K" "l \<in> L j"
 | 
| 469 | have "k l = j" unfolding k_def | |
| 470 | proof (rule some_equality) | |
| 471 | fix k assume "k \<in> K \<and> l \<in> L k" | |
| 472 | with * L_inj show "k = j" by auto | |
| 473 | qed (insert *, simp) } | |
| 474 | note k_simp[simp] = this | |
| 46731 | 475 | let ?E' = "\<lambda>l. E' (k l) l" | 
| 42981 | 476 | have "prob (\<Inter>j\<in>K. A j) = prob (\<Inter>l\<in>(\<Union>k\<in>K. L k). ?E' l)" | 
| 477 | by (auto simp: A intro!: arg_cong[where f=prob]) | |
| 478 | also have "\<dots> = (\<Prod>l\<in>(\<Union>k\<in>K. L k). prob (?E' l))" | |
| 479 | using L K E' by (intro indep_setsD[OF indep]) (simp_all add: UN_mono) | |
| 480 | also have "\<dots> = (\<Prod>j\<in>K. \<Prod>l\<in>L j. prob (E' j l))" | |
| 64272 | 481 | using K L L_inj by (subst prod.UNION_disjoint) auto | 
| 42981 | 482 | also have "\<dots> = (\<Prod>j\<in>K. prob (A j))" | 
| 64272 | 483 | using K L E' by (auto simp add: A intro!: prod.cong indep_setsD[OF indep, symmetric]) blast | 
| 42981 | 484 | finally show "prob (\<Inter>j\<in>K. A j) = (\<Prod>j\<in>K. prob (A j))" . | 
| 485 | qed | |
| 486 | next | |
| 487 | fix j assume "j \<in> J" | |
| 47694 | 488 | show "Int_stable (?E j)" | 
| 42981 | 489 | proof (rule Int_stableI) | 
| 490 | fix a assume "a \<in> ?E j" then obtain Ka Ea | |
| 491 |         where a: "a = (\<Inter>k\<in>Ka. Ea k)" "finite Ka" "Ka \<noteq> {}" "Ka \<subseteq> I j" "\<And>k. k\<in>Ka \<Longrightarrow> Ea k \<in> E k" by auto
 | |
| 492 | fix b assume "b \<in> ?E j" then obtain Kb Eb | |
| 493 |         where b: "b = (\<Inter>k\<in>Kb. Eb k)" "finite Kb" "Kb \<noteq> {}" "Kb \<subseteq> I j" "\<And>k. k\<in>Kb \<Longrightarrow> Eb k \<in> E k" by auto
 | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 494 |       let ?f = "\<lambda>k. (if k \<in> Ka \<inter> Kb then Ea k \<inter> Eb k else if k \<in> Kb then Eb k else if k \<in> Ka then Ea k else {})"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 495 | have "Ka \<union> Kb = (Ka \<inter> Kb) \<union> (Kb - Ka) \<union> (Ka - Kb)" | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 496 | by blast | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 497 | moreover have "(\<Inter>x\<in>Ka \<inter> Kb. Ea x \<inter> Eb x) \<inter> | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 498 | (\<Inter>x\<in>Kb - Ka. Eb x) \<inter> (\<Inter>x\<in>Ka - Kb. Ea x) = (\<Inter>k\<in>Ka. Ea k) \<inter> (\<Inter>k\<in>Kb. Eb k)" | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 499 | by auto | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 500 | ultimately have "(\<Inter>k\<in>Ka \<union> Kb. ?f k) = (\<Inter>k\<in>Ka. Ea k) \<inter> (\<Inter>k\<in>Kb. Eb k)" (is "?lhs = ?rhs") | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 501 | by (simp only: image_Un Inter_Un_distrib) simp | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 502 | then have "a \<inter> b = (\<Inter>k\<in>Ka \<union> Kb. ?f k)" | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 503 | by (simp only: a(1) b(1)) | 
| 61808 | 504 | with a b \<open>j \<in> J\<close> Int_stableD[OF Int_stable] show "a \<inter> b \<in> ?E j" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 505 | by (intro CollectI exI[of _ "Ka \<union> Kb"] exI[of _ ?f]) auto | 
| 42981 | 506 | qed | 
| 507 | qed | |
| 508 | ultimately show ?thesis | |
| 509 | by (simp cong: indep_sets_cong) | |
| 510 | qed | |
| 511 | ||
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 512 | lemma (in prob_space) indep_vars_restrict: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 513 | assumes ind: "indep_vars M' X I" and K: "\<And>j. j \<in> L \<Longrightarrow> K j \<subseteq> I" and J: "disjoint_family_on K L" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 514 | shows "indep_vars (\<lambda>j. PiM (K j) M') (\<lambda>j \<omega>. restrict (\<lambda>i. X i \<omega>) (K j)) L" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 515 | unfolding indep_vars_def | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 516 | proof safe | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 517 | fix j assume "j \<in> L" then show "random_variable (Pi\<^sub>M (K j) M') (\<lambda>\<omega>. \<lambda>i\<in>K j. X i \<omega>)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 518 | using K ind by (auto simp: indep_vars_def intro!: measurable_restrict) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 519 | next | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 520 | have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> measurable M (M' i)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 521 | using ind by (auto simp: indep_vars_def) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 522 |   let ?proj = "\<lambda>j S. {(\<lambda>\<omega>. \<lambda>i\<in>K j. X i \<omega>) -` A \<inter> space M |A. A \<in> S}"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 523 |   let ?UN = "\<lambda>j. sigma_sets (space M) (\<Union>i\<in>K j. { X i -` A \<inter> space M| A. A \<in> sets (M' i) })"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 524 | show "indep_sets (\<lambda>i. sigma_sets (space M) (?proj i (sets (Pi\<^sub>M (K i) M')))) L" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 525 | proof (rule indep_sets_mono_sets) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 526 | fix j assume j: "j \<in> L" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 527 | have "sigma_sets (space M) (?proj j (sets (Pi\<^sub>M (K j) M'))) = | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 528 | sigma_sets (space M) (sigma_sets (space M) (?proj j (prod_algebra (K j) M')))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 529 | using j K X[THEN measurable_space] unfolding sets_PiM | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 530 | by (subst sigma_sets_vimage_commute) (auto simp add: Pi_iff) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 531 | also have "\<dots> = sigma_sets (space M) (?proj j (prod_algebra (K j) M'))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 532 | by (rule sigma_sets_sigma_sets_eq) auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 533 | also have "\<dots> \<subseteq> ?UN j" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 534 | proof (rule sigma_sets_mono, safe del: disjE elim!: prod_algebraE) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 535 |       fix J E assume J: "finite J" "J \<noteq> {} \<or> K j = {}"  "J \<subseteq> K j" and E: "\<forall>i. i \<in> J \<longrightarrow> E i \<in> sets (M' i)"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 536 | show "(\<lambda>\<omega>. \<lambda>i\<in>K j. X i \<omega>) -` prod_emb (K j) M' J (Pi\<^sub>E J E) \<inter> space M \<in> ?UN j" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 537 | proof cases | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 538 |         assume "K j = {}" with J show ?thesis
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 539 | by (auto simp add: sigma_sets_empty_eq prod_emb_def) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 540 | next | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 541 |         assume "K j \<noteq> {}" with J have "J \<noteq> {}"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 542 | by auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 543 |         { interpret sigma_algebra "space M" "?UN j"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 544 | by (rule sigma_algebra_sigma_sets) auto | 
| 69313 | 545 | have "\<And>A. (\<And>i. i \<in> J \<Longrightarrow> A i \<in> ?UN j) \<Longrightarrow> \<Inter>(A ` J) \<in> ?UN j" | 
| 61808 | 546 |             using \<open>finite J\<close> \<open>J \<noteq> {}\<close> by (rule finite_INT) blast }
 | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 547 | note INT = this | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 548 | |
| 61808 | 549 |         from \<open>J \<noteq> {}\<close> J K E[rule_format, THEN sets.sets_into_space] j
 | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 550 | have "(\<lambda>\<omega>. \<lambda>i\<in>K j. X i \<omega>) -` prod_emb (K j) M' J (Pi\<^sub>E J E) \<inter> space M | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 551 | = (\<Inter>i\<in>J. X i -` E i \<inter> space M)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 552 | apply (subst prod_emb_PiE[OF _ ]) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 553 | apply auto [] | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 554 | apply auto [] | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 555 | apply (auto simp add: Pi_iff intro!: X[THEN measurable_space]) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 556 | apply (erule_tac x=i in ballE) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 557 | apply auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 558 | done | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 559 | also have "\<dots> \<in> ?UN j" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 560 | apply (rule INT) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 561 | apply (rule sigma_sets.Basic) | 
