| author | boehmes | 
| Sun, 26 Jun 2011 19:10:03 +0200 | |
| changeset 43555 | 93c1fc6ac527 | 
| parent 41777 | 1f7cbe39d425 | 
| child 46820 | c656222c4dc1 | 
| permissions | -rw-r--r-- | 
| 41777 | 1 | (* Title: ZF/ArithSimp.thy | 
| 9548 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 2000 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 13328 | 6 | header{*Arithmetic with simplification*}
 | 
| 7 | ||
| 15481 | 8 | theory ArithSimp | 
| 9 | imports Arith | |
| 16417 | 10 | uses "~~/src/Provers/Arith/cancel_numerals.ML" | 
| 15481 | 11 | "~~/src/Provers/Arith/combine_numerals.ML" | 
| 12 | "arith_data.ML" | |
| 13 | begin | |
| 13259 | 14 | |
| 13356 | 15 | subsection{*Difference*}
 | 
| 13259 | 16 | |
| 14046 | 17 | lemma diff_self_eq_0 [simp]: "m #- m = 0" | 
| 13259 | 18 | apply (subgoal_tac "natify (m) #- natify (m) = 0") | 
| 19 | apply (rule_tac [2] natify_in_nat [THEN nat_induct], auto) | |
| 20 | done | |
| 21 | ||
| 22 | (**Addition is the inverse of subtraction**) | |
| 23 | ||
| 24 | (*We need m:nat even if we replace the RHS by natify(m), for consider e.g. | |
| 25 | n=2, m=omega; then n + (m-n) = 2 + (0-2) = 2 ~= 0 = natify(m).*) | |
| 26 | lemma add_diff_inverse: "[| n le m; m:nat |] ==> n #+ (m#-n) = m" | |
| 27 | apply (frule lt_nat_in_nat, erule nat_succI) | |
| 28 | apply (erule rev_mp) | |
| 13784 | 29 | apply (rule_tac m = m and n = n in diff_induct, auto) | 
| 13259 | 30 | done | 
| 31 | ||
| 32 | lemma add_diff_inverse2: "[| n le m; m:nat |] ==> (m#-n) #+ n = m" | |
| 33 | apply (frule lt_nat_in_nat, erule nat_succI) | |
| 34 | apply (simp (no_asm_simp) add: add_commute add_diff_inverse) | |
| 35 | done | |
| 36 | ||
| 37 | (*Proof is IDENTICAL to that of add_diff_inverse*) | |
| 38 | lemma diff_succ: "[| n le m; m:nat |] ==> succ(m) #- n = succ(m#-n)" | |
| 39 | apply (frule lt_nat_in_nat, erule nat_succI) | |
| 40 | apply (erule rev_mp) | |
| 13784 | 41 | apply (rule_tac m = m and n = n in diff_induct) | 
| 13259 | 42 | apply (simp_all (no_asm_simp)) | 
| 43 | done | |
| 44 | ||
| 45 | lemma zero_less_diff [simp]: | |
| 46 | "[| m: nat; n: nat |] ==> 0 < (n #- m) <-> m<n" | |
| 13784 | 47 | apply (rule_tac m = m and n = n in diff_induct) | 
| 13259 | 48 | apply (simp_all (no_asm_simp)) | 
| 49 | done | |
| 50 | ||
| 51 | ||
| 52 | (** Difference distributes over multiplication **) | |
| 53 | ||
| 54 | lemma diff_mult_distrib: "(m #- n) #* k = (m #* k) #- (n #* k)" | |
| 55 | apply (subgoal_tac " (natify (m) #- natify (n)) #* natify (k) = (natify (m) #* natify (k)) #- (natify (n) #* natify (k))") | |
| 56 | apply (rule_tac [2] m = "natify (m) " and n = "natify (n) " in diff_induct) | |
| 57 | apply (simp_all add: diff_cancel) | |
| 58 | done | |
| 59 | ||
| 60 | lemma diff_mult_distrib2: "k #* (m #- n) = (k #* m) #- (k #* n)" | |
| 61 | apply (simp (no_asm) add: mult_commute [of k] diff_mult_distrib) | |
| 62 | done | |
| 63 | ||
| 64 | ||
| 13356 | 65 | subsection{*Remainder*}
 | 
| 13259 | 66 | |
| 67 | (*We need m:nat even with natify*) | |
| 68 | lemma div_termination: "[| 0<n; n le m; m:nat |] ==> m #- n < m" | |
| 69 | apply (frule lt_nat_in_nat, erule nat_succI) | |
| 70 | apply (erule rev_mp) | |
| 71 | apply (erule rev_mp) | |
| 13784 | 72 | apply (rule_tac m = m and n = n in diff_induct) | 
