| author | huffman | 
| Thu, 08 Sep 2011 07:27:57 -0700 | |
| changeset 44843 | 93d0f85cfe4a | 
| parent 44415 | ce6cd1b2344b | 
| child 44928 | 7ef6505bde7f | 
| permissions | -rw-r--r-- | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 1 | (* Title: HOL/Predicate.thy | 
| 30328 | 2 | Author: Stefan Berghofer and Lukas Bulwahn and Florian Haftmann, TU Muenchen | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 3 | *) | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 4 | |
| 30328 | 5 | header {* Predicates as relations and enumerations *}
 | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 6 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 7 | theory Predicate | 
| 23708 | 8 | imports Inductive Relation | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 9 | begin | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 10 | |
| 30328 | 11 | notation | 
| 41082 | 12 |   bot ("\<bottom>") and
 | 
| 13 |   top ("\<top>") and
 | |
| 30328 | 14 | inf (infixl "\<sqinter>" 70) and | 
| 15 | sup (infixl "\<squnion>" 65) and | |
| 16 |   Inf ("\<Sqinter>_" [900] 900) and
 | |
| 41082 | 17 |   Sup ("\<Squnion>_" [900] 900)
 | 
| 30328 | 18 | |
| 41080 | 19 | syntax (xsymbols) | 
| 41082 | 20 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
 | 
| 21 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 41080 | 22 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
 | 
| 23 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 24 | ||
| 30328 | 25 | |
| 26 | subsection {* Predicates as (complete) lattices *}
 | |
| 27 | ||
| 34065 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 28 | text {*
 | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 29 |   Handy introduction and elimination rules for @{text "\<le>"}
 | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 30 | on unary and binary predicates | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 31 | *} | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 32 | |
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 33 | lemma predicate1I: | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 34 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 35 | shows "P \<le> Q" | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 36 | apply (rule le_funI) | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 37 | apply (rule le_boolI) | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 38 | apply (rule PQ) | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 39 | apply assumption | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 40 | done | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 41 | |
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 42 | lemma predicate1D [Pure.dest?, dest?]: | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 43 | "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 44 | apply (erule le_funE) | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 45 | apply (erule le_boolE) | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 46 | apply assumption+ | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 47 | done | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 48 | |
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 49 | lemma rev_predicate1D: | 
| 44414 | 50 | "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x" | 
| 34065 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 51 | by (rule predicate1D) | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 52 | |
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 53 | lemma predicate2I [Pure.intro!, intro!]: | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 54 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 55 | shows "P \<le> Q" | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 56 | apply (rule le_funI)+ | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 57 | apply (rule le_boolI) | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 58 | apply (rule PQ) | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 59 | apply assumption | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 60 | done | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 61 | |
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 62 | lemma predicate2D [Pure.dest, dest]: | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 63 | "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 64 | apply (erule le_funE)+ | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 65 | apply (erule le_boolE) | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 66 | apply assumption+ | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 67 | done | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 68 | |
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 69 | lemma rev_predicate2D: | 
| 44414 | 70 | "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y" | 
| 34065 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 71 | by (rule predicate2D) | 
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 72 | |
| 
6f8f9835e219
moved predicate rules to Predicate.thy; weakened default dest rule predicate1D (is not that reliable wrt. sets)
 haftmann parents: 
34007diff
changeset | 73 | |
| 32779 | 74 | subsubsection {* Equality *}
 | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 75 | |
| 44415 | 76 | lemma pred_equals_eq: "((\<lambda>x. x \<in> R) = (\<lambda>x. x \<in> S)) \<longleftrightarrow> (R = S)" | 
| 77 | by (simp add: set_eq_iff fun_eq_iff mem_def) | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 78 | |
| 44415 | 79 | lemma pred_equals_eq2 [pred_set_conv]: "((\<lambda>x y. (x, y) \<in> R) = (\<lambda>x y. (x, y) \<in> S)) \<longleftrightarrow> (R = S)" | 
| 80 | by (simp add: set_eq_iff fun_eq_iff mem_def) | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 81 | |
| 32779 | 82 | |
| 83 | subsubsection {* Order relation *}
 | |
| 84 | ||
| 44415 | 85 | lemma pred_subset_eq: "((\<lambda>x. x \<in> R) \<le> (\<lambda>x. x \<in> S)) \<longleftrightarrow> (R \<subseteq> S)" | 
| 86 | by (simp add: subset_iff le_fun_def mem_def) | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 87 | |
| 44415 | 88 | lemma pred_subset_eq2 [pred_set_conv]: "((\<lambda>x y. (x, y) \<in> R) \<le> (\<lambda>x y. (x, y) \<in> S)) \<longleftrightarrow> (R \<subseteq> S)" | 
| 89 | by (simp add: subset_iff le_fun_def mem_def) | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 90 | |
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 91 | |
| 30328 | 92 | subsubsection {* Top and bottom elements *}
 | 
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 93 | |
| 44414 | 94 | lemma bot1E [no_atp, elim!]: "\<bottom> x \<Longrightarrow> P" | 
| 41550 | 95 | by (simp add: bot_fun_def) | 
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 96 | |
| 44414 | 97 | lemma bot2E [elim!]: "\<bottom> x y \<Longrightarrow> P" | 
| 41550 | 98 | by (simp add: bot_fun_def) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 99 | |
| 44414 | 100 | lemma bot_empty_eq: "\<bottom> = (\<lambda>x. x \<in> {})"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 101 | by (auto simp add: fun_eq_iff) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 102 | |
| 44414 | 103 | lemma bot_empty_eq2: "\<bottom> = (\<lambda>x y. (x, y) \<in> {})"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 104 | by (auto simp add: fun_eq_iff) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 105 | |