| 61808 | 562 | using \<open>J \<subseteq> K j\<close> E | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 563 | apply auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 564 | done | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 565 | finally show ?thesis . | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 566 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 567 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 568 | finally show "sigma_sets (space M) (?proj j (sets (Pi\<^sub>M (K j) M'))) \<subseteq> ?UN j" . | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 569 | next | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 570 | show "indep_sets ?UN L" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 571 | proof (rule indep_sets_collect_sigma) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 572 |       show "indep_sets (\<lambda>i. {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) (\<Union>j\<in>L. K j)"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 573 | proof (rule indep_sets_mono_index) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 574 |         show "indep_sets (\<lambda>i. {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 575 | using ind unfolding indep_vars_def2 by auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 576 | show "(\<Union>l\<in>L. K l) \<subseteq> I" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 577 | using K by auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 578 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 579 | next | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 580 | fix l i assume "l \<in> L" "i \<in> K l" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 581 |       show "Int_stable {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 582 | apply (auto simp: Int_stable_def) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 583 | apply (rule_tac x="A \<inter> Aa" in exI) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 584 | apply auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 585 | done | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 586 | qed fact | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 587 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 588 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 589 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 590 | lemma (in prob_space) indep_var_restrict: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 591 |   assumes ind: "indep_vars M' X I" and AB: "A \<inter> B = {}" "A \<subseteq> I" "B \<subseteq> I"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 592 | shows "indep_var (PiM A M') (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) A) (PiM B M') (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) B)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 593 | proof - | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 594 | have *: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 595 | "case_bool (Pi\<^sub>M A M') (Pi\<^sub>M B M') = (\<lambda>b. PiM (case_bool A B b) M')" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 596 | "case_bool (\<lambda>\<omega>. \<lambda>i\<in>A. X i \<omega>) (\<lambda>\<omega>. \<lambda>i\<in>B. X i \<omega>) = (\<lambda>b \<omega>. \<lambda>i\<in>case_bool A B b. X i \<omega>)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 597 | by (simp_all add: fun_eq_iff split: bool.split) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 598 | show ?thesis | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 599 | unfolding indep_var_def * using AB | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 600 | by (intro indep_vars_restrict[OF ind]) (auto simp: disjoint_family_on_def split: bool.split) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 601 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 602 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 603 | lemma (in prob_space) indep_vars_subset: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 604 | assumes "indep_vars M' X I" "J \<subseteq> I" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 605 | shows "indep_vars M' X J" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 606 | using assms unfolding indep_vars_def indep_sets_def | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 607 | by auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 608 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 609 | lemma (in prob_space) indep_vars_cong: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 610 | "I = J \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> X i = Y i) \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> M' i = N' i) \<Longrightarrow> indep_vars M' X I \<longleftrightarrow> indep_vars N' Y J" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 611 | unfolding indep_vars_def2 by (intro conj_cong indep_sets_cong) auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 612 | |
| 49772 | 613 | definition (in prob_space) tail_events where | 
| 69325 | 614 |   "tail_events A = (\<Inter>n. sigma_sets (space M) (\<Union> (A ` {n..})))"
 | 
| 42982 | 615 | |
| 49772 | 616 | lemma (in prob_space) tail_events_sets: | 
| 617 | assumes A: "\<And>i::nat. A i \<subseteq> events" | |
| 618 | shows "tail_events A \<subseteq> events" | |
| 619 | proof | |
| 620 | fix X assume X: "X \<in> tail_events A" | |
| 69325 | 621 |   let ?A = "(\<Inter>n. sigma_sets (space M) (\<Union> (A ` {n..})))"
 | 
| 622 |   from X have "\<And>n::nat. X \<in> sigma_sets (space M) (\<Union> (A ` {n..}))" by (auto simp: tail_events_def)
 | |
| 69313 | 623 | from this[of 0] have "X \<in> sigma_sets (space M) (\<Union>(A ` UNIV))" by simp | 
| 42983 | 624 | then show "X \<in> events" | 
| 42982 | 625 | by induct (insert A, auto) | 
| 626 | qed | |
| 627 | ||
| 49772 | 628 | lemma (in prob_space) sigma_algebra_tail_events: | 
| 47694 | 629 | assumes "\<And>i::nat. sigma_algebra (space M) (A i)" | 
| 49772 | 630 | shows "sigma_algebra (space M) (tail_events A)" | 
| 631 | unfolding tail_events_def | |
| 42982 | 632 | proof (simp add: sigma_algebra_iff2, safe) | 
| 69325 | 633 |   let ?A = "(\<Inter>n. sigma_sets (space M) (\<Union> (A ` {n..})))"
 | 
| 47694 | 634 | interpret A: sigma_algebra "space M" "A i" for i by fact | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 635 |   { fix X x assume "X \<in> ?A" "x \<in> X"
 | 
| 69325 | 636 |     then have "\<And>n. X \<in> sigma_sets (space M) (\<Union> (A ` {n..}))" by auto
 | 
| 69313 | 637 | from this[of 0] have "X \<in> sigma_sets (space M) (\<Union>(A ` UNIV))" by simp | 
| 42982 | 638 | then have "X \<subseteq> space M" | 
| 639 | by induct (insert A.sets_into_space, auto) | |
| 61808 | 640 | with \<open>x \<in> X\<close> show "x \<in> space M" by auto } | 
| 42982 | 641 |   { fix F :: "nat \<Rightarrow> 'a set" and n assume "range F \<subseteq> ?A"
 | 
| 69325 | 642 |     then show "(\<Union>(F ` UNIV)) \<in> sigma_sets (space M) (\<Union> (A ` {n..}))"
 | 
| 42982 | 643 | by (intro sigma_sets.Union) auto } | 
| 644 | qed (auto intro!: sigma_sets.Compl sigma_sets.Empty) | |
| 645 | ||
| 646 | lemma (in prob_space) kolmogorov_0_1_law: | |
| 647 | fixes A :: "nat \<Rightarrow> 'a set set" | |
| 47694 | 648 | assumes "\<And>i::nat. sigma_algebra (space M) (A i)" | 
| 42982 | 649 | assumes indep: "indep_sets A UNIV" | 
| 49772 | 650 | and X: "X \<in> tail_events A" | 
| 42982 | 651 | shows "prob X = 0 \<or> prob X = 1" | 
| 652 | proof - | |
| 49781 | 653 | have A: "\<And>i. A i \<subseteq> events" | 
| 654 | using indep unfolding indep_sets_def by simp | |
| 655 | ||
| 47694 | 656 |   let ?D = "{D \<in> events. prob (X \<inter> D) = prob X * prob D}"
 | 
| 657 | interpret A: sigma_algebra "space M" "A i" for i by fact | |
| 49772 | 658 | interpret T: sigma_algebra "space M" "tail_events A" | 
| 659 | by (rule sigma_algebra_tail_events) fact | |
| 42982 | 660 | have "X \<subseteq> space M" using T.space_closed X by auto | 
| 661 | ||
| 42983 | 662 | have X_in: "X \<in> events" | 
| 49772 | 663 | using tail_events_sets A X by auto | 
| 42982 | 664 | |
| 69555 | 665 | interpret D: Dynkin_system "space M" ?D | 
| 666 | proof (rule Dynkin_systemI) | |
| 47694 | 667 | fix D assume "D \<in> ?D" then show "D \<subseteq> space M" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 668 | using sets.sets_into_space by auto | 
| 42982 | 669 | next | 
| 47694 | 670 | show "space M \<in> ?D" | 
| 61808 | 671 | using prob_space \<open>X \<subseteq> space M\<close> by (simp add: Int_absorb2) | 
| 42982 | 672 | next | 
| 47694 | 673 | fix A assume A: "A \<in> ?D" | 
| 42982 | 674 | have "prob (X \<inter> (space M - A)) = prob (X - (X \<inter> A))" | 
| 61808 | 675 | using \<open>X \<subseteq> space M\<close> by (auto intro!: arg_cong[where f=prob]) | 
| 42982 | 676 | also have "\<dots> = prob X - prob (X \<inter> A)" | 
| 677 | using X_in A by (intro finite_measure_Diff) auto | |
| 678 | also have "\<dots> = prob X * prob (space M) - prob X * prob A" | |
| 679 | using A prob_space by auto | |
| 680 | also have "\<dots> = prob X * prob (space M - A)" | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 681 | using X_in A sets.sets_into_space | 
| 42982 | 682 | by (subst finite_measure_Diff) (auto simp: field_simps) | 
| 47694 | 683 | finally show "space M - A \<in> ?D" | 
| 61808 | 684 | using A \<open>X \<subseteq> space M\<close> by auto | 
| 42982 | 685 | next | 
| 47694 | 686 | fix F :: "nat \<Rightarrow> 'a set" assume dis: "disjoint_family F" and "range F \<subseteq> ?D" | 
| 42982 | 687 | then have F: "range F \<subseteq> events" "\<And>i. prob (X \<inter> F i) = prob X * prob (F i)" | 
| 688 | by auto | |