| 13259 | 73 | apply (simp_all (no_asm_simp) add: diff_le_self) | 
| 74 | done | |
| 75 | ||
| 76 | (*for mod and div*) | |
| 77 | lemmas div_rls = | |
| 78 | nat_typechecks Ord_transrec_type apply_funtype | |
| 79 | div_termination [THEN ltD] | |
| 80 | nat_into_Ord not_lt_iff_le [THEN iffD1] | |
| 81 | ||
| 82 | lemma raw_mod_type: "[| m:nat; n:nat |] ==> raw_mod (m, n) : nat" | |
| 83 | apply (unfold raw_mod_def) | |
| 84 | apply (rule Ord_transrec_type) | |
| 85 | apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff]) | |
| 86 | apply (blast intro: div_rls) | |
| 87 | done | |
| 88 | ||
| 89 | lemma mod_type [TC,iff]: "m mod n : nat" | |
| 90 | apply (unfold mod_def) | |
| 91 | apply (simp (no_asm) add: mod_def raw_mod_type) | |
| 92 | done | |
| 93 | ||
| 94 | ||
| 95 | (** Aribtrary definitions for division by zero. Useful to simplify | |
| 96 | certain equations **) | |
| 97 | ||
| 98 | lemma DIVISION_BY_ZERO_DIV: "a div 0 = 0" | |
| 99 | apply (unfold div_def) | |
| 100 | apply (rule raw_div_def [THEN def_transrec, THEN trans]) | |
| 101 | apply (simp (no_asm_simp)) | |
| 102 | done (*NOT for adding to default simpset*) | |
| 103 | ||
| 104 | lemma DIVISION_BY_ZERO_MOD: "a mod 0 = natify(a)" | |
| 105 | apply (unfold mod_def) | |
| 106 | apply (rule raw_mod_def [THEN def_transrec, THEN trans]) | |
| 107 | apply (simp (no_asm_simp)) | |
| 108 | done (*NOT for adding to default simpset*) | |
| 109 | ||
| 110 | lemma raw_mod_less: "m<n ==> raw_mod (m,n) = m" | |
| 111 | apply (rule raw_mod_def [THEN def_transrec, THEN trans]) | |
| 112 | apply (simp (no_asm_simp) add: div_termination [THEN ltD]) | |
| 113 | done | |
| 114 | ||
| 115 | lemma mod_less [simp]: "[| m<n; n : nat |] ==> m mod n = m" | |
| 116 | apply (frule lt_nat_in_nat, assumption) | |
| 117 | apply (simp (no_asm_simp) add: mod_def raw_mod_less) | |
| 118 | done | |
| 119 | ||
| 120 | lemma raw_mod_geq: | |
| 121 | "[| 0<n; n le m; m:nat |] ==> raw_mod (m, n) = raw_mod (m#-n, n)" | |
| 122 | apply (frule lt_nat_in_nat, erule nat_succI) | |
| 123 | apply (rule raw_mod_def [THEN def_transrec, THEN trans]) | |
| 13611 | 124 | apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2], blast) | 
| 13259 | 125 | done | 
| 126 | ||
| 127 | ||
| 128 | lemma mod_geq: "[| n le m; m:nat |] ==> m mod n = (m#-n) mod n" | |
| 129 | apply (frule lt_nat_in_nat, erule nat_succI) | |
| 130 | apply (case_tac "n=0") | |
| 131 | apply (simp add: DIVISION_BY_ZERO_MOD) | |
| 132 | apply (simp add: mod_def raw_mod_geq nat_into_Ord [THEN Ord_0_lt_iff]) | |
| 133 | done | |
| 134 | ||
| 135 | ||
| 13356 | 136 | subsection{*Division*}
 | 
| 13259 | 137 | |
| 138 | lemma raw_div_type: "[| m:nat; n:nat |] ==> raw_div (m, n) : nat" | |
| 139 | apply (unfold raw_div_def) | |
| 140 | apply (rule Ord_transrec_type) | |
| 141 | apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff]) | |
| 142 | apply (blast intro: div_rls) | |
| 143 | done | |
| 144 | ||
| 145 | lemma div_type [TC,iff]: "m div n : nat" | |
| 146 | apply (unfold div_def) | |
| 147 | apply (simp (no_asm) add: div_def raw_div_type) | |
| 148 | done | |
| 149 | ||
| 150 | lemma raw_div_less: "m<n ==> raw_div (m,n) = 0" | |
| 151 | apply (rule raw_div_def [THEN def_transrec, THEN trans]) | |
| 152 | apply (simp (no_asm_simp) add: div_termination [THEN ltD]) | |