| 44414 | 106 | lemma top1I [intro!]: "\<top> x" | 
| 41550 | 107 | by (simp add: top_fun_def) | 
| 41082 | 108 | |
| 44414 | 109 | lemma top2I [intro!]: "\<top> x y" | 
| 41550 | 110 | by (simp add: top_fun_def) | 
| 41082 | 111 | |
| 112 | ||
| 113 | subsubsection {* Binary intersection *}
 | |
| 114 | ||
| 44414 | 115 | lemma inf1I [intro!]: "A x \<Longrightarrow> B x \<Longrightarrow> (A \<sqinter> B) x" | 
| 41550 | 116 | by (simp add: inf_fun_def) | 
| 41082 | 117 | |
| 44414 | 118 | lemma inf2I [intro!]: "A x y \<Longrightarrow> B x y \<Longrightarrow> (A \<sqinter> B) x y" | 
| 41550 | 119 | by (simp add: inf_fun_def) | 
| 41082 | 120 | |
| 44414 | 121 | lemma inf1E [elim!]: "(A \<sqinter> B) x \<Longrightarrow> (A x \<Longrightarrow> B x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 41550 | 122 | by (simp add: inf_fun_def) | 
| 41082 | 123 | |
| 44414 | 124 | lemma inf2E [elim!]: "(A \<sqinter> B) x y \<Longrightarrow> (A x y \<Longrightarrow> B x y \<Longrightarrow> P) \<Longrightarrow> P" | 
| 41550 | 125 | by (simp add: inf_fun_def) | 
| 41082 | 126 | |
| 44414 | 127 | lemma inf1D1: "(A \<sqinter> B) x \<Longrightarrow> A x" | 
| 41550 | 128 | by (simp add: inf_fun_def) | 
| 41082 | 129 | |
| 44414 | 130 | lemma inf2D1: "(A \<sqinter> B) x y \<Longrightarrow> A x y" | 
| 41550 | 131 | by (simp add: inf_fun_def) | 
| 41082 | 132 | |
| 44414 | 133 | lemma inf1D2: "(A \<sqinter> B) x \<Longrightarrow> B x" | 
| 41550 | 134 | by (simp add: inf_fun_def) | 
| 41082 | 135 | |
| 44414 | 136 | lemma inf2D2: "(A \<sqinter> B) x y \<Longrightarrow> B x y" | 
| 41550 | 137 | by (simp add: inf_fun_def) | 
| 41082 | 138 | |
| 44414 | 139 | lemma inf_Int_eq: "(\<lambda>x. x \<in> R) \<sqinter> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)" | 
| 41550 | 140 | by (simp add: inf_fun_def mem_def) | 
| 41082 | 141 | |
| 44414 | 142 | lemma inf_Int_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<sqinter> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)" | 
| 41550 | 143 | by (simp add: inf_fun_def mem_def) | 
| 41082 | 144 | |
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 145 | |
| 30328 | 146 | subsubsection {* Binary union *}
 | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 147 | |
| 44414 | 148 | lemma sup1I1 [elim?]: "A x \<Longrightarrow> (A \<squnion> B) x" | 
| 41550 | 149 | by (simp add: sup_fun_def) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 150 | |
| 44414 | 151 | lemma sup2I1 [elim?]: "A x y \<Longrightarrow> (A \<squnion> B) x y" | 
| 41550 | 152 | by (simp add: sup_fun_def) | 
| 32883 
7cbd93dacef3
inf/sup1/2_iff are mere duplicates of underlying definitions: dropped
 haftmann parents: 
32782diff
changeset | 153 | |
| 44414 | 154 | lemma sup1I2 [elim?]: "B x \<Longrightarrow> (A \<squnion> B) x" | 
| 41550 | 155 | by (simp add: sup_fun_def) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 156 | |
| 44414 | 157 | lemma sup2I2 [elim?]: "B x y \<Longrightarrow> (A \<squnion> B) x y" | 
| 41550 | 158 | by (simp add: sup_fun_def) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 159 | |
| 44414 | 160 | lemma sup1E [elim!]: "(A \<squnion> B) x \<Longrightarrow> (A x \<Longrightarrow> P) \<Longrightarrow> (B x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 41550 | 161 | by (simp add: sup_fun_def) iprover | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 162 | |
| 44414 | 163 | lemma sup2E [elim!]: "(A \<squnion> B) x y \<Longrightarrow> (A x y \<Longrightarrow> P) \<Longrightarrow> (B x y \<Longrightarrow> P) \<Longrightarrow> P" | 
| 41550 | 164 | by (simp add: sup_fun_def) iprover | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 165 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 166 | text {*
 | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 167 |   \medskip Classical introduction rule: no commitment to @{text A} vs
 | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 168 |   @{text B}.
 | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 169 | *} | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 170 | |
| 44414 | 171 | lemma sup1CI [intro!]: "(\<not> B x \<Longrightarrow> A x) \<Longrightarrow> (A \<squnion> B) x" | 
| 41550 | 172 | by (auto simp add: sup_fun_def) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 173 | |
| 44414 | 174 | lemma sup2CI [intro!]: "(\<not> B x y \<Longrightarrow> A x y) \<Longrightarrow> (A \<squnion> B) x y" | 
| 41550 | 175 | by (auto simp add: sup_fun_def) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 176 | |
| 44414 | 177 | lemma sup_Un_eq: "(\<lambda>x. x \<in> R) \<squnion> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)" | 
| 41550 | 178 | by (simp add: sup_fun_def mem_def) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 179 | |
| 44414 | 180 | lemma sup_Un_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<squnion> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)" | 
| 41550 | 181 | by (simp add: sup_fun_def mem_def) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 182 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 183 | |
| 30328 | 184 | subsubsection {* Intersections of families *}
 | 
| 22430 
6a56bf1b3a64
Generalized version of SUP and INF (with index set).
 berghofe parents: 
22422diff
changeset | 185 | |
| 44414 | 186 | lemma INF1_iff: "(\<Sqinter>x\<in>A. B x) b = (\<forall>x\<in>A. B x b)" | 
| 41080 | 187 | by (simp add: INFI_apply) | 
| 22430 
6a56bf1b3a64
Generalized version of SUP and INF (with index set).
 berghofe parents: 
22422diff
changeset | 188 | |
| 44414 | 189 | lemma INF2_iff: "(\<Sqinter>x\<in>A. B x) b c = (\<forall>x\<in>A. B x b c)" | 
| 41080 | 190 | by (simp add: INFI_apply) | 
| 22430 
6a56bf1b3a64
Generalized version of SUP and INF (with index set).
 berghofe parents: 
22422diff
changeset | 191 | |
| 44414 | 192 | lemma INF1_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> B x b) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b" | 
| 41080 | 193 | by (auto simp add: INFI_apply) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 194 | |
| 44414 | 195 | lemma INF2_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> B x b c) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b c" | 
| 41080 | 196 | by (auto simp add: INFI_apply) | 
| 22430 
6a56bf1b3a64
Generalized version of SUP and INF (with index set).
 berghofe parents: 
22422diff
changeset | 197 | |
| 44414 | 198 | lemma INF1_D [elim]: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> a \<in> A \<Longrightarrow> B a b" | 
| 41080 | 199 | by (auto simp add: INFI_apply) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 200 | |
| 44414 | 201 | lemma INF2_D [elim]: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> a \<in> A \<Longrightarrow> B a b c" | 
| 41080 | 202 | by (auto simp add: INFI_apply) | 
| 22430 
6a56bf1b3a64
Generalized version of SUP and INF (with index set).
 berghofe parents: 
22422diff
changeset | 203 | |
| 44414 | 204 | lemma INF1_E [elim]: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> (B a b \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R" | 
| 41080 | 205 | by (auto simp add: INFI_apply) | 
| 22430 
6a56bf1b3a64
Generalized version of SUP and INF (with index set).