| 689 | have "(\<lambda>i. prob (X \<inter> F i)) sums prob (\<Union>i. X \<inter> F i)" | |
| 690 | proof (rule finite_measure_UNION) | |
| 691 | show "range (\<lambda>i. X \<inter> F i) \<subseteq> events" | |
| 692 | using F X_in by auto | |
| 693 | show "disjoint_family (\<lambda>i. X \<inter> F i)" | |
| 694 | using dis by (rule disjoint_family_on_bisimulation) auto | |
| 695 | qed | |
| 696 | with F have "(\<lambda>i. prob X * prob (F i)) sums prob (X \<inter> (\<Union>i. F i))" | |
| 697 | by simp | |
| 698 | moreover have "(\<lambda>i. prob X * prob (F i)) sums (prob X * prob (\<Union>i. F i))" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
43920diff
changeset | 699 | by (intro sums_mult finite_measure_UNION F dis) | 
| 42982 | 700 | ultimately have "prob (X \<inter> (\<Union>i. F i)) = prob X * prob (\<Union>i. F i)" | 
| 701 | by (auto dest!: sums_unique) | |
| 47694 | 702 | with F show "(\<Union>i. F i) \<in> ?D" | 
| 42982 | 703 | by auto | 
| 704 | qed | |
| 705 | ||
| 706 |   { fix n
 | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 707 |     have "indep_sets (\<lambda>b. sigma_sets (space M) (\<Union>m\<in>case_bool {..n} {Suc n..} b. A m)) UNIV"
 | 
| 42982 | 708 | proof (rule indep_sets_collect_sigma) | 
| 709 |       have *: "(\<Union>b. case b of True \<Rightarrow> {..n} | False \<Rightarrow> {Suc n..}) = UNIV" (is "?U = _")
 | |
| 710 | by (simp split: bool.split add: set_eq_iff) (metis not_less_eq_eq) | |
| 711 | with indep show "indep_sets A ?U" by simp | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 712 |       show "disjoint_family (case_bool {..n} {Suc n..})"
 | 
| 42982 | 713 | unfolding disjoint_family_on_def by (auto split: bool.split) | 
| 714 | fix m | |
| 47694 | 715 | show "Int_stable (A m)" | 
| 42982 | 716 | unfolding Int_stable_def using A.Int by auto | 
| 717 | qed | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 718 |     also have "(\<lambda>b. sigma_sets (space M) (\<Union>m\<in>case_bool {..n} {Suc n..} b. A m)) =
 | 
| 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 719 |       case_bool (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
 | 
| 42982 | 720 | by (auto intro!: ext split: bool.split) | 
| 721 |     finally have indep: "indep_set (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
 | |
| 722 | unfolding indep_set_def by simp | |
| 723 | ||
| 47694 | 724 |     have "sigma_sets (space M) (\<Union>m\<in>{..n}. A m) \<subseteq> ?D"
 | 
| 42982 | 725 | proof (simp add: subset_eq, rule) | 
| 726 |       fix D assume D: "D \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
 | |
| 727 |       have "X \<in> sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m)"
 | |
| 49772 | 728 | using X unfolding tail_events_def by simp | 
| 42982 | 729 | from indep_setD[OF indep D this] indep_setD_ev1[OF indep] D | 
| 730 | show "D \<in> events \<and> prob (X \<inter> D) = prob X * prob D" | |
| 731 | by (auto simp add: ac_simps) | |
| 732 | qed } | |
| 47694 | 733 |   then have "(\<Union>n. sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) \<subseteq> ?D" (is "?A \<subseteq> _")
 | 
| 42982 | 734 | by auto | 
| 735 | ||
| 61808 | 736 | note \<open>X \<in> tail_events A\<close> | 
| 47694 | 737 |   also {
 | 
| 738 |     have "\<And>n. sigma_sets (space M) (\<Union>i\<in>{n..}. A i) \<subseteq> sigma_sets (space M) ?A"
 | |
| 739 | by (intro sigma_sets_subseteq UN_mono) auto | |
| 49772 | 740 | then have "tail_events A \<subseteq> sigma_sets (space M) ?A" | 
| 741 | unfolding tail_events_def by auto } | |
| 69555 | 742 | also have "sigma_sets (space M) ?A = Dynkin (space M) ?A" | 
| 743 | proof (rule sigma_eq_Dynkin) | |
| 42982 | 744 |     { fix B n assume "B \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
 | 
| 745 | then have "B \<subseteq> space M" | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 746 | by induct (insert A sets.sets_into_space[of _ M], auto) } | 
| 47694 | 747 | then show "?A \<subseteq> Pow (space M)" by auto | 
| 748 | show "Int_stable ?A" | |
| 42982 | 749 | proof (rule Int_stableI) | 
| 750 | fix a assume "a \<in> ?A" then guess n .. note a = this | |
| 751 | fix b assume "b \<in> ?A" then guess m .. note b = this | |
| 47694 | 752 |       interpret Amn: sigma_algebra "space M" "sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 753 | using A sets.sets_into_space[of _ M] by (intro sigma_algebra_sigma_sets) auto | 
| 42982 | 754 |       have "sigma_sets (space M) (\<Union>i\<in>{..n}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
 | 
| 755 | by (intro sigma_sets_subseteq UN_mono) auto | |
| 756 |       with a have "a \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
 | |
| 757 | moreover | |
| 758 |       have "sigma_sets (space M) (\<Union>i\<in>{..m}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
 | |
| 759 | by (intro sigma_sets_subseteq UN_mono) auto | |
| 760 |       with b have "b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
 | |
| 761 |       ultimately have "a \<inter> b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
 | |
| 47694 | 762 | using Amn.Int[of a b] by simp | 
| 42982 | 763 |       then show "a \<inter> b \<in> (\<Union>n. sigma_sets (space M) (\<Union>i\<in>{..n}. A i))" by auto
 | 
| 764 | qed | |
| 765 | qed | |
| 69555 | 766 | also have "Dynkin (space M) ?A \<subseteq> ?D" | 
| 767 | using \<open>?A \<subseteq> ?D\<close> by (auto intro!: D.Dynkin_subset) | |
| 47694 | 768 | finally show ?thesis by auto | 
| 42982 | 769 | qed | 
| 770 | ||
| 42985 | 771 | lemma (in prob_space) borel_0_1_law: | 
| 772 | fixes F :: "nat \<Rightarrow> 'a set" | |
| 49781 | 773 | assumes F2: "indep_events F UNIV" | 
| 42985 | 774 |   shows "prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 0 \<or> prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 1"
 | 
| 775 | proof (rule kolmogorov_0_1_law[of "\<lambda>i. sigma_sets (space M) { F i }"])
 | |
| 49781 | 776 | have F1: "range F \<subseteq> events" | 
| 777 | using F2 by (simp add: indep_events_def subset_eq) | |
| 47694 | 778 |   { fix i show "sigma_algebra (space M) (sigma_sets (space M) {F i})"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 779 |       using sigma_algebra_sigma_sets[of "{F i}" "space M"] F1 sets.sets_into_space
 | 
| 47694 | 780 | by auto } | 
| 42985 | 781 |   show "indep_sets (\<lambda>i. sigma_sets (space M) {F i}) UNIV"
 | 
| 47694 | 782 | proof (rule indep_sets_sigma) | 
| 42985 | 783 |     show "indep_sets (\<lambda>i. {F i}) UNIV"
 | 
| 49784 
5e5b2da42a69
remove incseq assumption from measure_eqI_generator_eq
 hoelzl parents: 
49781diff
changeset | 784 | unfolding indep_events_def_alt[symmetric] by fact | 
| 47694 | 785 |     fix i show "Int_stable {F i}"
 | 
| 42985 | 786 | unfolding Int_stable_def by simp | 
| 787 | qed | |
| 46731 | 788 |   let ?Q = "\<lambda>n. \<Union>i\<in>{n..}. F i"
 | 
| 49772 | 789 |   show "(\<Inter>n. \<Union>m\<in>{n..}. F m) \<in> tail_events (\<lambda>i. sigma_sets (space M) {F i})"
 | 
| 790 | unfolding tail_events_def | |
| 42985 | 791 | proof | 
| 792 | fix j | |
| 47694 | 793 |     interpret S: sigma_algebra "space M" "sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 794 | using order_trans[OF F1 sets.space_closed] | 
| 47694 | 795 | by (intro sigma_algebra_sigma_sets) (simp add: sigma_sets_singleton subset_eq) | 
| 42985 | 796 |     have "(\<Inter>n. ?Q n) = (\<Inter>n\<in>{j..}. ?Q n)"
 | 
| 797 | by (intro decseq_SucI INT_decseq_offset UN_mono) auto | |
| 47694 | 798 |     also have "\<dots> \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 799 | using order_trans[OF F1 sets.space_closed] | 
| 42985 | 800 | by (safe intro!: S.countable_INT S.countable_UN) | 
| 47694 | 801 | (auto simp: sigma_sets_singleton intro!: sigma_sets.Basic bexI) | 
| 42985 | 802 |     finally show "(\<Inter>n. ?Q n) \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
 | 
| 47694 | 803 | by simp | 
| 42985 | 804 | qed | 
| 805 | qed | |
| 806 | ||
| 59000 | 807 | lemma (in prob_space) borel_0_1_law_AE: | 
| 808 | fixes P :: "nat \<Rightarrow> 'a \<Rightarrow> bool" | |
| 809 |   assumes "indep_events (\<lambda>m. {x\<in>space M. P m x}) UNIV" (is "indep_events ?P _")
 | |
| 810 |   shows "(AE x in M. infinite {m. P m x}) \<or> (AE x in M. finite {m. P m x})"
 | |
| 811 | proof - | |
| 812 |   have [measurable]: "\<And>m. {x\<in>space M. P m x} \<in> sets M"
 | |
| 813 | using assms by (auto simp: indep_events_def) | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 814 |   have *: "(\<Inter>n. \<Union>m\<in>{n..}. {x \<in> space M. P m x}) \<in> events"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 815 | by simp | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 816 |   from assms have "prob (\<Inter>n. \<Union>m\<in>{n..}. ?P m) = 0 \<or> prob (\<Inter>n. \<Union>m\<in>{n..}. ?P m) = 1"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 817 | by (rule borel_0_1_law) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 818 |   also have "prob (\<Inter>n. \<Union>m\<in>{n..}. ?P m) = 1 \<longleftrightarrow> (AE x in M. infinite {m. P m x})"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 819 | using * by (simp add: prob_eq_1) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 820 | (simp add: Bex_def infinite_nat_iff_unbounded_le) | 