| 153 | done | |
| 154 | ||
| 155 | lemma div_less [simp]: "[| m<n; n : nat |] ==> m div n = 0" | |
| 156 | apply (frule lt_nat_in_nat, assumption) | |
| 157 | apply (simp (no_asm_simp) add: div_def raw_div_less) | |
| 158 | done | |
| 159 | ||
| 160 | lemma raw_div_geq: "[| 0<n; n le m; m:nat |] ==> raw_div(m,n) = succ(raw_div(m#-n, n))" | |
| 161 | apply (subgoal_tac "n ~= 0") | |
| 162 | prefer 2 apply blast | |
| 163 | apply (frule lt_nat_in_nat, erule nat_succI) | |
| 164 | apply (rule raw_div_def [THEN def_transrec, THEN trans]) | |
| 13611 | 165 | apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2] ) | 
| 13259 | 166 | done | 
| 167 | ||
| 168 | lemma div_geq [simp]: | |
| 169 | "[| 0<n; n le m; m:nat |] ==> m div n = succ ((m#-n) div n)" | |
| 170 | apply (frule lt_nat_in_nat, erule nat_succI) | |
| 171 | apply (simp (no_asm_simp) add: div_def raw_div_geq) | |
| 172 | done | |
| 173 | ||
| 174 | declare div_less [simp] div_geq [simp] | |
| 175 | ||
| 176 | ||
| 177 | (*A key result*) | |
| 178 | lemma mod_div_lemma: "[| m: nat; n: nat |] ==> (m div n)#*n #+ m mod n = m" | |
| 179 | apply (case_tac "n=0") | |
| 180 | apply (simp add: DIVISION_BY_ZERO_MOD) | |
| 181 | apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff]) | |
| 182 | apply (erule complete_induct) | |
| 183 | apply (case_tac "x<n") | |
| 184 | txt{*case x<n*}
 | |
| 185 | apply (simp (no_asm_simp)) | |
| 186 | txt{*case n le x*}
 | |
| 187 | apply (simp add: not_lt_iff_le add_assoc mod_geq div_termination [THEN ltD] add_diff_inverse) | |
| 188 | done | |
| 189 | ||
| 190 | lemma mod_div_equality_natify: "(m div n)#*n #+ m mod n = natify(m)" | |
| 191 | apply (subgoal_tac " (natify (m) div natify (n))#*natify (n) #+ natify (m) mod natify (n) = natify (m) ") | |
| 192 | apply force | |
| 193 | apply (subst mod_div_lemma, auto) | |
| 194 | done | |
| 195 | ||
| 196 | lemma mod_div_equality: "m: nat ==> (m div n)#*n #+ m mod n = m" | |
| 197 | apply (simp (no_asm_simp) add: mod_div_equality_natify) | |
| 198 | done | |
| 199 | ||
| 200 | ||
| 13356 | 201 | subsection{*Further Facts about Remainder*}
 | 
| 202 | ||
| 203 | text{*(mainly for mutilated chess board)*}
 | |
| 13259 | 204 | |
| 205 | lemma mod_succ_lemma: | |
| 206 | "[| 0<n; m:nat; n:nat |] | |
| 207 | ==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))" | |
| 208 | apply (erule complete_induct) | |
| 209 | apply (case_tac "succ (x) <n") | |
| 210 | txt{* case succ(x) < n *}
 | |
| 211 | apply (simp (no_asm_simp) add: nat_le_refl [THEN lt_trans] succ_neq_self) | |
| 212 | apply (simp add: ltD [THEN mem_imp_not_eq]) | |
| 213 | txt{* case n le succ(x) *}
 | |
| 214 | apply (simp add: mod_geq not_lt_iff_le) | |
| 215 | apply (erule leE) | |
| 216 | apply (simp (no_asm_simp) add: mod_geq div_termination [THEN ltD] diff_succ) | |
| 217 | txt{*equality case*}
 | |
| 218 | apply (simp add: diff_self_eq_0) | |
| 219 | done | |
| 220 | ||
| 221 | lemma mod_succ: | |
| 222 | "n:nat ==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))" | |
| 223 | apply (case_tac "n=0") | |
| 224 | apply (simp (no_asm_simp) add: natify_succ DIVISION_BY_ZERO_MOD) | |
| 225 | apply (subgoal_tac "natify (succ (m)) mod n = (if succ (natify (m) mod n) = n then 0 else succ (natify (m) mod n))") | |