 berghofe parents: 
22422diff
changeset | 206 | |
| 44414 | 207 | lemma INF2_E [elim]: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> (B a b c \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R" | 
| 41080 | 208 | by (auto simp add: INFI_apply) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 209 | |
| 44414 | 210 | lemma INF_INT_eq: "(\<Sqinter>i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Sqinter>i. r i))" | 
| 41080 | 211 | by (simp add: INFI_apply fun_eq_iff) | 
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 212 | |
| 44414 | 213 | lemma INF_INT_eq2: "(\<Sqinter>i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Sqinter>i. r i))" | 
| 41080 | 214 | by (simp add: INFI_apply fun_eq_iff) | 
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 215 | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 216 | |
| 41082 | 217 | subsubsection {* Unions of families *}
 | 
| 218 | ||
| 44414 | 219 | lemma SUP1_iff: "(\<Squnion>x\<in>A. B x) b = (\<exists>x\<in>A. B x b)" | 
| 41082 | 220 | by (simp add: SUPR_apply) | 
| 221 | ||
| 44414 | 222 | lemma SUP2_iff: "(\<Squnion>x\<in>A. B x) b c = (\<exists>x\<in>A. B x b c)" | 
| 41082 | 223 | by (simp add: SUPR_apply) | 
| 224 | ||
| 44414 | 225 | lemma SUP1_I [intro]: "a \<in> A \<Longrightarrow> B a b \<Longrightarrow> (\<Squnion>x\<in>A. B x) b" | 
| 41082 | 226 | by (auto simp add: SUPR_apply) | 
| 227 | ||
| 44414 | 228 | lemma SUP2_I [intro]: "a \<in> A \<Longrightarrow> B a b c \<Longrightarrow> (\<Squnion>x\<in>A. B x) b c" | 
| 41082 | 229 | by (auto simp add: SUPR_apply) | 
| 230 | ||
| 44414 | 231 | lemma SUP1_E [elim!]: "(\<Squnion>x\<in>A. B x) b \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> B x b \<Longrightarrow> R) \<Longrightarrow> R" | 
| 41082 | 232 | by (auto simp add: SUPR_apply) | 
| 233 | ||
| 44414 | 234 | lemma SUP2_E [elim!]: "(\<Squnion>x\<in>A. B x) b c \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> B x b c \<Longrightarrow> R) \<Longrightarrow> R" | 
| 41082 | 235 | by (auto simp add: SUPR_apply) | 
| 236 | ||
| 44414 | 237 | lemma SUP_UN_eq: "(\<Squnion>i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Union>i. r i))" | 
| 41082 | 238 | by (simp add: SUPR_apply fun_eq_iff) | 
| 239 | ||
| 44414 | 240 | lemma SUP_UN_eq2: "(\<Squnion>i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Union>i. r i))" | 
| 41082 | 241 | by (simp add: SUPR_apply fun_eq_iff) | 
| 242 | ||
| 243 | ||
| 30328 | 244 | subsection {* Predicates as relations *}
 | 
| 245 | ||
| 246 | subsubsection {* Composition  *}
 | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 247 | |
| 44414 | 248 | inductive pred_comp :: "['a \<Rightarrow> 'b \<Rightarrow> bool, 'b \<Rightarrow> 'c \<Rightarrow> bool] \<Rightarrow> 'a \<Rightarrow> 'c \<Rightarrow> bool" (infixr "OO" 75) | 
| 249 | for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" and s :: "'b \<Rightarrow> 'c \<Rightarrow> bool" where | |
| 250 | pred_compI [intro]: "r a b \<Longrightarrow> s b c \<Longrightarrow> (r OO s) a c" | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 251 | |
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 252 | inductive_cases pred_compE [elim!]: "(r OO s) a c" | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 253 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 254 | lemma pred_comp_rel_comp_eq [pred_set_conv]: | 
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 255 | "((\<lambda>x y. (x, y) \<in> r) OO (\<lambda>x y. (x, y) \<in> s)) = (\<lambda>x y. (x, y) \<in> r O s)" | 
| 41550 | 256 | by (auto simp add: fun_eq_iff) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 257 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 258 | |
| 30328 | 259 | subsubsection {* Converse *}
 | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 260 | |
| 44414 | 261 | inductive conversep :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(_^--1)" [1000] 1000)
 | 
| 262 | for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where | |
| 263 | conversepI: "r a b \<Longrightarrow> r^--1 b a" | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 264 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 265 | notation (xsymbols) | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 266 |   conversep  ("(_\<inverse>\<inverse>)" [1000] 1000)
 | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 267 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 268 | lemma conversepD: | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 269 | assumes ab: "r^--1 a b" | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 270 | shows "r b a" using ab | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 271 | by cases simp | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 272 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 273 | lemma conversep_iff [iff]: "r^--1 a b = r b a" | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 274 | by (iprover intro: conversepI dest: conversepD) | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 275 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 276 | lemma conversep_converse_eq [pred_set_conv]: | 
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 277 | "(\<lambda>x y. (x, y) \<in> r)^--1 = (\<lambda>x y. (x, y) \<in> r^-1)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 278 | by (auto simp add: fun_eq_iff) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 279 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 280 | lemma conversep_conversep [simp]: "(r^--1)^--1 = r" | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 281 | by (iprover intro: order_antisym conversepI dest: conversepD) | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 282 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 283 | lemma converse_pred_comp: "(r OO s)^--1 = s^--1 OO r^--1" | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 284 | by (iprover intro: order_antisym conversepI pred_compI | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 285 | elim: pred_compE dest: conversepD) | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 286 | |
| 44414 | 287 | lemma converse_meet: "(r \<sqinter> s)^--1 = r^--1 \<sqinter> s^--1" | 
| 41550 | 288 | by (simp add: inf_fun_def) (iprover intro: conversepI ext dest: conversepD) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 289 | |
| 44414 | 290 | lemma converse_join: "(r \<squnion> s)^--1 = r^--1 \<squnion> s^--1" | 
| 41550 | 291 | by (simp add: sup_fun_def) (iprover intro: conversepI ext dest: conversepD) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 292 | |
| 44414 | 293 | lemma conversep_noteq [simp]: "(op \<noteq>)^--1 = op \<noteq>" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 294 | by (auto simp add: fun_eq_iff) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 295 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 296 | lemma conversep_eq [simp]: "(op =)^--1 = op =" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 297 | by (auto simp add: fun_eq_iff) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 298 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 299 | |
| 30328 | 300 | subsubsection {* Domain *}
 | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 301 | |
| 44414 | 302 | inductive DomainP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool"
 | 
| 303 | for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where | |
| 304 | DomainPI [intro]: "r a b \<Longrightarrow> DomainP r a" | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 305 | |
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 306 | inductive_cases DomainPE [elim!]: "DomainP r a" | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 307 | |
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 308 | lemma DomainP_Domain_eq [pred_set_conv]: "DomainP (\<lambda>x y. (x, y) \<in> r) = (\<lambda>x. x \<in> Domain r)" | 
| 26797 
a6cb51c314f2
- Added mem_def and predicate1I in some of the proofs
 berghofe parents: 
24345diff
changeset | 309 | by (blast intro!: Orderings.order_antisym predicate1I) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 310 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 311 | |
| 30328 | 312 | subsubsection {* Range *}
 | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 313 | |
| 44414 | 314 | inductive RangeP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> bool"
 | 
| 315 | for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where | |
| 316 | RangePI [intro]: "r a b \<Longrightarrow> RangeP r b" | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 317 | |
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 318 | inductive_cases RangePE [elim!]: "RangeP r b" | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 319 | |
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 320 | lemma RangeP_Range_eq [pred_set_conv]: "RangeP (\<lambda>x y. (x, y) \<in> r) = (\<lambda>x. x \<in> Range r)" | 
| 26797 
a6cb51c314f2
- Added mem_def and predicate1I in some of the proofs
 berghofe parents: 
24345diff
changeset | 321 | by (blast intro!: Orderings.order_antisym predicate1I) | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 322 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 323 | |
| 30328 | 324 | subsubsection {* Inverse image *}
 | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 325 | |
| 44414 | 326 | definition inv_imagep :: "('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where
 | 
| 327 | "inv_imagep r f = (\<lambda>x y. r (f x) (f y))" | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 328 | |
