author | huffman |
Mon, 20 Aug 2007 19:52:52 +0200 | |
changeset 24355 | 93d78fdeb55a |
parent 24286 | 7619080e49f0 |
child 25886 | 7753e0d81b7a |
permissions | -rw-r--r-- |
1475 | 1 |
(* Title: HOL/Fun.thy |
923 | 2 |
ID: $Id$ |
1475 | 3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
923 | 4 |
Copyright 1994 University of Cambridge |
18154 | 5 |
*) |
923 | 6 |
|
18154 | 7 |
header {* Notions about functions *} |
923 | 8 |
|
15510 | 9 |
theory Fun |
22886 | 10 |
imports Set |
15131 | 11 |
begin |
2912 | 12 |
|
13585 | 13 |
constdefs |
14 |
fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" |
|
22886 | 15 |
"fun_upd f a b == % x. if x=a then b else f x" |
6171 | 16 |
|
9141 | 17 |
nonterminals |
18 |
updbinds updbind |
|
5305 | 19 |
syntax |
13585 | 20 |
"_updbind" :: "['a, 'a] => updbind" ("(2_ :=/ _)") |
21 |
"" :: "updbind => updbinds" ("_") |
|
22 |
"_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _") |
|
23 |
"_Update" :: "['a, updbinds] => 'a" ("_/'((_)')" [1000,0] 900) |
|
5305 | 24 |
|
25 |
translations |
|
26 |
"_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" |
|
27 |
"f(x:=y)" == "fun_upd f x y" |
|
2912 | 28 |
|
9340 | 29 |
(* Hint: to define the sum of two functions (or maps), use sum_case. |
30 |
A nice infix syntax could be defined (in Datatype.thy or below) by |
|
31 |
consts |
|
32 |
fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80) |
|
33 |
translations |
|
13585 | 34 |
"fun_sum" == sum_case |
9340 | 35 |
*) |
12258 | 36 |
|
22744
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
37 |
definition |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
38 |
override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b" |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
39 |
where |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
40 |
"override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)" |
6171 | 41 |
|
22744
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
42 |
definition |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
43 |
id :: "'a \<Rightarrow> 'a" |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
44 |
where |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
45 |
"id = (\<lambda>x. x)" |
13910 | 46 |
|
22744
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
47 |
definition |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
48 |
comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55) |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
49 |
where |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
50 |
"f o g = (\<lambda>x. f (g x))" |
11123 | 51 |
|
21210 | 52 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19536
diff
changeset
|
53 |
comp (infixl "\<circ>" 55) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19536
diff
changeset
|
54 |
|
21210 | 55 |
notation (HTML output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19536
diff
changeset
|
56 |
comp (infixl "\<circ>" 55) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19536
diff
changeset
|
57 |
|
13585 | 58 |
text{*compatibility*} |
59 |
lemmas o_def = comp_def |
|
2912 | 60 |
|
13585 | 61 |
constdefs |
62 |
inj_on :: "['a => 'b, 'a set] => bool" (*injective*) |
|
19363 | 63 |
"inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y" |
6171 | 64 |
|
13585 | 65 |
text{*A common special case: functions injective over the entire domain type.*} |
19323 | 66 |
|
19363 | 67 |
abbreviation |
68 |
"inj f == inj_on f UNIV" |
|
5852 | 69 |
|
7374 | 70 |
constdefs |
13585 | 71 |
surj :: "('a => 'b) => bool" (*surjective*) |
19363 | 72 |
"surj f == ! y. ? x. y=f(x)" |
12258 | 73 |
|
13585 | 74 |
bij :: "('a => 'b) => bool" (*bijective*) |
19363 | 75 |
"bij f == inj f & surj f" |
12258 | 76 |
|
7374 | 77 |
|
13585 | 78 |
|
79 |
text{*As a simplification rule, it replaces all function equalities by |
|
80 |
first-order equalities.*} |
|
21327 | 81 |
lemma expand_fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)" |
13585 | 82 |
apply (rule iffI) |
83 |
apply (simp (no_asm_simp)) |
|
21327 | 84 |
apply (rule ext) |
85 |
apply (simp (no_asm_simp)) |
|
13585 | 86 |
done |
87 |
||
88 |
lemma apply_inverse: |
|
89 |
"[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)" |
|
90 |
by auto |
|
91 |
||
92 |
||
93 |
text{*The Identity Function: @{term id}*} |
|
94 |
lemma id_apply [simp]: "id x = x" |
|
95 |
by (simp add: id_def) |
|
96 |
||
16733
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15691
diff
changeset
|
97 |
lemma inj_on_id[simp]: "inj_on id A" |
15510 | 98 |
by (simp add: inj_on_def) |
99 |
||
16733
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15691
diff
changeset
|
100 |
lemma inj_on_id2[simp]: "inj_on (%x. x) A" |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15691
diff
changeset
|
101 |
by (simp add: inj_on_def) |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15691
diff
changeset
|
102 |
|
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15691
diff
changeset
|
103 |
lemma surj_id[simp]: "surj id" |
15510 | 104 |