| 226 | prefer 2 | |
| 227 | apply (subst natify_succ) | |
| 228 | apply (rule mod_succ_lemma) | |
| 229 | apply (auto simp del: natify_succ simp add: nat_into_Ord [THEN Ord_0_lt_iff]) | |
| 230 | done | |
| 231 | ||
| 232 | lemma mod_less_divisor: "[| 0<n; n:nat |] ==> m mod n < n" | |
| 233 | apply (subgoal_tac "natify (m) mod n < n") | |
| 234 | apply (rule_tac [2] i = "natify (m) " in complete_induct) | |
| 235 | apply (case_tac [3] "x<n", auto) | |
| 236 | txt{* case n le x*}
 | |
| 237 | apply (simp add: mod_geq not_lt_iff_le div_termination [THEN ltD]) | |
| 238 | done | |
| 239 | ||
| 240 | lemma mod_1_eq [simp]: "m mod 1 = 0" | |
| 13784 | 241 | by (cut_tac n = 1 in mod_less_divisor, auto) | 
| 13259 | 242 | |
| 243 | lemma mod2_cases: "b<2 ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)" | |
| 244 | apply (subgoal_tac "k mod 2: 2") | |
| 245 | prefer 2 apply (simp add: mod_less_divisor [THEN ltD]) | |
| 246 | apply (drule ltD, auto) | |
| 247 | done | |
| 248 | ||
| 249 | lemma mod2_succ_succ [simp]: "succ(succ(m)) mod 2 = m mod 2" | |
| 250 | apply (subgoal_tac "m mod 2: 2") | |
| 251 | prefer 2 apply (simp add: mod_less_divisor [THEN ltD]) | |
| 252 | apply (auto simp add: mod_succ) | |
| 253 | done | |
| 254 | ||
| 255 | lemma mod2_add_more [simp]: "(m#+m#+n) mod 2 = n mod 2" | |
| 256 | apply (subgoal_tac " (natify (m) #+natify (m) #+n) mod 2 = n mod 2") | |
| 257 | apply (rule_tac [2] n = "natify (m) " in nat_induct) | |
| 258 | apply auto | |
| 259 | done | |
| 260 | ||
| 261 | lemma mod2_add_self [simp]: "(m#+m) mod 2 = 0" | |
| 13784 | 262 | by (cut_tac n = 0 in mod2_add_more, auto) | 
| 13259 | 263 | |
| 264 | ||
| 13356 | 265 | subsection{*Additional theorems about @{text "\<le>"}*}
 | 
| 13259 | 266 | |
| 267 | lemma add_le_self: "m:nat ==> m le (m #+ n)" | |
| 268 | apply (simp (no_asm_simp)) | |
| 269 | done | |
| 270 | ||
| 271 | lemma add_le_self2: "m:nat ==> m le (n #+ m)" | |
| 272 | apply (simp (no_asm_simp)) | |
| 273 | done | |
| 274 | ||
| 275 | (*** Monotonicity of Multiplication ***) | |
| 276 | ||
| 277 | lemma mult_le_mono1: "[| i le j; j:nat |] ==> (i#*k) le (j#*k)" | |
| 278 | apply (subgoal_tac "natify (i) #*natify (k) le j#*natify (k) ") | |
| 279 | apply (frule_tac [2] lt_nat_in_nat) | |
| 280 | apply (rule_tac [3] n = "natify (k) " in nat_induct) | |
| 281 | apply (simp_all add: add_le_mono) | |
| 282 | done | |
| 283 | ||
| 284 | (* le monotonicity, BOTH arguments*) | |
| 285 | lemma mult_le_mono: "[| i le j; k le l; j:nat; l:nat |] ==> i#*k le j#*l" | |
| 286 | apply (rule mult_le_mono1 [THEN le_trans], assumption+) | |
| 287 | apply (subst mult_commute, subst mult_commute, rule mult_le_mono1, assumption+) | |
| 288 | done | |
| 289 | ||
| 290 | (*strict, in 1st argument; proof is by induction on k>0. | |
| 291 | I can't see how to relax the typing conditions.*) | |
| 292 | lemma mult_lt_mono2: "[| i<j; 0<k; j:nat; k:nat |] ==> k#*i < k#*j" | |
| 293 | apply (erule zero_lt_natE) | |
| 294 | apply (frule_tac [2] lt_nat_in_nat) | |
| 295 | apply (simp_all (no_asm_simp)) | |
| 296 | apply (induct_tac "x") | |
| 297 | apply (simp_all (no_asm_simp) add: add_lt_mono) | |
| 298 | done | |
| 299 | ||
| 300 | lemma mult_lt_mono1: "[| i<j; 0<k; j:nat; k:nat |] ==> i#*k < j#*k" | |