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 329 | lemma [pred_set_conv]: "inv_imagep (\<lambda>x y. (x, y) \<in> r) f = (\<lambda>x y. (x, y) \<in> inv_image r f)" | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 330 | by (simp add: inv_image_def inv_imagep_def) | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 331 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 332 | lemma in_inv_imagep [simp]: "inv_imagep r f x y = r (f x) (f y)" | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 333 | by (simp add: inv_imagep_def) | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 334 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 335 | |
| 30328 | 336 | subsubsection {* Powerset *}
 | 
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 337 | |
| 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 338 | definition Powp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool" where
 | 
| 44414 | 339 | "Powp A = (\<lambda>B. \<forall>x \<in> B. A x)" | 
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 340 | |
| 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 341 | lemma Powp_Pow_eq [pred_set_conv]: "Powp (\<lambda>x. x \<in> A) = (\<lambda>x. x \<in> Pow A)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 342 | by (auto simp add: Powp_def fun_eq_iff) | 
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 343 | |
| 26797 
a6cb51c314f2
- Added mem_def and predicate1I in some of the proofs
 berghofe parents: 
24345diff
changeset | 344 | lemmas Powp_mono [mono] = Pow_mono [to_pred pred_subset_eq] | 
| 
a6cb51c314f2
- Added mem_def and predicate1I in some of the proofs
 berghofe parents: 
24345diff
changeset | 345 | |
| 23741 
1801a921df13
- Moved infrastructure for converting between sets and predicates
 berghofe parents: 
23708diff
changeset | 346 | |
| 30328 | 347 | subsubsection {* Properties of relations *}
 | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 348 | |
| 44414 | 349 | abbreviation antisymP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 350 |   "antisymP r \<equiv> antisym {(x, y). r x y}"
 | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 351 | |
| 44414 | 352 | abbreviation transP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 353 |   "transP r \<equiv> trans {(x, y). r x y}"
 | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 354 | |
| 44414 | 355 | abbreviation single_valuedP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 356 |   "single_valuedP r \<equiv> single_valued {(x, y). r x y}"
 | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 357 | |
| 40813 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 358 | (*FIXME inconsistencies: abbreviations vs. definitions, suffix `P` vs. suffix `p`*) | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 359 | |
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 360 | definition reflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 361 |   "reflp r \<longleftrightarrow> refl {(x, y). r x y}"
 | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 362 | |
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 363 | definition symp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 364 |   "symp r \<longleftrightarrow> sym {(x, y). r x y}"
 | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 365 | |
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 366 | definition transp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 367 |   "transp r \<longleftrightarrow> trans {(x, y). r x y}"
 | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 368 | |
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 369 | lemma reflpI: | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 370 | "(\<And>x. r x x) \<Longrightarrow> reflp r" | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 371 | by (auto intro: refl_onI simp add: reflp_def) | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 372 | |
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 373 | lemma reflpE: | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 374 | assumes "reflp r" | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 375 | obtains "r x x" | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 376 | using assms by (auto dest: refl_onD simp add: reflp_def) | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 377 | |
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 378 | lemma sympI: | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 379 | "(\<And>x y. r x y \<Longrightarrow> r y x) \<Longrightarrow> symp r" | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 380 | by (auto intro: symI simp add: symp_def) | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 381 | |
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 382 | lemma sympE: | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 383 | assumes "symp r" and "r x y" | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 384 | obtains "r y x" | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 385 | using assms by (auto dest: symD simp add: symp_def) | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 386 | |
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 387 | lemma transpI: | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 388 | "(\<And>x y z. r x y \<Longrightarrow> r y z \<Longrightarrow> r x z) \<Longrightarrow> transp r" | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 389 | by (auto intro: transI simp add: transp_def) | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 390 | |
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 391 | lemma transpE: | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 392 | assumes "transp r" and "r x y" and "r y z" | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 393 | obtains "r x z" | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 394 | using assms by (auto dest: transD simp add: transp_def) | 
| 
f1fc2a1547eb
moved generic definitions about relations from Quotient.thy to Predicate;
 haftmann parents: 
40674diff
changeset | 395 | |
| 30328 | 396 | |
| 397 | subsection {* Predicates as enumerations *}
 | |
| 398 | ||
| 399 | subsubsection {* The type of predicate enumerations (a monad) *}
 | |
| 400 | ||
| 401 | datatype 'a pred = Pred "'a \<Rightarrow> bool" | |
| 402 | ||
| 403 | primrec eval :: "'a pred \<Rightarrow> 'a \<Rightarrow> bool" where | |
| 404 | eval_pred: "eval (Pred f) = f" | |
| 405 | ||
| 406 | lemma Pred_eval [simp]: | |
| 407 | "Pred (eval x) = x" | |
| 408 | by (cases x) simp | |
| 409 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 410 | lemma pred_eqI: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 411 | "(\<And>w. eval P w \<longleftrightarrow> eval Q w) \<Longrightarrow> P = Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 412 | by (cases P, cases Q) (auto simp add: fun_eq_iff) | 
| 30328 | 413 | |
| 44033 | 414 | instantiation pred :: (type) complete_lattice | 
| 30328 | 415 | begin | 
| 416 | ||
| 417 | definition | |
| 418 | "P \<le> Q \<longleftrightarrow> eval P \<le> eval Q" | |
| 419 | ||
| 420 | definition | |
| 421 | "P < Q \<longleftrightarrow> eval P < eval Q" | |
| 422 | ||
| 423 | definition | |
| 424 | "\<bottom> = Pred \<bottom>" | |
| 425 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 426 | lemma eval_bot [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 427 | "eval \<bottom> = \<bottom>" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 428 | by (simp add: bot_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 429 | |
| 30328 | 430 | definition | 
| 431 | "\<top> = Pred \<top>" | |
| 432 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 433 | lemma eval_top [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 434 | "eval \<top> = \<top>" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 435 | by (simp add: top_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 436 | |
| 30328 | 437 | definition | 
| 438 | "P \<sqinter> Q = Pred (eval P \<sqinter> eval Q)" | |
| 439 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 440 | lemma eval_inf [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 441 | "eval (P \<sqinter> Q) = eval P \<sqinter> eval Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 442 | by (simp add: inf_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 443 | |
| 30328 | 444 | definition | 
| 445 | "P \<squnion> Q = Pred (eval P \<squnion> eval Q)" | |
| 446 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 447 | lemma eval_sup [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 448 | "eval (P \<squnion> Q) = eval P \<squnion> eval Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 449 | by (simp add: sup_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 450 | |
| 30328 | 451 | definition | 
| 37767 | 452 | "\<Sqinter>A = Pred (INFI A eval)" | 
| 30328 | 453 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 454 | lemma eval_Inf [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 455 | "eval (\<Sqinter>A) = INFI A eval" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 456 | by (simp add: Inf_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 457 | |
| 30328 | 458 | definition | 
| 37767 | 459 | "\<Squnion>A = Pred (SUPR A eval)" | 
| 30328 | 460 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 461 | lemma eval_Sup [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 462 | "eval (\<Squnion>A) = SUPR A eval" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 463 | by (simp add: Sup_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 464 | |
| 44033 | 465 | instance proof | 
| 44415 | 466 | qed (auto intro!: pred_eqI simp add: less_eq_pred_def less_pred_def le_fun_def less_fun_def) | 