| 59000 | 821 |   also have "prob (\<Inter>n. \<Union>m\<in>{n..}. ?P m) = 0 \<longleftrightarrow> (AE x in M. finite {m. P m x})"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 822 | using * by (simp add: prob_eq_0) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 823 | (auto simp add: Ball_def finite_nat_iff_bounded not_less [symmetric]) | 
| 59000 | 824 | finally show ?thesis | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61808diff
changeset | 825 | by blast | 
| 59000 | 826 | qed | 
| 827 | ||
| 42987 | 828 | lemma (in prob_space) indep_sets_finite: | 
| 829 |   assumes I: "I \<noteq> {}" "finite I"
 | |
| 830 | and F: "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events" "\<And>i. i \<in> I \<Longrightarrow> space M \<in> F i" | |
| 831 | shows "indep_sets F I \<longleftrightarrow> (\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j)))" | |
| 832 | proof | |
| 833 | assume *: "indep_sets F I" | |
| 834 | from I show "\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j))" | |
| 835 | by (intro indep_setsD[OF *] ballI) auto | |
| 836 | next | |
| 837 | assume indep: "\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j))" | |
| 838 | show "indep_sets F I" | |
| 839 | proof (rule indep_setsI[OF F(1)]) | |
| 840 |     fix A J assume J: "J \<noteq> {}" "J \<subseteq> I" "finite J"
 | |
| 841 | assume A: "\<forall>j\<in>J. A j \<in> F j" | |
| 46731 | 842 | let ?A = "\<lambda>j. if j \<in> J then A j else space M" | 
| 42987 | 843 | have "prob (\<Inter>j\<in>I. ?A j) = prob (\<Inter>j\<in>J. A j)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 844 | using subset_trans[OF F(1) sets.space_closed] J A | 
| 62390 | 845 | by (auto intro!: arg_cong[where f=prob] split: if_split_asm) blast | 
| 42987 | 846 | also | 
| 847 | from A F have "(\<lambda>j. if j \<in> J then A j else space M) \<in> Pi I F" (is "?A \<in> _") | |
| 62390 | 848 | by (auto split: if_split_asm) | 
| 42987 | 849 | with indep have "prob (\<Inter>j\<in>I. ?A j) = (\<Prod>j\<in>I. prob (?A j))" | 
| 850 | by auto | |
| 851 | also have "\<dots> = (\<Prod>j\<in>J. prob (A j))" | |
| 64272 | 852 | unfolding if_distrib prod.If_cases[OF \<open>finite I\<close>] | 
| 853 | using prob_space \<open>J \<subseteq> I\<close> by (simp add: Int_absorb1 prod.neutral_const) | |
| 42987 | 854 | finally show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" .. | 
| 855 | qed | |
| 856 | qed | |
| 857 | ||
| 42989 | 858 | lemma (in prob_space) indep_vars_finite: | 
| 42987 | 859 | fixes I :: "'i set" | 
| 860 |   assumes I: "I \<noteq> {}" "finite I"
 | |
| 47694 | 861 | and M': "\<And>i. i \<in> I \<Longrightarrow> sets (M' i) = sigma_sets (space (M' i)) (E i)" | 
| 862 | and rv: "\<And>i. i \<in> I \<Longrightarrow> random_variable (M' i) (X i)" | |
| 863 | and Int_stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (E i)" | |
| 864 | and space: "\<And>i. i \<in> I \<Longrightarrow> space (M' i) \<in> E i" and closed: "\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> Pow (space (M' i))" | |
| 865 | shows "indep_vars M' X I \<longleftrightarrow> | |
| 866 | (\<forall>A\<in>(\<Pi> i\<in>I. E i). prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M)))" | |
| 42987 | 867 | proof - | 
| 868 | from rv have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> space M \<rightarrow> space (M' i)" | |
| 869 | unfolding measurable_def by simp | |
| 870 | ||
| 871 |   { fix i assume "i\<in>I"
 | |
| 61808 | 872 | from closed[OF \<open>i \<in> I\<close>] | 
| 47694 | 873 |     have "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}
 | 
| 874 |       = sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> E i}"
 | |
| 61808 | 875 | unfolding sigma_sets_vimage_commute[OF X, OF \<open>i \<in> I\<close>, symmetric] M'[OF \<open>i \<in> I\<close>] | 
| 42987 | 876 | by (subst sigma_sets_sigma_sets_eq) auto } | 
| 47694 | 877 | note sigma_sets_X = this | 
| 42987 | 878 | |
| 879 |   { fix i assume "i\<in>I"
 | |
| 47694 | 880 |     have "Int_stable {X i -` A \<inter> space M |A. A \<in> E i}"
 | 
| 42987 | 881 | proof (rule Int_stableI) | 
| 47694 | 882 |       fix a assume "a \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
 | 
| 883 | then obtain A where "a = X i -` A \<inter> space M" "A \<in> E i" by auto | |
| 42987 | 884 | moreover | 
| 47694 | 885 |       fix b assume "b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
 | 
| 886 | then obtain B where "b = X i -` B \<inter> space M" "B \<in> E i" by auto | |
| 42987 | 887 | moreover | 
| 888 | have "(X i -` A \<inter> space M) \<inter> (X i -` B \<inter> space M) = X i -` (A \<inter> B) \<inter> space M" by auto | |
| 61808 | 889 | moreover note Int_stable[OF \<open>i \<in> I\<close>] | 
| 42987 | 890 | ultimately | 
| 47694 | 891 |       show "a \<inter> b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
 | 
| 42987 | 892 | by (auto simp del: vimage_Int intro!: exI[of _ "A \<inter> B"] dest: Int_stableD) | 
| 893 | qed } | |
| 47694 | 894 | note indep_sets_X = indep_sets_sigma_sets_iff[OF this] | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 895 | |
| 42987 | 896 |   { fix i assume "i \<in> I"
 | 
| 47694 | 897 |     { fix A assume "A \<in> E i"
 | 
| 61808 | 898 | with M'[OF \<open>i \<in> I\<close>] have "A \<in> sets (M' i)" by auto | 
| 42987 | 899 | moreover | 
| 61808 | 900 | from rv[OF \<open>i\<in>I\<close>] have "X i \<in> measurable M (M' i)" by auto | 
| 42987 | 901 | ultimately | 
| 902 | have "X i -` A \<inter> space M \<in> sets M" by (auto intro: measurable_sets) } | |
| 61808 | 903 | with X[OF \<open>i\<in>I\<close>] space[OF \<open>i\<in>I\<close>] | 
| 47694 | 904 |     have "{X i -` A \<inter> space M |A. A \<in> E i} \<subseteq> events"
 | 
| 905 |       "space M \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
 | |
| 42987 | 906 | by (auto intro!: exI[of _ "space (M' i)"]) } | 
| 47694 | 907 | note indep_sets_finite_X = indep_sets_finite[OF I this] | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 908 | |
| 69313 | 909 |   have "(\<forall>A\<in>\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i}. prob (\<Inter>(A ` I)) = (\<Prod>j\<in>I. prob (A j))) =
 | 
| 47694 | 910 | (\<forall>A\<in>\<Pi> i\<in>I. E i. prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M)))" | 
| 42987 | 911 | (is "?L = ?R") | 
| 912 | proof safe | |
| 47694 | 913 | fix A assume ?L and A: "A \<in> (\<Pi> i\<in>I. E i)" | 
| 61808 | 914 |     from \<open>?L\<close>[THEN bspec, of "\<lambda>i. X i -` A i \<inter> space M"] A \<open>I \<noteq> {}\<close>
 | 
| 42987 | 915 | show "prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M))" | 
| 916 | by (auto simp add: Pi_iff) | |
| 917 | next | |
| 47694 | 918 |     fix A assume ?R and A: "A \<in> (\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i})"
 | 
| 919 | from A have "\<forall>i\<in>I. \<exists>B. A i = X i -` B \<inter> space M \<and> B \<in> E i" by auto | |
| 42987 | 920 | from bchoice[OF this] obtain B where B: "\<forall>i\<in>I. A i = X i -` B i \<inter> space M" | 
| 47694 | 921 | "B \<in> (\<Pi> i\<in>I. E i)" by auto | 
| 61808 | 922 |     from \<open>?R\<close>[THEN bspec, OF B(2)] B(1) \<open>I \<noteq> {}\<close>
 | 
| 69313 | 923 | show "prob (\<Inter>(A ` I)) = (\<Prod>j\<in>I. prob (A j))" | 
| 42987 | 924 | by simp | 
| 925 | qed | |
| 61808 | 926 |   then show ?thesis using \<open>I \<noteq> {}\<close>
 | 
| 47694 | 927 | by (simp add: rv indep_vars_def indep_sets_X sigma_sets_X indep_sets_finite_X cong: indep_sets_cong) | 
| 42988 | 928 | qed | 
| 929 | ||
| 42989 | 930 | lemma (in prob_space) indep_vars_compose: | 
| 931 | assumes "indep_vars M' X I" | |
| 47694 | 932 | assumes rv: "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)" | 
| 42989 | 933 | shows "indep_vars N (\<lambda>i. Y i \<circ> X i) I" | 
| 934 | unfolding indep_vars_def | |
| 42988 | 935 | proof | 
| 61808 | 936 | from rv \<open>indep_vars M' X I\<close> | 
| 42988 | 937 | show "\<forall>i\<in>I. random_variable (N i) (Y i \<circ> X i)" | 
| 47694 | 938 | by (auto simp: indep_vars_def) | 
| 42988 | 939 | |
| 940 |   have "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
 | |
| 61808 | 941 | using \<open>indep_vars M' X I\<close> by (simp add: indep_vars_def) | 
| 42988 | 942 |   then show "indep_sets (\<lambda>i. sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)}) I"
 | 
| 943 | proof (rule indep_sets_mono_sets) | |
| 944 | fix i assume "i \<in> I" | |
| 61808 | 945 | with \<open>indep_vars M' X I\<close> have X: "X i \<in> space M \<rightarrow> space (M' i)" | 
| 42989 | 946 | unfolding indep_vars_def measurable_def by auto | 
| 42988 | 947 |     { fix A assume "A \<in> sets (N i)"
 | 
| 948 | then have "\<exists>B. (Y i \<circ> X i) -` A \<inter> space M = X i -` B \<inter> space M \<and> B \<in> sets (M' i)" | |
| 949 | by (intro exI[of _ "Y i -` A \<inter> space (M' i)"]) | |
| 61808 | 950 | (auto simp: vimage_comp intro!: measurable_sets rv \<open>i \<in> I\<close> funcset_mem[OF X]) } | 
| 42988 | 951 |     then show "sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)} \<subseteq>
 | 
| 952 |       sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
 | |
| 56154 
f0a927235162
more complete set of lemmas wrt. image and composition
 haftmann parents: 
55414diff
changeset | 953 | by (intro sigma_sets_subseteq) (auto simp: vimage_comp) | 
| 42988 | 954 | qed | 
| 955 | qed | |