| 301 | apply (simp (no_asm_simp) add: mult_lt_mono2 mult_commute [of _ k]) | |
| 302 | done | |
| 303 | ||
| 304 | lemma add_eq_0_iff [iff]: "m#+n = 0 <-> natify(m)=0 & natify(n)=0" | |
| 305 | apply (subgoal_tac "natify (m) #+ natify (n) = 0 <-> natify (m) =0 & natify (n) =0") | |
| 306 | apply (rule_tac [2] n = "natify (m) " in natE) | |
| 307 | apply (rule_tac [4] n = "natify (n) " in natE) | |
| 308 | apply auto | |
| 309 | done | |
| 310 | ||
| 311 | lemma zero_lt_mult_iff [iff]: "0 < m#*n <-> 0 < natify(m) & 0 < natify(n)" | |
| 312 | apply (subgoal_tac "0 < natify (m) #*natify (n) <-> 0 < natify (m) & 0 < natify (n) ") | |
| 313 | apply (rule_tac [2] n = "natify (m) " in natE) | |
| 314 | apply (rule_tac [4] n = "natify (n) " in natE) | |
| 315 | apply (rule_tac [3] n = "natify (n) " in natE) | |
| 316 | apply auto | |
| 317 | done | |
| 318 | ||
| 319 | lemma mult_eq_1_iff [iff]: "m#*n = 1 <-> natify(m)=1 & natify(n)=1" | |
| 320 | apply (subgoal_tac "natify (m) #* natify (n) = 1 <-> natify (m) =1 & natify (n) =1") | |
| 321 | apply (rule_tac [2] n = "natify (m) " in natE) | |
| 322 | apply (rule_tac [4] n = "natify (n) " in natE) | |
| 323 | apply auto | |
| 324 | done | |
| 325 | ||
| 326 | ||
| 327 | lemma mult_is_zero: "[|m: nat; n: nat|] ==> (m #* n = 0) <-> (m = 0 | n = 0)" | |
| 328 | apply auto | |
| 329 | apply (erule natE) | |
| 330 | apply (erule_tac [2] natE, auto) | |
| 331 | done | |
| 332 | ||
| 333 | lemma mult_is_zero_natify [iff]: | |
| 334 | "(m #* n = 0) <-> (natify(m) = 0 | natify(n) = 0)" | |
| 335 | apply (cut_tac m = "natify (m) " and n = "natify (n) " in mult_is_zero) | |
| 336 | apply auto | |
| 337 | done | |
| 338 | ||
| 339 | ||
| 13356 | 340 | subsection{*Cancellation Laws for Common Factors in Comparisons*}
 | 
| 13259 | 341 | |
| 342 | lemma mult_less_cancel_lemma: | |
| 343 | "[| k: nat; m: nat; n: nat |] ==> (m#*k < n#*k) <-> (0<k & m<n)" | |
| 344 | apply (safe intro!: mult_lt_mono1) | |
| 345 | apply (erule natE, auto) | |
| 346 | apply (rule not_le_iff_lt [THEN iffD1]) | |
| 347 | apply (drule_tac [3] not_le_iff_lt [THEN [2] rev_iffD2]) | |
| 348 | prefer 5 apply (blast intro: mult_le_mono1, auto) | |
| 349 | done | |
| 350 | ||
| 351 | lemma mult_less_cancel2 [simp]: | |
| 352 | "(m#*k < n#*k) <-> (0 < natify(k) & natify(m) < natify(n))" | |
| 353 | apply (rule iff_trans) | |
| 354 | apply (rule_tac [2] mult_less_cancel_lemma, auto) | |
| 355 | done | |
| 356 | ||
| 357 | lemma mult_less_cancel1 [simp]: | |
| 358 | "(k#*m < k#*n) <-> (0 < natify(k) & natify(m) < natify(n))" | |
| 359 | apply (simp (no_asm) add: mult_less_cancel2 mult_commute [of k]) | |
| 360 | done | |
| 361 | ||
| 362 | lemma mult_le_cancel2 [simp]: "(m#*k le n#*k) <-> (0 < natify(k) --> natify(m) le natify(n))" | |
| 363 | apply (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym]) | |
| 364 | apply auto | |
| 365 | done | |
| 366 | ||
| 367 | lemma mult_le_cancel1 [simp]: "(k#*m le k#*n) <-> (0 < natify(k) --> natify(m) le natify(n))" | |
| 368 | apply (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym]) | |
| 369 | apply auto | |
| 370 | done | |
| 371 | ||
| 372 | lemma mult_le_cancel_le1: "k : nat ==> k #* m le k \<longleftrightarrow> (0 < k \<longrightarrow> natify(m) le 1)" | |
| 13784 | 373 | by (cut_tac k = k and m = m and n = 1 in mult_le_cancel1, auto) | 