| 44033 | 467 | |
| 468 | end | |
| 469 | ||
| 470 | lemma eval_INFI [simp]: | |
| 471 | "eval (INFI A f) = INFI A (eval \<circ> f)" | |
| 44415 | 472 | by (simp only: INFI_def eval_Inf image_compose) | 
| 44033 | 473 | |
| 474 | lemma eval_SUPR [simp]: | |
| 475 | "eval (SUPR A f) = SUPR A (eval \<circ> f)" | |
| 44415 | 476 | by (simp only: SUPR_def eval_Sup image_compose) | 
| 44033 | 477 | |
| 478 | instantiation pred :: (type) complete_boolean_algebra | |
| 479 | begin | |
| 480 | ||
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 481 | definition | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 482 | "- P = Pred (- eval P)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 483 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 484 | lemma eval_compl [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 485 | "eval (- P) = - eval P" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 486 | by (simp add: uminus_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 487 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 488 | definition | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 489 | "P - Q = Pred (eval P - eval Q)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 490 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 491 | lemma eval_minus [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 492 | "eval (P - Q) = eval P - eval Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 493 | by (simp add: minus_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 494 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 495 | instance proof | 
| 44415 | 496 | qed (auto intro!: pred_eqI simp add: uminus_apply minus_apply INF_apply SUP_apply) | 
| 30328 | 497 | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 498 | end | 
| 30328 | 499 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 500 | definition single :: "'a \<Rightarrow> 'a pred" where | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 501 | "single x = Pred ((op =) x)" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 502 | |
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 503 | lemma eval_single [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 504 | "eval (single x) = (op =) x" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 505 | by (simp add: single_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 506 | |
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 507 | definition bind :: "'a pred \<Rightarrow> ('a \<Rightarrow> 'b pred) \<Rightarrow> 'b pred" (infixl "\<guillemotright>=" 70) where
 | 
| 41080 | 508 |   "P \<guillemotright>= f = (SUPR {x. eval P x} f)"
 | 
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 509 | |
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 510 | lemma eval_bind [simp]: | 
| 41080 | 511 |   "eval (P \<guillemotright>= f) = eval (SUPR {x. eval P x} f)"
 | 
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 512 | by (simp add: bind_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 513 | |
| 30328 | 514 | lemma bind_bind: | 
| 515 | "(P \<guillemotright>= Q) \<guillemotright>= R = P \<guillemotright>= (\<lambda>x. Q x \<guillemotright>= R)" | |
| 44415 | 516 | by (rule pred_eqI) (auto simp add: SUP_apply) | 
| 30328 | 517 | |
| 518 | lemma bind_single: | |
| 519 | "P \<guillemotright>= single = P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 520 | by (rule pred_eqI) auto | 
| 30328 | 521 | |
| 522 | lemma single_bind: | |
| 523 | "single x \<guillemotright>= P = P x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 524 | by (rule pred_eqI) auto | 
| 30328 | 525 | |
| 526 | lemma bottom_bind: | |
| 527 | "\<bottom> \<guillemotright>= P = \<bottom>" | |
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 528 | by (rule pred_eqI) auto | 
| 30328 | 529 | |
| 530 | lemma sup_bind: | |
| 531 | "(P \<squnion> Q) \<guillemotright>= R = P \<guillemotright>= R \<squnion> Q \<guillemotright>= R" | |
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 532 | by (rule pred_eqI) auto | 
| 30328 | 533 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 534 | lemma Sup_bind: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 535 | "(\<Squnion>A \<guillemotright>= f) = \<Squnion>((\<lambda>x. x \<guillemotright>= f) ` A)" | 
| 44415 | 536 | by (rule pred_eqI) (auto simp add: SUP_apply) | 
| 30328 | 537 | |
| 538 | lemma pred_iffI: | |
| 539 | assumes "\<And>x. eval A x \<Longrightarrow> eval B x" | |
| 540 | and "\<And>x. eval B x \<Longrightarrow> eval A x" | |
| 541 | shows "A = B" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 542 | using assms by (auto intro: pred_eqI) | 
| 30328 | 543 | |
| 544 | lemma singleI: "eval (single x) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 545 | by simp | 
| 30328 | 546 | |
| 547 | lemma singleI_unit: "eval (single ()) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 548 | by simp | 
| 30328 | 549 | |
| 550 | lemma singleE: "eval (single x) y \<Longrightarrow> (y = x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 551 | by simp | 
| 30328 | 552 | |
| 553 | lemma singleE': "eval (single x) y \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 554 | by simp | 
| 30328 | 555 | |
| 556 | lemma bindI: "eval P x \<Longrightarrow> eval (Q x) y \<Longrightarrow> eval (P \<guillemotright>= Q) y" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 557 | by auto | 
| 30328 | 558 | |
| 559 | lemma bindE: "eval (R \<guillemotright>= Q) y \<Longrightarrow> (\<And>x. eval R x \<Longrightarrow> eval (Q x) y \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 560 | by auto | 
| 30328 | 561 | |
| 562 | lemma botE: "eval \<bottom> x \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 563 | by auto | 
| 30328 | 564 | |
| 565 | lemma supI1: "eval A x \<Longrightarrow> eval (A \<squnion> B) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 566 | by auto | 
| 30328 | 567 | |
| 568 | lemma supI2: "eval B x \<Longrightarrow> eval (A \<squnion> B) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 569 | by auto | 
| 30328 | 570 | |
| 571 | lemma supE: "eval (A \<squnion> B) x \<Longrightarrow> (eval A x \<Longrightarrow> P) \<Longrightarrow> (eval B x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 572 | by auto | 
| 30328 | 573 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 574 | lemma single_not_bot [simp]: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 575 | "single x \<noteq> \<bottom>" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 576 | by (auto simp add: single_def bot_pred_def fun_eq_iff) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 577 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 578 | lemma not_bot: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 579 | assumes "A \<noteq> \<bottom>" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 580 | obtains x where "eval A x" | 
| 44415 | 581 | using assms by (cases A) (auto simp add: bot_pred_def, simp add: mem_def) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 582 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 583 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 584 | subsubsection {* Emptiness check and definite choice *}
 | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 585 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 586 | definition is_empty :: "'a pred \<Rightarrow> bool" where | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 587 | "is_empty A \<longleftrightarrow> A = \<bottom>" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 588 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 589 | lemma is_empty_bot: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 590 | "is_empty \<bottom>" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 591 | by (simp add: is_empty_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 592 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 593 | lemma not_is_empty_single: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 594 | "\<not> is_empty (single x)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 595 | by (auto simp add: is_empty_def single_def bot_pred_def fun_eq_iff) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 596 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 597 | lemma is_empty_sup: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 598 | "is_empty (A \<squnion> B) \<longleftrightarrow> is_empty A \<and> is_empty B" | 
| 36008 | 599 | by (auto simp add: is_empty_def) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 600 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 601 | definition singleton :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a pred \<Rightarrow> 'a" where | 
| 33111 | 602 | "singleton dfault A = (if \<exists>!x. eval A x then THE x. eval A x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 603 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 604 | lemma singleton_eqI: | 
| 33110 | 605 | "\<exists>!x. eval A x \<Longrightarrow> eval A x \<Longrightarrow> singleton dfault A = x" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 606 | by (auto simp add: singleton_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 607 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 608 | lemma eval_singletonI: | 
| 33110 | 609 | "\<exists>!x. eval A x \<Longrightarrow> eval A (singleton dfault A)" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 610 | proof - | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 611 | assume assm: "\<exists>!x. eval A x" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 612 | then obtain x where "eval A x" .. | 