| 956 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 957 | lemma (in prob_space) indep_vars_compose2: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 958 | assumes "indep_vars M' X I" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 959 | assumes rv: "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 960 | shows "indep_vars N (\<lambda>i x. Y i (X i x)) I" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 961 | using indep_vars_compose [OF assms] by (simp add: comp_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 962 | |
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 963 | lemma (in prob_space) indep_var_compose: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 964 | assumes "indep_var M1 X1 M2 X2" "Y1 \<in> measurable M1 N1" "Y2 \<in> measurable M2 N2" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 965 | shows "indep_var N1 (Y1 \<circ> X1) N2 (Y2 \<circ> X2)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 966 | proof - | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 967 | have "indep_vars (case_bool N1 N2) (\<lambda>b. case_bool Y1 Y2 b \<circ> case_bool X1 X2 b) UNIV" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 968 | using assms | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 969 | by (intro indep_vars_compose[where M'="case_bool M1 M2"]) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 970 | (auto simp: indep_var_def split: bool.split) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 971 | also have "(\<lambda>b. case_bool Y1 Y2 b \<circ> case_bool X1 X2 b) = case_bool (Y1 \<circ> X1) (Y2 \<circ> X2)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 972 | by (simp add: fun_eq_iff split: bool.split) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 973 | finally show ?thesis | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 974 | unfolding indep_var_def . | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 975 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 976 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 977 | lemma (in prob_space) indep_vars_Min: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 978 | fixes X :: "'i \<Rightarrow> 'a \<Rightarrow> real" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 979 | assumes I: "finite I" "i \<notin> I" and indep: "indep_vars (\<lambda>_. borel) X (insert i I)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 980 | shows "indep_var borel (X i) borel (\<lambda>\<omega>. Min ((\<lambda>i. X i \<omega>)`I))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 981 | proof - | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 982 | have "indep_var | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 983 |     borel ((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i}))
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 984 | borel ((\<lambda>f. Min (f`I)) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 985 | using I by (intro indep_var_compose[OF indep_var_restrict[OF indep]] borel_measurable_Min) auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 986 |   also have "((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i})) = X i"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 987 | by auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 988 | also have "((\<lambda>f. Min (f`I)) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I)) = (\<lambda>\<omega>. Min ((\<lambda>i. X i \<omega>)`I))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 989 | by (auto cong: rev_conj_cong) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 990 | finally show ?thesis | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 991 | unfolding indep_var_def . | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 992 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 993 | |
| 64267 | 994 | lemma (in prob_space) indep_vars_sum: | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 995 | fixes X :: "'i \<Rightarrow> 'a \<Rightarrow> real" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 996 | assumes I: "finite I" "i \<notin> I" and indep: "indep_vars (\<lambda>_. borel) X (insert i I)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 997 | shows "indep_var borel (X i) borel (\<lambda>\<omega>. \<Sum>i\<in>I. X i \<omega>)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 998 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 999 | have "indep_var | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1000 |     borel ((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i}))
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1001 | borel ((\<lambda>f. \<Sum>i\<in>I. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1002 | using I by (intro indep_var_compose[OF indep_var_restrict[OF indep]] ) auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1003 |   also have "((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i})) = X i"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1004 | by auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1005 | also have "((\<lambda>f. \<Sum>i\<in>I. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I)) = (\<lambda>\<omega>. \<Sum>i\<in>I. X i \<omega>)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1006 | by (auto cong: rev_conj_cong) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1007 | finally show ?thesis . | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1008 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1009 | |
| 64272 | 1010 | lemma (in prob_space) indep_vars_prod: | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1011 | fixes X :: "'i \<Rightarrow> 'a \<Rightarrow> real" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1012 | assumes I: "finite I" "i \<notin> I" and indep: "indep_vars (\<lambda>_. borel) X (insert i I)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1013 | shows "indep_var borel (X i) borel (\<lambda>\<omega>. \<Prod>i\<in>I. X i \<omega>)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1014 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1015 | have "indep_var | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1016 |     borel ((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i}))
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1017 | borel ((\<lambda>f. \<Prod>i\<in>I. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1018 | using I by (intro indep_var_compose[OF indep_var_restrict[OF indep]] ) auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1019 |   also have "((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i})) = X i"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1020 | by auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1021 | also have "((\<lambda>f. \<Prod>i\<in>I. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I)) = (\<lambda>\<omega>. \<Prod>i\<in>I. X i \<omega>)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1022 | by (auto cong: rev_conj_cong) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1023 | finally show ?thesis . | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1024 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1025 | |
| 47694 | 1026 | lemma (in prob_space) indep_varsD_finite: | 
| 42989 | 1027 | assumes X: "indep_vars M' X I" | 
| 42988 | 1028 |   assumes I: "I \<noteq> {}" "finite I" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M' i)"
 | 
| 1029 | shows "prob (\<Inter>i\<in>I. X i -` A i \<inter> space M) = (\<Prod>i\<in>I. prob (X i -` A i \<inter> space M))" | |
| 1030 | proof (rule indep_setsD) | |
| 1031 |   show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
 | |
| 42989 | 1032 | using X by (auto simp: indep_vars_def) | 
| 42988 | 1033 |   show "I \<subseteq> I" "I \<noteq> {}" "finite I" using I by auto
 | 
| 1034 |   show "\<forall>i\<in>I. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
 | |
| 47694 | 1035 | using I by auto | 
| 42988 | 1036 | qed | 
| 1037 | ||
| 47694 | 1038 | lemma (in prob_space) indep_varsD: | 
| 1039 | assumes X: "indep_vars M' X I" | |
| 1040 |   assumes I: "J \<noteq> {}" "finite J" "J \<subseteq> I" "\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M' i)"
 | |
| 1041 | shows "prob (\<Inter>i\<in>J. X i -` A i \<inter> space M) = (\<Prod>i\<in>J. prob (X i -` A i \<inter> space M))" | |
| 1042 | proof (rule indep_setsD) | |
| 1043 |   show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
 | |
| 1044 | using X by (auto simp: indep_vars_def) | |
| 1045 |   show "\<forall>i\<in>J. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
 | |
| 1046 | using I by auto | |
| 1047 | qed fact+ | |
| 1048 | ||
| 1049 | lemma (in prob_space) indep_vars_iff_distr_eq_PiM: | |
| 1050 | fixes I :: "'i set" and X :: "'i \<Rightarrow> 'a \<Rightarrow> 'b" | |
| 1051 |   assumes "I \<noteq> {}"
 | |
| 42988 | 1052 | assumes rv: "\<And>i. random_variable (M' i) (X i)" | 
| 42989 | 1053 | shows "indep_vars M' X I \<longleftrightarrow> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1054 | distr M (\<Pi>\<^sub>M i\<in>I. M' i) (\<lambda>x. \<lambda>i\<in>I. X i x) = (\<Pi>\<^sub>M i\<in>I. distr M (M' i) (X i))" | 
| 42988 | 1055 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1056 | let ?P = "\<Pi>\<^sub>M i\<in>I. M' i" | 
| 47694 | 1057 | let ?X = "\<lambda>x. \<lambda>i\<in>I. X i x" | 
| 1058 | let ?D = "distr M ?P ?X" | |
| 1059 | have X: "random_variable ?P ?X" by (intro measurable_restrict rv) | |
| 1060 | interpret D: prob_space ?D by (intro prob_space_distr X) | |
| 42988 | 1061 | |