| 13259 | 374 | |
| 375 | lemma Ord_eq_iff_le: "[| Ord(m); Ord(n) |] ==> m=n <-> (m le n & n le m)" | |
| 376 | by (blast intro: le_anti_sym) | |
| 377 | ||
| 378 | lemma mult_cancel2_lemma: | |
| 379 | "[| k: nat; m: nat; n: nat |] ==> (m#*k = n#*k) <-> (m=n | k=0)" | |
| 380 | apply (simp (no_asm_simp) add: Ord_eq_iff_le [of "m#*k"] Ord_eq_iff_le [of m]) | |
| 381 | apply (auto simp add: Ord_0_lt_iff) | |
| 382 | done | |
| 383 | ||
| 384 | lemma mult_cancel2 [simp]: | |
| 385 | "(m#*k = n#*k) <-> (natify(m) = natify(n) | natify(k) = 0)" | |
| 386 | apply (rule iff_trans) | |
| 387 | apply (rule_tac [2] mult_cancel2_lemma, auto) | |
| 388 | done | |
| 389 | ||
| 390 | lemma mult_cancel1 [simp]: | |
| 391 | "(k#*m = k#*n) <-> (natify(m) = natify(n) | natify(k) = 0)" | |
| 392 | apply (simp (no_asm) add: mult_cancel2 mult_commute [of k]) | |
| 393 | done | |
| 394 | ||
| 395 | ||
| 396 | (** Cancellation law for division **) | |
| 397 | ||
| 398 | lemma div_cancel_raw: | |
| 399 | "[| 0<n; 0<k; k:nat; m:nat; n:nat |] ==> (k#*m) div (k#*n) = m div n" | |
| 13784 | 400 | apply (erule_tac i = m in complete_induct) | 
| 13259 | 401 | apply (case_tac "x<n") | 
| 402 | apply (simp add: div_less zero_lt_mult_iff mult_lt_mono2) | |
| 403 | apply (simp add: not_lt_iff_le zero_lt_mult_iff le_refl [THEN mult_le_mono] | |
| 404 | div_geq diff_mult_distrib2 [symmetric] div_termination [THEN ltD]) | |
| 405 | done | |
| 406 | ||
| 407 | lemma div_cancel: | |
| 408 | "[| 0 < natify(n); 0 < natify(k) |] ==> (k#*m) div (k#*n) = m div n" | |
| 409 | apply (cut_tac k = "natify (k) " and m = "natify (m)" and n = "natify (n)" | |
| 410 | in div_cancel_raw) | |
| 411 | apply auto | |
| 412 | done | |
| 413 | ||
| 414 | ||
| 13356 | 415 | subsection{*More Lemmas about Remainder*}
 | 
| 13259 | 416 | |
| 417 | lemma mult_mod_distrib_raw: | |
| 418 | "[| k:nat; m:nat; n:nat |] ==> (k#*m) mod (k#*n) = k #* (m mod n)" | |
| 419 | apply (case_tac "k=0") | |
| 420 | apply (simp add: DIVISION_BY_ZERO_MOD) | |
| 421 | apply (case_tac "n=0") | |
| 422 | apply (simp add: DIVISION_BY_ZERO_MOD) | |
| 423 | apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff]) | |
| 13784 | 424 | apply (erule_tac i = m in complete_induct) | 
| 13259 | 425 | apply (case_tac "x<n") | 
| 426 | apply (simp (no_asm_simp) add: mod_less zero_lt_mult_iff mult_lt_mono2) | |
| 427 | apply (simp add: not_lt_iff_le zero_lt_mult_iff le_refl [THEN mult_le_mono] | |
| 428 | mod_geq diff_mult_distrib2 [symmetric] div_termination [THEN ltD]) | |
| 429 | done | |
| 430 | ||
| 431 | lemma mod_mult_distrib2: "k #* (m mod n) = (k#*m) mod (k#*n)" | |
| 432 | apply (cut_tac k = "natify (k) " and m = "natify (m)" and n = "natify (n)" | |
| 433 | in mult_mod_distrib_raw) | |
| 434 | apply auto | |
| 435 | done | |
| 436 | ||
| 437 | lemma mult_mod_distrib: "(m mod n) #* k = (m#*k) mod (n#*k)" | |
| 438 | apply (simp (no_asm) add: mult_commute mod_mult_distrib2) | |
| 439 | done | |
| 440 | ||
| 441 | lemma mod_add_self2_raw: "n \<in> nat ==> (m #+ n) mod n = m mod n" | |
| 442 | apply (subgoal_tac " (n #+ m) mod n = (n #+ m #- n) mod n") | |
| 443 | apply (simp add: add_commute) | |
| 444 | apply (subst mod_geq [symmetric], auto) | |
| 445 | done | |
| 446 | ||