| 33110 | 613 | moreover with assm have "singleton dfault A = x" by (rule singleton_eqI) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 614 | ultimately show ?thesis by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 615 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 616 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 617 | lemma single_singleton: | 
| 33110 | 618 | "\<exists>!x. eval A x \<Longrightarrow> single (singleton dfault A) = A" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 619 | proof - | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 620 | assume assm: "\<exists>!x. eval A x" | 
| 33110 | 621 | then have "eval A (singleton dfault A)" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 622 | by (rule eval_singletonI) | 
| 33110 | 623 | moreover from assm have "\<And>x. eval A x \<Longrightarrow> singleton dfault A = x" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 624 | by (rule singleton_eqI) | 
| 33110 | 625 | ultimately have "eval (single (singleton dfault A)) = eval A" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 626 | by (simp (no_asm_use) add: single_def fun_eq_iff) blast | 
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 627 | then have "\<And>x. eval (single (singleton dfault A)) x = eval A x" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 628 | by simp | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 629 | then show ?thesis by (rule pred_eqI) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 630 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 631 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 632 | lemma singleton_undefinedI: | 
| 33111 | 633 | "\<not> (\<exists>!x. eval A x) \<Longrightarrow> singleton dfault A = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 634 | by (simp add: singleton_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 635 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 636 | lemma singleton_bot: | 
| 33111 | 637 | "singleton dfault \<bottom> = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 638 | by (auto simp add: bot_pred_def intro: singleton_undefinedI) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 639 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 640 | lemma singleton_single: | 
| 33110 | 641 | "singleton dfault (single x) = x" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 642 | by (auto simp add: intro: singleton_eqI singleI elim: singleE) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 643 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 644 | lemma singleton_sup_single_single: | 
| 33111 | 645 | "singleton dfault (single x \<squnion> single y) = (if x = y then x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 646 | proof (cases "x = y") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 647 | case True then show ?thesis by (simp add: singleton_single) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 648 | next | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 649 | case False | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 650 | have "eval (single x \<squnion> single y) x" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 651 | and "eval (single x \<squnion> single y) y" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 652 | by (auto intro: supI1 supI2 singleI) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 653 | with False have "\<not> (\<exists>!z. eval (single x \<squnion> single y) z)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 654 | by blast | 
| 33111 | 655 | then have "singleton dfault (single x \<squnion> single y) = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 656 | by (rule singleton_undefinedI) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 657 | with False show ?thesis by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 658 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 659 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 660 | lemma singleton_sup_aux: | 
| 33110 | 661 | "singleton dfault (A \<squnion> B) = (if A = \<bottom> then singleton dfault B | 
| 662 | else if B = \<bottom> then singleton dfault A | |
| 663 | else singleton dfault | |
| 664 | (single (singleton dfault A) \<squnion> single (singleton dfault B)))" | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 665 | proof (cases "(\<exists>!x. eval A x) \<and> (\<exists>!y. eval B y)") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 666 | case True then show ?thesis by (simp add: single_singleton) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 667 | next | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 668 | case False | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 669 | from False have A_or_B: | 
| 33111 | 670 | "singleton dfault A = dfault () \<or> singleton dfault B = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 671 | by (auto intro!: singleton_undefinedI) | 
| 33110 | 672 | then have rhs: "singleton dfault | 
| 33111 | 673 | (single (singleton dfault A) \<squnion> single (singleton dfault B)) = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 674 | by (auto simp add: singleton_sup_single_single singleton_single) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 675 | from False have not_unique: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 676 | "\<not> (\<exists>!x. eval A x) \<or> \<not> (\<exists>!y. eval B y)" by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 677 | show ?thesis proof (cases "A \<noteq> \<bottom> \<and> B \<noteq> \<bottom>") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 678 | case True | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 679 | then obtain a b where a: "eval A a" and b: "eval B b" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 680 | by (blast elim: not_bot) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 681 | with True not_unique have "\<not> (\<exists>!x. eval (A \<squnion> B) x)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 682 | by (auto simp add: sup_pred_def bot_pred_def) | 
| 33111 | 683 | then have "singleton dfault (A \<squnion> B) = dfault ()" by (rule singleton_undefinedI) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 684 | with True rhs show ?thesis by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 685 | next | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 686 | case False then show ?thesis by auto | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 687 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 688 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 689 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 690 | lemma singleton_sup: | 
| 33110 | 691 | "singleton dfault (A \<squnion> B) = (if A = \<bottom> then singleton dfault B | 
| 692 | else if B = \<bottom> then singleton dfault A | |
| 33111 | 693 | else if singleton dfault A = singleton dfault B then singleton dfault A else dfault ())" | 
| 33110 | 694 | using singleton_sup_aux [of dfault A B] by (simp only: singleton_sup_single_single) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 695 | |
| 30328 | 696 | |
| 697 | subsubsection {* Derived operations *}
 | |
| 698 | ||
| 699 | definition if_pred :: "bool \<Rightarrow> unit pred" where | |
| 700 | if_pred_eq: "if_pred b = (if b then single () else \<bottom>)" | |
| 701 | ||
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 702 | definition holds :: "unit pred \<Rightarrow> bool" where | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 703 | holds_eq: "holds P = eval P ()" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 704 | |
| 30328 | 705 | definition not_pred :: "unit pred \<Rightarrow> unit pred" where | 
| 706 | not_pred_eq: "not_pred P = (if eval P () then \<bottom> else single ())" | |
| 707 | ||
| 708 | lemma if_predI: "P \<Longrightarrow> eval (if_pred P) ()" | |
| 709 | unfolding if_pred_eq by (auto intro: singleI) | |
| 710 | ||
| 711 | lemma if_predE: "eval (if_pred b) x \<Longrightarrow> (b \<Longrightarrow> x = () \<Longrightarrow> P) \<Longrightarrow> P" | |
| 712 | unfolding if_pred_eq by (cases b) (auto elim: botE) | |
| 713 | ||
| 714 | lemma not_predI: "\<not> P \<Longrightarrow> eval (not_pred (Pred (\<lambda>u. P))) ()" | |
| 715 | unfolding not_pred_eq eval_pred by (auto intro: singleI) | |
| 716 | ||
| 717 | lemma not_predI': "\<not> eval P () \<Longrightarrow> eval (not_pred P) ()" | |
| 718 | unfolding not_pred_eq by (auto intro: singleI) | |
| 719 | ||
| 720 | lemma not_predE: "eval (not_pred (Pred (\<lambda>u. P))) x \<Longrightarrow> (\<not> P \<Longrightarrow> thesis) \<Longrightarrow> thesis" | |
| 721 | unfolding not_pred_eq | |
| 722 | by (auto split: split_if_asm elim: botE) | |
| 723 | ||
| 724 | lemma not_predE': "eval (not_pred P) x \<Longrightarrow> (\<not> eval P x \<Longrightarrow> thesis) \<Longrightarrow> thesis" | |
| 725 | unfolding not_pred_eq | |
| 726 | by (auto split: split_if_asm elim: botE) | |
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 727 | lemma "f () = False \<or> f () = True" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 728 | by simp | 
| 30328 | 729 | |
| 37549 | 730 | lemma closure_of_bool_cases [no_atp]: | 
| 44007 | 731 | fixes f :: "unit \<Rightarrow> bool" | 
| 732 | assumes "f = (\<lambda>u. False) \<Longrightarrow> P f" | |
| 733 | assumes "f = (\<lambda>u. True) \<Longrightarrow> P f" | |
| 734 | shows "P f" | |
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 735 | proof - | 
| 44007 | 736 | have "f = (\<lambda>u. False) \<or> f = (\<lambda>u. True)" | 