| 47694 | 1062 | let ?D' = "\<lambda>i. distr M (M' i) (X i)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1063 | let ?P' = "\<Pi>\<^sub>M i\<in>I. distr M (M' i) (X i)" | 
| 47694 | 1064 | interpret D': prob_space "?D' i" for i by (intro prob_space_distr rv) | 
| 1065 | interpret P: product_prob_space ?D' I .. | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1066 | |
| 42988 | 1067 | show ?thesis | 
| 47694 | 1068 | proof | 
| 42989 | 1069 | assume "indep_vars M' X I" | 
| 47694 | 1070 | show "?D = ?P'" | 
| 1071 | proof (rule measure_eqI_generator_eq) | |
| 1072 | show "Int_stable (prod_algebra I M')" | |
| 1073 | by (rule Int_stable_prod_algebra) | |
| 1074 | show "prod_algebra I M' \<subseteq> Pow (space ?P)" | |
| 1075 | using prod_algebra_sets_into_space by (simp add: space_PiM) | |
| 1076 | show "sets ?D = sigma_sets (space ?P) (prod_algebra I M')" | |
| 1077 | by (simp add: sets_PiM space_PiM) | |
| 1078 | show "sets ?P' = sigma_sets (space ?P) (prod_algebra I M')" | |
| 1079 | by (simp add: sets_PiM space_PiM cong: prod_algebra_cong) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1080 | let ?A = "\<lambda>i. \<Pi>\<^sub>E i\<in>I. space (M' i)" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1081 | show "range ?A \<subseteq> prod_algebra I M'" "(\<Union>i. ?A i) = space (Pi\<^sub>M I M')" | 
| 47694 | 1082 | by (auto simp: space_PiM intro!: space_in_prod_algebra cong: prod_algebra_cong) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1083 |       { fix i show "emeasure ?D (\<Pi>\<^sub>E i\<in>I. space (M' i)) \<noteq> \<infinity>" by auto }
 | 
| 47694 | 1084 | next | 
| 1085 | fix E assume E: "E \<in> prod_algebra I M'" | |
| 1086 | from prod_algebraE[OF E] guess J Y . note J = this | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1087 | |
| 47694 | 1088 | from E have "E \<in> sets ?P" by (auto simp: sets_PiM) | 
| 1089 | then have "emeasure ?D E = emeasure M (?X -` E \<inter> space M)" | |
| 1090 | by (simp add: emeasure_distr X) | |
| 1091 | also have "?X -` E \<inter> space M = (\<Inter>i\<in>J. X i -` Y i \<inter> space M)" | |
| 62390 | 1092 |         using J \<open>I \<noteq> {}\<close> measurable_space[OF rv] by (auto simp: prod_emb_def PiE_iff split: if_split_asm)
 | 
| 47694 | 1093 | also have "emeasure M (\<Inter>i\<in>J. X i -` Y i \<inter> space M) = (\<Prod> i\<in>J. emeasure M (X i -` Y i \<inter> space M))" | 
| 61808 | 1094 |         using \<open>indep_vars M' X I\<close> J \<open>I \<noteq> {}\<close> using indep_varsD[of M' X I J]
 | 
| 64272 | 1095 | by (auto simp: emeasure_eq_measure prod_ennreal measure_nonneg prod_nonneg) | 
| 47694 | 1096 | also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))" | 
| 1097 | using rv J by (simp add: emeasure_distr) | |
| 1098 | also have "\<dots> = emeasure ?P' E" | |
| 1099 | using P.emeasure_PiM_emb[of J Y] J by (simp add: prod_emb_def) | |
| 1100 | finally show "emeasure ?D E = emeasure ?P' E" . | |
| 42988 | 1101 | qed | 
| 1102 | next | |
| 47694 | 1103 | assume "?D = ?P'" | 
| 1104 | show "indep_vars M' X I" unfolding indep_vars_def | |
| 1105 | proof (intro conjI indep_setsI ballI rv) | |
| 1106 |       fix i show "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)} \<subseteq> events"
 | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 1107 | by (auto intro!: sets.sigma_sets_subset measurable_sets rv) | 
| 42988 | 1108 | next | 
| 47694 | 1109 |       fix J Y' assume J: "J \<noteq> {}" "J \<subseteq> I" "finite J"
 | 
| 1110 |       assume Y': "\<forall>j\<in>J. Y' j \<in> sigma_sets (space M) {X j -` A \<inter> space M |A. A \<in> sets (M' j)}"
 | |
| 1111 | have "\<forall>j\<in>J. \<exists>Y. Y' j = X j -` Y \<inter> space M \<and> Y \<in> sets (M' j)" | |
| 42988 | 1112 | proof | 
| 47694 | 1113 | fix j assume "j \<in> J" | 
| 1114 | from Y'[rule_format, OF this] rv[of j] | |
| 1115 | show "\<exists>Y. Y' j = X j -` Y \<inter> space M \<and> Y \<in> sets (M' j)" | |
| 1116 | by (subst (asm) sigma_sets_vimage_commute[symmetric, of _ _ "space (M' j)"]) | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 1117 | (auto dest: measurable_space simp: sets.sigma_sets_eq) | 
| 42988 | 1118 | qed | 
| 47694 | 1119 | from bchoice[OF this] obtain Y where | 
| 1120 | Y: "\<And>j. j \<in> J \<Longrightarrow> Y' j = X j -` Y j \<inter> space M" "\<And>j. j \<in> J \<Longrightarrow> Y j \<in> sets (M' j)" by auto | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1121 | let ?E = "prod_emb I M' J (Pi\<^sub>E J Y)" | 
| 47694 | 1122 | from Y have "(\<Inter>j\<in>J. Y' j) = ?X -` ?E \<inter> space M" | 
| 62390 | 1123 |         using J \<open>I \<noteq> {}\<close> measurable_space[OF rv] by (auto simp: prod_emb_def PiE_iff split: if_split_asm)
 | 
| 47694 | 1124 | then have "emeasure M (\<Inter>j\<in>J. Y' j) = emeasure M (?X -` ?E \<inter> space M)" | 
| 1125 | by simp | |
| 1126 | also have "\<dots> = emeasure ?D ?E" | |
| 1127 | using Y J by (intro emeasure_distr[symmetric] X sets_PiM_I) auto | |
| 1128 | also have "\<dots> = emeasure ?P' ?E" | |
| 61808 | 1129 | using \<open>?D = ?P'\<close> by simp | 
| 47694 | 1130 | also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))" | 
| 1131 | using P.emeasure_PiM_emb[of J Y] J Y by (simp add: prod_emb_def) | |
| 1132 | also have "\<dots> = (\<Prod> i\<in>J. emeasure M (Y' i))" | |
| 1133 | using rv J Y by (simp add: emeasure_distr) | |
| 1134 | finally have "emeasure M (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. emeasure M (Y' i))" . | |
| 1135 | then show "prob (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. prob (Y' i))" | |
| 64272 | 1136 | by (auto simp: emeasure_eq_measure prod_ennreal measure_nonneg prod_nonneg) | 
| 42988 | 1137 | qed | 
| 1138 | qed | |
| 42987 | 1139 | qed | 
| 1140 | ||
| 42989 | 1141 | lemma (in prob_space) indep_varD: | 
| 1142 | assumes indep: "indep_var Ma A Mb B" | |
| 1143 | assumes sets: "Xa \<in> sets Ma" "Xb \<in> sets Mb" | |
| 1144 | shows "prob ((\<lambda>x. (A x, B x)) -` (Xa \<times> Xb) \<inter> space M) = | |
| 1145 | prob (A -` Xa \<inter> space M) * prob (B -` Xb \<inter> space M)" | |
| 1146 | proof - | |
| 1147 | have "prob ((\<lambda>x. (A x, B x)) -` (Xa \<times> Xb) \<inter> space M) = | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 1148 | prob (\<Inter>i\<in>UNIV. (case_bool A B i -` case_bool Xa Xb i \<inter> space M))" | 
| 42989 | 1149 | by (auto intro!: arg_cong[where f=prob] simp: UNIV_bool) | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 1150 | also have "\<dots> = (\<Prod>i\<in>UNIV. prob (case_bool A B i -` case_bool Xa Xb i \<inter> space M))" | 
| 42989 | 1151 | using indep unfolding indep_var_def | 
| 1152 | by (rule indep_varsD) (auto split: bool.split intro: sets) | |
| 1153 | also have "\<dots> = prob (A -` Xa \<inter> space M) * prob (B -` Xb \<inter> space M)" | |
| 1154 | unfolding UNIV_bool by simp | |
| 1155 | finally show ?thesis . | |
| 1156 | qed | |
| 1157 | ||
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1158 | lemma (in prob_space) prob_indep_random_variable: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1159 | assumes ind[simp]: "indep_var N X N Y" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1160 | assumes [simp]: "A \<in> sets N" "B \<in> sets N" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1161 | shows "\<P>(x in M. X x \<in> A \<and> Y x \<in> B) = \<P>(x in M. X x \<in> A) * \<P>(x in M. Y x \<in> B)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1162 | proof- | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1163 | have " \<P>(x in M. (X x)\<in>A \<and> (Y x)\<in> B ) = prob ((\<lambda>x. (X x, Y x)) -` (A \<times> B) \<inter> space M)" | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1164 | by (auto intro!: arg_cong[where f= prob]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1165 | also have "...= prob (X -` A \<inter> space M) * prob (Y -` B \<inter> space M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1166 | by (auto intro!: indep_varD[where Ma=N and Mb=N]) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1167 | also have "... = \<P>(x in M. X x \<in> A) * \<P>(x in M. Y x \<in> B)" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67399diff
changeset | 1168 | by (auto intro!: arg_cong2[where f= "(*)"] arg_cong[where f= prob]) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1169 | finally show ?thesis . | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1170 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1171 | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1172 | lemma (in prob_space) | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1173 | assumes "indep_var S X T Y" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1174 | shows indep_var_rv1: "random_variable S X" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1175 | and indep_var_rv2: "random_variable T Y" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1176 | proof - | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53015diff
changeset | 1177 | have "\<forall>i\<in>UNIV. random_variable (case_bool S T i) (case_bool X Y i)" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1178 | using assms unfolding indep_var_def indep_vars_def by auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1179 | then show "random_variable S X" "random_variable T Y" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1180 | unfolding UNIV_bool by auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1181 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1182 | |