| 447 | lemma mod_add_self2 [simp]: "(m #+ n) mod n = m mod n" | |
| 448 | apply (cut_tac n = "natify (n) " in mod_add_self2_raw) | |
| 449 | apply auto | |
| 450 | done | |
| 451 | ||
| 452 | lemma mod_add_self1 [simp]: "(n#+m) mod n = m mod n" | |
| 453 | apply (simp (no_asm_simp) add: add_commute mod_add_self2) | |
| 454 | done | |
| 455 | ||
| 456 | lemma mod_mult_self1_raw: "k \<in> nat ==> (m #+ k#*n) mod n = m mod n" | |
| 457 | apply (erule nat_induct) | |
| 458 | apply (simp_all (no_asm_simp) add: add_left_commute [of _ n]) | |
| 459 | done | |
| 460 | ||
| 461 | lemma mod_mult_self1 [simp]: "(m #+ k#*n) mod n = m mod n" | |
| 462 | apply (cut_tac k = "natify (k) " in mod_mult_self1_raw) | |
| 463 | apply auto | |
| 464 | done | |
| 465 | ||
| 466 | lemma mod_mult_self2 [simp]: "(m #+ n#*k) mod n = m mod n" | |
| 467 | apply (simp (no_asm) add: mult_commute mod_mult_self1) | |
| 468 | done | |
| 469 | ||
| 470 | (*Lemma for gcd*) | |
| 471 | lemma mult_eq_self_implies_10: "m = m#*n ==> natify(n)=1 | m=0" | |
| 472 | apply (subgoal_tac "m: nat") | |
| 473 | prefer 2 | |
| 474 | apply (erule ssubst) | |
| 475 | apply simp | |
| 476 | apply (rule disjCI) | |
| 477 | apply (drule sym) | |
| 478 | apply (rule Ord_linear_lt [of "natify(n)" 1]) | |
| 479 | apply simp_all | |
| 480 | apply (subgoal_tac "m #* n = 0", simp) | |
| 481 | apply (subst mult_natify2 [symmetric]) | |
| 482 | apply (simp del: mult_natify2) | |
| 483 | apply (drule nat_into_Ord [THEN Ord_0_lt, THEN [2] mult_lt_mono2], auto) | |
| 484 | done | |
| 485 | ||
| 486 | lemma less_imp_succ_add [rule_format]: | |
| 487 | "[| m<n; n: nat |] ==> EX k: nat. n = succ(m#+k)" | |
| 488 | apply (frule lt_nat_in_nat, assumption) | |
| 489 | apply (erule rev_mp) | |
| 490 | apply (induct_tac "n") | |
| 491 | apply (simp_all (no_asm) add: le_iff) | |
| 492 | apply (blast elim!: leE intro!: add_0_right [symmetric] add_succ_right [symmetric]) | |
| 493 | done | |
| 494 | ||
| 495 | lemma less_iff_succ_add: | |
| 496 | "[| m: nat; n: nat |] ==> (m<n) <-> (EX k: nat. n = succ(m#+k))" | |
| 497 | by (auto intro: less_imp_succ_add) | |
| 498 | ||
| 14055 | 499 | lemma add_lt_elim2: | 
| 500 | "\<lbrakk>a #+ d = b #+ c; a < b; b \<in> nat; c \<in> nat; d \<in> nat\<rbrakk> \<Longrightarrow> c < d" | |
| 501 | by (drule less_imp_succ_add, auto) | |
| 502 | ||
| 503 | lemma add_le_elim2: | |
| 504 | "\<lbrakk>a #+ d = b #+ c; a le b; b \<in> nat; c \<in> nat; d \<in> nat\<rbrakk> \<Longrightarrow> c le d" | |
| 505 | by (drule less_imp_succ_add, auto) | |
| 506 | ||
| 13356 | 507 | |
| 508 | subsubsection{*More Lemmas About Difference*}
 | |
| 13259 | 509 | |
| 510 | lemma diff_is_0_lemma: | |
| 511 | "[| m: nat; n: nat |] ==> m #- n = 0 <-> m le n" | |
| 13784 | 512 | apply (rule_tac m = m and n = n in diff_induct, simp_all) | 
| 13259 | 513 | done | 
| 514 | ||
| 515 | lemma diff_is_0_iff: "m #- n = 0 <-> natify(m) le natify(n)" | |
| 516 | by (simp add: diff_is_0_lemma [symmetric]) | |
| 517 | ||
| 518 | lemma nat_lt_imp_diff_eq_0: | |
| 519 | "[| a:nat; b:nat; a<b |] ==> a #- b = 0" | |
| 520 | by (simp add: diff_is_0_iff le_iff) | |
| 521 | ||
| 14055 | 522 | lemma raw_nat_diff_split: | 
| 13259 | 523 | "[| a:nat; b:nat |] ==> | 
| 524 | (P(a #- b)) <-> ((a < b -->P(0)) & (ALL d:nat. a = b #+ d --> P(d)))" | |