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 737 | apply (cases "f ()") | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 738 | apply (rule disjI2) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 739 | apply (rule ext) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 740 | apply (simp add: unit_eq) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 741 | apply (rule disjI1) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 742 | apply (rule ext) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 743 | apply (simp add: unit_eq) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 744 | done | 
| 41550 | 745 | from this assms show ?thesis by blast | 
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 746 | qed | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 747 | |
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 748 | lemma unit_pred_cases: | 
| 44007 | 749 | assumes "P \<bottom>" | 
| 750 | assumes "P (single ())" | |
| 751 | shows "P Q" | |
| 44415 | 752 | using assms unfolding bot_pred_def bot_fun_def bot_bool_def empty_def single_def proof (cases Q) | 
| 44007 | 753 | fix f | 
| 754 | assume "P (Pred (\<lambda>u. False))" "P (Pred (\<lambda>u. () = u))" | |
| 755 | then have "P (Pred f)" | |
| 756 | by (cases _ f rule: closure_of_bool_cases) simp_all | |
| 757 | moreover assume "Q = Pred f" | |
| 758 | ultimately show "P Q" by simp | |
| 759 | qed | |
| 760 | ||
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 761 | lemma holds_if_pred: | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 762 | "holds (if_pred b) = b" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 763 | unfolding if_pred_eq holds_eq | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 764 | by (cases b) (auto intro: singleI elim: botE) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 765 | |
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 766 | lemma if_pred_holds: | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 767 | "if_pred (holds P) = P" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 768 | unfolding if_pred_eq holds_eq | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 769 | by (rule unit_pred_cases) (auto intro: singleI elim: botE) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 770 | |
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 771 | lemma is_empty_holds: | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 772 | "is_empty P \<longleftrightarrow> \<not> holds P" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 773 | unfolding is_empty_def holds_eq | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 774 | by (rule unit_pred_cases) (auto elim: botE intro: singleI) | 
| 30328 | 775 | |
| 41311 | 776 | definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a pred \<Rightarrow> 'b pred" where
 | 
| 777 | "map f P = P \<guillemotright>= (single o f)" | |
| 778 | ||
| 779 | lemma eval_map [simp]: | |
| 44363 | 780 |   "eval (map f P) = (\<Squnion>x\<in>{x. eval P x}. (\<lambda>y. f x = y))"
 | 
| 44415 | 781 | by (auto simp add: map_def comp_def) | 
| 41311 | 782 | |
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41372diff
changeset | 783 | enriched_type map: map | 
| 44363 | 784 | by (rule ext, rule pred_eqI, auto)+ | 
| 41311 | 785 | |
| 786 | ||
| 30328 | 787 | subsubsection {* Implementation *}
 | 
| 788 | ||
| 789 | datatype 'a seq = Empty | Insert "'a" "'a pred" | Join "'a pred" "'a seq" | |
| 790 | ||
| 791 | primrec pred_of_seq :: "'a seq \<Rightarrow> 'a pred" where | |
| 44414 | 792 | "pred_of_seq Empty = \<bottom>" | 
| 793 | | "pred_of_seq (Insert x P) = single x \<squnion> P" | |
| 794 | | "pred_of_seq (Join P xq) = P \<squnion> pred_of_seq xq" | |
| 30328 | 795 | |
| 796 | definition Seq :: "(unit \<Rightarrow> 'a seq) \<Rightarrow> 'a pred" where | |
| 797 | "Seq f = pred_of_seq (f ())" | |
| 798 | ||
| 799 | code_datatype Seq | |
| 800 | ||
| 801 | primrec member :: "'a seq \<Rightarrow> 'a \<Rightarrow> bool" where | |
| 802 | "member Empty x \<longleftrightarrow> False" | |
| 44414 | 803 | | "member (Insert y P) x \<longleftrightarrow> x = y \<or> eval P x" | 
| 804 | | "member (Join P xq) x \<longleftrightarrow> eval P x \<or> member xq x" | |
| 30328 | 805 | |
| 806 | lemma eval_member: | |
| 807 | "member xq = eval (pred_of_seq xq)" | |
| 808 | proof (induct xq) | |
| 809 | case Empty show ?case | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 810 | by (auto simp add: fun_eq_iff elim: botE) | 
| 30328 | 811 | next | 
| 812 | case Insert show ?case | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 813 | by (auto simp add: fun_eq_iff elim: supE singleE intro: supI1 supI2 singleI) | 
| 30328 | 814 | next | 
| 815 | case Join then show ?case | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 816 | by (auto simp add: fun_eq_iff elim: supE intro: supI1 supI2) | 
| 30328 | 817 | qed | 
| 818 | ||
| 819 | lemma eval_code [code]: "eval (Seq f) = member (f ())" | |
| 820 | unfolding Seq_def by (rule sym, rule eval_member) | |
| 821 | ||
| 822 | lemma single_code [code]: | |
| 823 | "single x = Seq (\<lambda>u. Insert x \<bottom>)" | |
| 824 | unfolding Seq_def by simp | |
| 825 | ||
| 41080 | 826 | primrec "apply" :: "('a \<Rightarrow> 'b pred) \<Rightarrow> 'a seq \<Rightarrow> 'b seq" where
 | 
| 44415 | 827 | "apply f Empty = Empty" | 
| 828 | | "apply f (Insert x P) = Join (f x) (Join (P \<guillemotright>= f) Empty)" | |
| 829 | | "apply f (Join P xq) = Join (P \<guillemotright>= f) (apply f xq)" | |
| 30328 | 830 | |
| 831 | lemma apply_bind: | |
| 832 | "pred_of_seq (apply f xq) = pred_of_seq xq \<guillemotright>= f" | |
| 833 | proof (induct xq) | |
| 834 | case Empty show ?case | |
| 835 | by (simp add: bottom_bind) | |
| 836 | next | |
| 837 | case Insert show ?case | |
| 838 | by (simp add: single_bind sup_bind) | |
| 839 | next | |
| 840 | case Join then show ?case | |
| 841 | by (simp add: sup_bind) | |
| 842 | qed | |
| 843 | ||
| 844 | lemma bind_code [code]: | |
| 845 | "Seq g \<guillemotright>= f = Seq (\<lambda>u. apply f (g ()))" | |
| 846 | unfolding Seq_def by (rule sym, rule apply_bind) | |
| 847 | ||
| 848 | lemma bot_set_code [code]: | |
| 849 | "\<bottom> = Seq (\<lambda>u. Empty)" | |
| 850 | unfolding Seq_def by simp | |
| 851 | ||
| 30376 | 852 | primrec adjunct :: "'a pred \<Rightarrow> 'a seq \<Rightarrow> 'a seq" where | 
| 44415 | 853 | "adjunct P Empty = Join P Empty" | 
| 854 | | "adjunct P (Insert x Q) = Insert x (Q \<squnion> P)" | |
| 855 | | "adjunct P (Join Q xq) = Join Q (adjunct P xq)" | |
| 30376 | 856 | |
| 857 | lemma adjunct_sup: | |
| 858 | "pred_of_seq (adjunct P xq) = P \<squnion> pred_of_seq xq" | |
| 859 | by (induct xq) (simp_all add: sup_assoc sup_commute sup_left_commute) | |
| 860 | ||
| 30328 | 861 | lemma sup_code [code]: | 
| 862 | "Seq f \<squnion> Seq g = Seq (\<lambda>u. case f () | |
| 863 | of Empty \<Rightarrow> g () | |
| 864 | | Insert x P \<Rightarrow> Insert x (P \<squnion> Seq g) | |
| 30376 | 865 | | Join P xq \<Rightarrow> adjunct (Seq g) (Join P xq))" | 
| 30328 | 866 | proof (cases "f ()") | 
| 867 | case Empty | |
| 868 | thus ?thesis | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33988diff
changeset | 869 | unfolding Seq_def by (simp add: sup_commute [of "\<bottom>"]) | 
| 30328 | 870 | next | 
| 871 | case Insert | |
| 872 | thus ?thesis | |
| 873 | unfolding Seq_def by (simp add: sup_assoc) | |
| 874 | next | |
| 875 | case Join | |
| 876 | thus ?thesis | |
| 30376 | 877 | unfolding Seq_def | 
| 878 | by (simp add: adjunct_sup sup_assoc sup_commute sup_left_commute) | |
| 30328 | 879 | qed | 
| 880 | ||
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 881 | primrec contained :: "'a seq \<Rightarrow> 'a pred \<Rightarrow> bool" where | 
| 44415 | 882 | "contained Empty Q \<longleftrightarrow> True" | 
| 883 | | "contained (Insert x P) Q \<longleftrightarrow> eval Q x \<and> P \<le> Q" | |
| 884 | | "contained (Join P xq) Q \<longleftrightarrow> P \<le> Q \<and> contained xq Q" | |
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 885 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 886 | lemma single_less_eq_eval: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 887 | "single x \<le> P \<longleftrightarrow> eval P x" | 
| 44415 | 888 | by (auto simp add: less_eq_pred_def le_fun_def) | 
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 889 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 890 | lemma contained_less_eq: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 891 | "contained xq Q \<longleftrightarrow> pred_of_seq xq \<le> Q" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 892 | by (induct xq) (simp_all add: single_less_eq_eval) | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 893 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 894 | lemma less_eq_pred_code [code]: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 895 | "Seq f \<le> Q = (case f () | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 896 | of Empty \<Rightarrow> True | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 897 | | Insert x P \<Rightarrow> eval Q x \<and> P \<le> Q | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 898 | | Join P xq \<Rightarrow> P \<le> Q \<and> contained xq Q)" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 899 | by (cases "f ()") | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 900 | (simp_all add: Seq_def single_less_eq_eval contained_less_eq) | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 901 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 902 | lemma eq_pred_code [code]: | 