| 47694 | 1183 | lemma (in prob_space) indep_var_distribution_eq: | 
| 1184 | "indep_var S X T Y \<longleftrightarrow> random_variable S X \<and> random_variable T Y \<and> | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1185 | distr M S X \<Otimes>\<^sub>M distr M T Y = distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" (is "_ \<longleftrightarrow> _ \<and> _ \<and> ?S \<Otimes>\<^sub>M ?T = ?J") | 
| 47694 | 1186 | proof safe | 
| 1187 | assume "indep_var S X T Y" | |
| 1188 | then show rvs: "random_variable S X" "random_variable T Y" | |
| 1189 | by (blast dest: indep_var_rv1 indep_var_rv2)+ | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1190 | then have XY: "random_variable (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" | 
| 47694 | 1191 | by (rule measurable_Pair) | 
| 1192 | ||
| 1193 | interpret X: prob_space ?S by (rule prob_space_distr) fact | |
| 1194 | interpret Y: prob_space ?T by (rule prob_space_distr) fact | |
| 1195 | interpret XY: pair_prob_space ?S ?T .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1196 | show "?S \<Otimes>\<^sub>M ?T = ?J" | 
| 47694 | 1197 | proof (rule pair_measure_eqI) | 
| 1198 | show "sigma_finite_measure ?S" .. | |
| 1199 | show "sigma_finite_measure ?T" .. | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1200 | |
| 47694 | 1201 | fix A B assume A: "A \<in> sets ?S" and B: "B \<in> sets ?T" | 
| 1202 | have "emeasure ?J (A \<times> B) = emeasure M ((\<lambda>x. (X x, Y x)) -` (A \<times> B) \<inter> space M)" | |
| 1203 | using A B by (intro emeasure_distr[OF XY]) auto | |
| 1204 | also have "\<dots> = emeasure M (X -` A \<inter> space M) * emeasure M (Y -` B \<inter> space M)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1205 | using indep_varD[OF \<open>indep_var S X T Y\<close>, of A B] A B | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1206 | by (simp add: emeasure_eq_measure measure_nonneg ennreal_mult) | 
| 47694 | 1207 | also have "\<dots> = emeasure ?S A * emeasure ?T B" | 
| 1208 | using rvs A B by (simp add: emeasure_distr) | |
| 1209 | finally show "emeasure ?S A * emeasure ?T B = emeasure ?J (A \<times> B)" by simp | |
| 1210 | qed simp | |
| 1211 | next | |
| 1212 | assume rvs: "random_variable S X" "random_variable T Y" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1213 | then have XY: "random_variable (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" | 
| 47694 | 1214 | by (rule measurable_Pair) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1215 | |
| 47694 | 1216 | let ?S = "distr M S X" and ?T = "distr M T Y" | 
| 1217 | interpret X: prob_space ?S by (rule prob_space_distr) fact | |
| 1218 | interpret Y: prob_space ?T by (rule prob_space_distr) fact | |
| 1219 | interpret XY: pair_prob_space ?S ?T .. | |
| 1220 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1221 | assume "?S \<Otimes>\<^sub>M ?T = ?J" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1222 | |
| 47694 | 1223 |   { fix S and X
 | 
| 1224 |     have "Int_stable {X -` A \<inter> space M |A. A \<in> sets S}"
 | |
| 1225 | proof (safe intro!: Int_stableI) | |
| 1226 | fix A B assume "A \<in> sets S" "B \<in> sets S" | |
| 1227 | then show "\<exists>C. (X -` A \<inter> space M) \<inter> (X -` B \<inter> space M) = (X -` C \<inter> space M) \<and> C \<in> sets S" | |
| 1228 | by (intro exI[of _ "A \<inter> B"]) auto | |
| 1229 | qed } | |
| 1230 | note Int_stable = this | |
| 1231 | ||
| 1232 | show "indep_var S X T Y" unfolding indep_var_eq | |
| 1233 | proof (intro conjI indep_set_sigma_sets Int_stable rvs) | |
| 1234 |     show "indep_set {X -` A \<inter> space M |A. A \<in> sets S} {Y -` A \<inter> space M |A. A \<in> sets T}"
 | |
| 1235 | proof (safe intro!: indep_setI) | |
| 1236 |       { fix A assume "A \<in> sets S" then show "X -` A \<inter> space M \<in> sets M"
 | |
| 61808 | 1237 | using \<open>X \<in> measurable M S\<close> by (auto intro: measurable_sets) } | 
| 47694 | 1238 |       { fix A assume "A \<in> sets T" then show "Y -` A \<inter> space M \<in> sets M"
 | 
| 61808 | 1239 | using \<open>Y \<in> measurable M T\<close> by (auto intro: measurable_sets) } | 
| 47694 | 1240 | next | 
| 1241 | fix A B assume ab: "A \<in> sets S" "B \<in> sets T" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1242 | then have "prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M)) = emeasure ?J (A \<times> B)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1243 | using XY by (auto simp add: emeasure_distr emeasure_eq_measure measure_nonneg intro!: arg_cong[where f="prob"]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1244 | also have "\<dots> = emeasure (?S \<Otimes>\<^sub>M ?T) (A \<times> B)" | 
| 61808 | 1245 | unfolding \<open>?S \<Otimes>\<^sub>M ?T = ?J\<close> .. | 
| 47694 | 1246 | also have "\<dots> = emeasure ?S A * emeasure ?T B" | 
| 49776 | 1247 | using ab by (simp add: Y.emeasure_pair_measure_Times) | 
| 47694 | 1248 | finally show "prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M)) = | 
| 1249 | prob (X -` A \<inter> space M) * prob (Y -` B \<inter> space M)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1250 | using rvs ab by (simp add: emeasure_eq_measure emeasure_distr measure_nonneg ennreal_mult[symmetric]) | 
| 47694 | 1251 | qed | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1252 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42989diff
changeset | 1253 | qed | 
| 42989 | 1254 | |
| 49795 | 1255 | lemma (in prob_space) distributed_joint_indep: | 
| 1256 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 1257 | assumes X: "distributed M S X Px" and Y: "distributed M T Y Py" | |
| 1258 | assumes indep: "indep_var S X T Y" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50244diff
changeset | 1259 | shows "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) (\<lambda>(x, y). Px x * Py y)" | 
| 49795 | 1260 | using indep_var_distribution_eq[of S X T Y] indep | 
| 1261 | by (intro distributed_joint_indep'[OF S T X Y]) auto | |
| 1262 | ||
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1263 | lemma (in prob_space) indep_vars_nn_integral: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1264 | assumes I: "finite I" "indep_vars (\<lambda>_. borel) X I" "\<And>i \<omega>. i \<in> I \<Longrightarrow> 0 \<le> X i \<omega>" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1265 | shows "(\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<Prod>i\<in>I. \<integral>\<^sup>+\<omega>. X i \<omega> \<partial>M)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1266 | proof cases | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1267 |   assume "I \<noteq> {}"
 | 
| 63040 | 1268 | define Y where [abs_def]: "Y i \<omega> = (if i \<in> I then X i \<omega> else 0)" for i \<omega> | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1269 |   { fix i have "i \<in> I \<Longrightarrow> random_variable borel (X i)"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1270 | using I(2) by (cases "i\<in>I") (auto simp: indep_vars_def) } | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1271 | note rv_X = this | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1272 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1273 |   { fix i have "random_variable borel (Y i)"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1274 | using I(2) by (cases "i\<in>I") (auto simp: Y_def rv_X) } | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1275 | note rv_Y = this[measurable] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1276 | |
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1277 | interpret Y: prob_space "distr M borel (Y i)" for i | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59000diff
changeset | 1278 | using I(2) by (cases "i \<in> I") (auto intro!: prob_space_distr simp: indep_vars_def prob_space_return) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1279 | interpret product_sigma_finite "\<lambda>i. distr M borel (Y i)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1280 | .. | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1281 | |
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1282 | have indep_Y: "indep_vars (\<lambda>i. borel) Y I" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1283 | by (rule indep_vars_cong[THEN iffD1, OF _ _ _ I(2)]) (auto simp: Y_def) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1284 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1285 | have "(\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. Y i \<omega>) \<partial>M)" | 
| 64272 | 1286 | using I(3) by (auto intro!: nn_integral_cong prod.cong simp add: Y_def max_def) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1287 | also have "\<dots> = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. \<omega> i) \<partial>distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x))" | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1288 | by (subst nn_integral_distr) auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1289 | also have "\<dots> = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. \<omega> i) \<partial>Pi\<^sub>M I (\<lambda>i. distr M borel (Y i)))" | 
| 61808 | 1290 |     unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF \<open>I \<noteq> {}\<close> rv_Y indep_Y] ..