| 525 | apply (case_tac "a < b") | |
| 526 | apply (force simp add: nat_lt_imp_diff_eq_0) | |
| 13784 | 527 | apply (rule iffI, force, simp) | 
| 13259 | 528 | apply (drule_tac x="a#-b" in bspec) | 
| 529 | apply (simp_all add: Ordinal.not_lt_iff_le add_diff_inverse) | |
| 530 | done | |
| 531 | ||
| 14055 | 532 | lemma nat_diff_split: | 
| 533 | "(P(a #- b)) <-> | |
| 534 | (natify(a) < natify(b) -->P(0)) & (ALL d:nat. natify(a) = b #+ d --> P(d))" | |
| 535 | apply (cut_tac P=P and a="natify(a)" and b="natify(b)" in raw_nat_diff_split) | |
| 536 | apply simp_all | |
| 537 | done | |
| 538 | ||
| 14060 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 539 | text{*Difference and less-than*}
 | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 540 | |
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 541 | lemma diff_lt_imp_lt: "[|(k#-i) < (k#-j); i\<in>nat; j\<in>nat; k\<in>nat|] ==> j<i" | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 542 | apply (erule rev_mp) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 543 | apply (simp split add: nat_diff_split, auto) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 544 | apply (blast intro: add_le_self lt_trans1) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 545 | apply (rule not_le_iff_lt [THEN iffD1], auto) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 546 | apply (subgoal_tac "i #+ da < j #+ d", force) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 547 | apply (blast intro: add_le_lt_mono) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 548 | done | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 549 | |
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 550 | lemma lt_imp_diff_lt: "[|j<i; i\<le>k; k\<in>nat|] ==> (k#-i) < (k#-j)" | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 551 | apply (frule le_in_nat, assumption) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 552 | apply (frule lt_nat_in_nat, assumption) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 553 | apply (simp split add: nat_diff_split, auto) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 554 | apply (blast intro: lt_asym lt_trans2) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 555 | apply (blast intro: lt_irrefl lt_trans2) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 556 | apply (rule not_le_iff_lt [THEN iffD1], auto) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 557 | apply (subgoal_tac "j #+ d < i #+ da", force) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 558 | apply (blast intro: add_lt_le_mono) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 559 | done | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 560 | |
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 561 | |
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 562 | lemma diff_lt_iff_lt: "[|i\<le>k; j\<in>nat; k\<in>nat|] ==> (k#-i) < (k#-j) <-> j<i" | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 563 | apply (frule le_in_nat, assumption) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 564 | apply (blast intro: lt_imp_diff_lt diff_lt_imp_lt) | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 565 | done | 
| 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 paulson parents: 
14055diff
changeset | 566 | |
| 9548 | 567 | end |