| 31133 | 903 | fixes P Q :: "'a pred" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 904 | shows "HOL.equal P Q \<longleftrightarrow> P \<le> Q \<and> Q \<le> P" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 905 | by (auto simp add: equal) | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 906 | |
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 907 | lemma [code nbe]: | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 908 | "HOL.equal (x :: 'a pred) x \<longleftrightarrow> True" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 909 | by (fact equal_refl) | 
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 910 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 911 | lemma [code]: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 912 | "pred_case f P = f (eval P)" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 913 | by (cases P) simp | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 914 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 915 | lemma [code]: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 916 | "pred_rec f P = f (eval P)" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 917 | by (cases P) simp | 
| 30328 | 918 | |
| 31105 
95f66b234086
added general preprocessing of equality in predicates for code generation
 bulwahn parents: 
30430diff
changeset | 919 | inductive eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where "eq x x" | 
| 
95f66b234086
added general preprocessing of equality in predicates for code generation
 bulwahn parents: 
30430diff
changeset | 920 | |
| 
95f66b234086
added general preprocessing of equality in predicates for code generation
 bulwahn parents: 
30430diff
changeset | 921 | lemma eq_is_eq: "eq x y \<equiv> (x = y)" | 
| 31108 | 922 | by (rule eq_reflection) (auto intro: eq.intros elim: eq.cases) | 
| 30948 | 923 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 924 | primrec null :: "'a seq \<Rightarrow> bool" where | 
| 44415 | 925 | "null Empty \<longleftrightarrow> True" | 
| 926 | | "null (Insert x P) \<longleftrightarrow> False" | |
| 927 | | "null (Join P xq) \<longleftrightarrow> is_empty P \<and> null xq" | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 928 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 929 | lemma null_is_empty: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 930 | "null xq \<longleftrightarrow> is_empty (pred_of_seq xq)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 931 | by (induct xq) (simp_all add: is_empty_bot not_is_empty_single is_empty_sup) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 932 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 933 | lemma is_empty_code [code]: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 934 | "is_empty (Seq f) \<longleftrightarrow> null (f ())" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 935 | by (simp add: null_is_empty Seq_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 936 | |
| 33111 | 937 | primrec the_only :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a seq \<Rightarrow> 'a" where | 
| 938 | [code del]: "the_only dfault Empty = dfault ()" | |
| 44415 | 939 | | "the_only dfault (Insert x P) = (if is_empty P then x else let y = singleton dfault P in if x = y then x else dfault ())" | 
| 940 | | "the_only dfault (Join P xq) = (if is_empty P then the_only dfault xq else if null xq then singleton dfault P | |
| 33110 | 941 | else let x = singleton dfault P; y = the_only dfault xq in | 
| 33111 | 942 | if x = y then x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 943 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 944 | lemma the_only_singleton: | 
| 33110 | 945 | "the_only dfault xq = singleton dfault (pred_of_seq xq)" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 946 | by (induct xq) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 947 | (auto simp add: singleton_bot singleton_single is_empty_def | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 948 | null_is_empty Let_def singleton_sup) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 949 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 950 | lemma singleton_code [code]: | 
| 33110 | 951 | "singleton dfault (Seq f) = (case f () | 
| 33111 | 952 | of Empty \<Rightarrow> dfault () | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 953 | | Insert x P \<Rightarrow> if is_empty P then x | 
| 33110 | 954 | else let y = singleton dfault P in | 
| 33111 | 955 | if x = y then x else dfault () | 
| 33110 | 956 | | Join P xq \<Rightarrow> if is_empty P then the_only dfault xq | 
| 957 | else if null xq then singleton dfault P | |
| 958 | else let x = singleton dfault P; y = the_only dfault xq in | |
| 33111 | 959 | if x = y then x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 960 | by (cases "f ()") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 961 | (auto simp add: Seq_def the_only_singleton is_empty_def | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 962 | null_is_empty singleton_bot singleton_single singleton_sup Let_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 963 | |
| 44414 | 964 | definition the :: "'a pred \<Rightarrow> 'a" where | 
| 37767 | 965 | "the A = (THE x. eval A x)" | 
| 33111 | 966 | |
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 967 | lemma the_eqI: | 
| 41080 | 968 | "(THE x. eval P x) = x \<Longrightarrow> the P = x" | 
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 969 | by (simp add: the_def) | 
| 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 970 | |
| 44414 | 971 | definition not_unique :: "'a pred \<Rightarrow> 'a" where | 
| 972 | [code del]: "not_unique A = (THE x. eval A x)" | |
| 973 | ||
| 974 | code_abort not_unique | |
| 975 | ||
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 976 | lemma the_eq [code]: "the A = singleton (\<lambda>x. not_unique A) A" | 
| 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 977 | by (rule the_eqI) (simp add: singleton_def not_unique_def) | 
| 33110 | 978 | |
| 36531 
19f6e3b0d9b6
code_reflect: specify module name directly after keyword
 haftmann parents: 
36513diff
changeset | 979 | code_reflect Predicate | 
| 36513 | 980 | datatypes pred = Seq and seq = Empty | Insert | Join | 
| 981 | functions map | |
| 982 | ||
| 30948 | 983 | ML {*
 | 
| 984 | signature PREDICATE = | |
| 985 | sig | |
| 986 | datatype 'a pred = Seq of (unit -> 'a seq) | |
| 987 | and 'a seq = Empty | Insert of 'a * 'a pred | Join of 'a pred * 'a seq | |
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 988 |   val yield: 'a pred -> ('a * 'a pred) option
 | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 989 | val yieldn: int -> 'a pred -> 'a list * 'a pred | 
| 31222 | 990 |   val map: ('a -> 'b) -> 'a pred -> 'b pred
 | 
| 30948 | 991 | end; | 
| 992 | ||
| 993 | structure Predicate : PREDICATE = | |
| 994 | struct | |
| 995 | ||
| 36513 | 996 | datatype pred = datatype Predicate.pred | 
| 997 | datatype seq = datatype Predicate.seq | |
| 998 | ||
| 999 | fun map f = Predicate.map f; | |
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 1000 | |
| 36513 | 1001 | fun yield (Seq f) = next (f ()) | 
| 1002 | and next Empty = NONE | |
| 1003 | | next (Insert (x, P)) = SOME (x, P) | |
| 1004 | | next (Join (P, xq)) = (case yield P | |
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 1005 | of NONE => next xq | 
| 36513 | 1006 | | SOME (x, Q) => SOME (x, Seq (fn _ => Join (Q, xq)))); | 
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 1007 | |
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 1008 | fun anamorph f k x = (if k = 0 then ([], x) | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 1009 | else case f x | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 1010 | of NONE => ([], x) | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 1011 | | SOME (v, y) => let | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 1012 | val (vs, z) = anamorph f (k - 1) y | 
| 33607 | 1013 | in (v :: vs, z) end); | 
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 1014 | |
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 1015 | fun yieldn P = anamorph yield P; | 
| 30948 | 1016 | |
| 1017 | end; | |
| 1018 | *} | |
| 1019 | ||
| 44363 | 1020 | lemma eval_mem [simp]: | 
| 1021 | "x \<in> eval P \<longleftrightarrow> eval P x" | |
| 1022 | by (simp add: mem_def) | |
| 1023 | ||
| 1024 | lemma eq_mem [simp]: | |
| 1025 | "x \<in> (op =) y \<longleftrightarrow> x = y" | |
| 1026 | by (auto simp add: mem_def) | |
| 1027 | ||
| 30328 | 1028 | no_notation | 
| 41082 | 1029 |   bot ("\<bottom>") and
 | 
| 1030 |   top ("\<top>") and
 | |
| 30328 | 1031 | inf (infixl "\<sqinter>" 70) and | 
| 1032 | sup (infixl "\<squnion>" 65) and | |
| 1033 |   Inf ("\<Sqinter>_" [900] 900) and
 | |
| 1034 |   Sup ("\<Squnion>_" [900] 900) and
 | |
| 1035 | bind (infixl "\<guillemotright>=" 70) | |
| 1036 | ||
| 41080 | 1037 | no_syntax (xsymbols) | 
| 41082 | 1038 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
 | 
| 1039 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 41080 | 1040 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
 | 
| 1041 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 1042 | ||
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36008diff
changeset | 1043 | hide_type (open) pred seq | 
| 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36008diff
changeset | 1044 | hide_const (open) Pred eval single bind is_empty singleton if_pred not_pred holds | 
| 33111 | 1045 | Empty Insert Join Seq member pred_of_seq "apply" adjunct null the_only eq map not_unique the | 
| 30328 | 1046 | |
| 1047 | end |