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1291 | also have "\<dots> = (\<Prod>i\<in>I. (\<integral>\<^sup>+\<omega>. \<omega> \<partial>distr M borel (Y i)))" | 
| 64272 | 1292 | by (rule product_nn_integral_prod) (auto intro: \<open>finite I\<close>) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1293 | also have "\<dots> = (\<Prod>i\<in>I. \<integral>\<^sup>+\<omega>. X i \<omega> \<partial>M)" | 
| 64272 | 1294 | by (intro prod.cong nn_integral_cong) (auto simp: nn_integral_distr Y_def rv_X) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1295 | finally show ?thesis . | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1296 | qed (simp add: emeasure_space_1) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1297 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1298 | lemma (in prob_space) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1299 |   fixes X :: "'i \<Rightarrow> 'a \<Rightarrow> 'b::{real_normed_field, banach, second_countable_topology}"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1300 | assumes I: "finite I" "indep_vars (\<lambda>_. borel) X I" "\<And>i. i \<in> I \<Longrightarrow> integrable M (X i)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1301 | shows indep_vars_lebesgue_integral: "(\<integral>\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<Prod>i\<in>I. \<integral>\<omega>. X i \<omega> \<partial>M)" (is ?eq) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1302 | and indep_vars_integrable: "integrable M (\<lambda>\<omega>. (\<Prod>i\<in>I. X i \<omega>))" (is ?int) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1303 | proof (induct rule: case_split) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1304 |   assume "I \<noteq> {}"
 | 
| 63040 | 1305 | define Y where [abs_def]: "Y i \<omega> = (if i \<in> I then X i \<omega> else 0)" for i \<omega> | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1306 |   { fix i have "i \<in> I \<Longrightarrow> random_variable borel (X i)"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1307 | using I(2) by (cases "i\<in>I") (auto simp: indep_vars_def) } | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1308 | note rv_X = this[measurable] | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1309 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1310 |   { fix i have "random_variable borel (Y i)"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1311 | using I(2) by (cases "i\<in>I") (auto simp: Y_def rv_X) } | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1312 | note rv_Y = this[measurable] | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1313 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1314 |   { fix i have "integrable M (Y i)"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1315 | using I(3) by (cases "i\<in>I") (auto simp: Y_def) } | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1316 | note int_Y = this | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1317 | |
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1318 | interpret Y: prob_space "distr M borel (Y i)" for i | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59000diff
changeset | 1319 | using I(2) by (cases "i \<in> I") (auto intro!: prob_space_distr simp: indep_vars_def prob_space_return) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1320 | interpret product_sigma_finite "\<lambda>i. distr M borel (Y i)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1321 | .. | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1322 | |
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1323 | have indep_Y: "indep_vars (\<lambda>i. borel) Y I" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1324 | by (rule indep_vars_cong[THEN iffD1, OF _ _ _ I(2)]) (auto simp: Y_def) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1325 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1326 | have "(\<integral>\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<integral>\<omega>. (\<Prod>i\<in>I. Y i \<omega>) \<partial>M)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1327 | using I(3) by (simp add: Y_def) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1328 | also have "\<dots> = (\<integral>\<omega>. (\<Prod>i\<in>I. \<omega> i) \<partial>distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1329 | by (subst integral_distr) auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1330 | also have "\<dots> = (\<integral>\<omega>. (\<Prod>i\<in>I. \<omega> i) \<partial>Pi\<^sub>M I (\<lambda>i. distr M borel (Y i)))" | 
| 61808 | 1331 |     unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF \<open>I \<noteq> {}\<close> rv_Y indep_Y] ..
 | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1332 | also have "\<dots> = (\<Prod>i\<in>I. (\<integral>\<omega>. \<omega> \<partial>distr M borel (Y i)))" | 
| 64272 | 1333 | by (rule product_integral_prod) (auto intro: \<open>finite I\<close> simp: integrable_distr_eq int_Y) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1334 | also have "\<dots> = (\<Prod>i\<in>I. \<integral>\<omega>. X i \<omega> \<partial>M)" | 
| 64272 | 1335 | by (intro prod.cong integral_cong) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1336 | (auto simp: integral_distr Y_def rv_X) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1337 | finally show ?eq . | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1338 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1339 | have "integrable (distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x)) (\<lambda>\<omega>. (\<Prod>i\<in>I. \<omega> i))" | 
| 61808 | 1340 |     unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF \<open>I \<noteq> {}\<close> rv_Y indep_Y]
 | 
| 64272 | 1341 | by (intro product_integrable_prod[OF \<open>finite I\<close>]) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1342 | (simp add: integrable_distr_eq int_Y) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1343 | then show ?int | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1344 | by (simp add: integrable_distr_eq Y_def) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1345 | qed (simp_all add: prob_space) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1346 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1347 | lemma (in prob_space) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1348 |   fixes X1 X2 :: "'a \<Rightarrow> 'b::{real_normed_field, banach, second_countable_topology}"
 | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1349 | assumes "indep_var borel X1 borel X2" "integrable M X1" "integrable M X2" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1350 | shows indep_var_lebesgue_integral: "(\<integral>\<omega>. X1 \<omega> * X2 \<omega> \<partial>M) = (\<integral>\<omega>. X1 \<omega> \<partial>M) * (\<integral>\<omega>. X2 \<omega> \<partial>M)" (is ?eq) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1351 | and indep_var_integrable: "integrable M (\<lambda>\<omega>. X1 \<omega> * X2 \<omega>)" (is ?int) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1352 | unfolding indep_var_def | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1353 | proof - | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1354 | have *: "(\<lambda>\<omega>. X1 \<omega> * X2 \<omega>) = (\<lambda>\<omega>. \<Prod>i\<in>UNIV. (case_bool X1 X2 i \<omega>))" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 1355 | by (simp add: UNIV_bool mult.commute) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1356 | have **: "(\<lambda> _. borel) = case_bool borel borel" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1357 | by (rule ext, metis (full_types) bool.simps(3) bool.simps(4)) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1358 | show ?eq | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1359 | apply (subst *) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1360 | apply (subst indep_vars_lebesgue_integral) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1361 | apply (auto) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1362 | apply (subst **, subst indep_var_def [symmetric], rule assms) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1363 | apply (simp split: bool.split add: assms) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 1364 | by (simp add: UNIV_bool mult.commute) | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1365 | show ?int | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1366 | apply (subst *) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1367 | apply (rule indep_vars_integrable) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1368 | apply auto | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1369 | apply (subst **, subst indep_var_def [symmetric], rule assms) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1370 | by (simp split: bool.split add: assms) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1371 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
56154diff
changeset | 1372 | |
| 42861 
16375b493b64
Add formalization of probabilistic independence for families of sets
 hoelzl parents: diff
changeset | 1373 | end |