by (simp add: surj_def) |
105 |
||
16733
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15691
diff
changeset
|
106 |
lemma bij_id[simp]: "bij id" |
15510 | 107 |
by (simp add: bij_def inj_on_id surj_id) |
108 |
||
109 |
||
13585 | 110 |
|
111 |
subsection{*The Composition Operator: @{term "f \<circ> g"}*} |
|
112 |
||
113 |
lemma o_apply [simp]: "(f o g) x = f (g x)" |
|
114 |
by (simp add: comp_def) |
|
115 |
||
116 |
lemma o_assoc: "f o (g o h) = f o g o h" |
|
117 |
by (simp add: comp_def) |
|
118 |
||
119 |
lemma id_o [simp]: "id o g = g" |
|
120 |
by (simp add: comp_def) |
|
121 |
||
122 |
lemma o_id [simp]: "f o id = f" |
|
123 |
by (simp add: comp_def) |
|
124 |
||
125 |
lemma image_compose: "(f o g) ` r = f`(g`r)" |
|
126 |
by (simp add: comp_def, blast) |
|
127 |
||
128 |
lemma image_eq_UN: "f`A = (UN x:A. {f x})" |
|
129 |
by blast |
|
130 |
||
131 |
lemma UN_o: "UNION A (g o f) = UNION (f`A) g" |
|
132 |
by (unfold comp_def, blast) |
|
133 |
||
134 |
||
135 |
subsection{*The Injectivity Predicate, @{term inj}*} |
|
136 |
||
137 |
text{*NB: @{term inj} now just translates to @{term inj_on}*} |
|
138 |
||
139 |
||
140 |
text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*} |
|
141 |
lemma datatype_injI: |
|
142 |
"(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)" |
|
143 |
by (simp add: inj_on_def) |
|
144 |
||
13637 | 145 |
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)" |
146 |
by (unfold inj_on_def, blast) |
|
147 |
||
13585 | 148 |
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y" |
149 |
by (simp add: inj_on_def) |
|
150 |
||
151 |
(*Useful with the simplifier*) |
|
152 |
lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)" |
|
153 |
by (force simp add: inj_on_def) |
|
154 |
||
155 |
||
156 |
subsection{*The Predicate @{term inj_on}: Injectivity On A Restricted Domain*} |
|
157 |
||
158 |
lemma inj_onI: |
|
159 |
"(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A" |
|
160 |
by (simp add: inj_on_def) |
|
161 |
||
162 |
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A" |
|
163 |
by (auto dest: arg_cong [of concl: g] simp add: inj_on_def) |
|
164 |
||
165 |
lemma inj_onD: "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y" |
|
166 |
by (unfold inj_on_def, blast) |
|
167 |
||
168 |
lemma inj_on_iff: "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)" |
|
169 |
by (blast dest!: inj_onD) |
|
170 |
||
171 |
lemma comp_inj_on: |
|
172 |
"[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A" |
|
173 |
by (simp add: comp_def inj_on_def) |
|
174 |
||
15303 | 175 |
lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)" |
176 |
apply(simp add:inj_on_def image_def) |
|
177 |
apply blast |
|
178 |
done |
|
179 |
||
15439 | 180 |
lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y); |
181 |
inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A" |
|
182 |
apply(unfold inj_on_def) |
|
183 |
apply blast |
|
184 |
done |
|
185 |
||
13585 | 186 |
lemma inj_on_contraD: "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)" |
187 |
by (unfold inj_on_def, blast) |
|
12258 | 188 |
|
13585 | 189 |
lemma inj_singleton: "inj (%s. {s})" |
190 |
by (simp add: inj_on_def) |
|
191 |
||
15111 | 192 |
lemma inj_on_empty[iff]: "inj_on f {}" |
193 |
by(simp add: inj_on_def) |
|
194 |
||
15303 | 195 |
lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A" |
13585 | 196 |
by (unfold inj_on_def, blast) |
197 |
||
15111 | 198 |
lemma inj_on_Un: |
199 |
"inj_on f (A Un B) = |
|
200 |
(inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})" |
|
201 |
apply(unfold inj_on_def) |
|
202 |
apply (blast intro:sym) |
|
203 |
done |
|
204 |
||
205 |
lemma inj_on_insert[iff]: |
|
206 |
"inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))" |
|
207 |
apply(unfold inj_on_def) |
|
208 |
apply (blast intro:sym) |
|
209 |
done |
|
210 |
||
211 |
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)" |
|
212 |
apply(unfold inj_on_def) |
|
213 |
apply (blast) |
|
214 |
done |
|
215 |
||
13585 | 216 |
|
217 |
subsection{*The Predicate @{term surj}: Surjectivity*} |
|
218 |
||
219 |
lemma surjI: "(!! x. g(f x) = x) ==> surj g" |
|
220 |
apply (simp add: surj_def) |
|
221 |
apply (blast intro: sym) |
|
222 |
done |
|
223 |
||
224 |
lemma surj_range: "surj f ==> range f = UNIV" |
|
225 |
by (auto simp add: surj_def) |
|
226 |
||
227 |
lemma surjD: "surj f ==> EX x. y = f x" |
|
228 |
by (simp add: surj_def) |
|
229 |
||
230 |
lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C" |
|
231 |
by (simp add: surj_def, blast) |
|
232 |
||
233 |
lemma comp_surj: "[| surj f; surj g |] ==> surj (g o f)" |
|
234 |
apply (simp add: comp_def surj_def, clarify) |
|
235 |
apply (drule_tac x = y in spec, clarify) |
|
236 |
apply (drule_tac x = x in spec, blast) |
|
237 |
done |
|
238 |
||
239 |
||
240 |
||
241 |
subsection{*The Predicate @{term bij}: Bijectivity*} |
|
242 |
||
243 |
lemma bijI: "[| inj f; surj f |] ==> bij f" |
|
244 |
by (simp add: bij_def) |
|
245 |
||
246 |
lemma bij_is_inj: "bij f ==> inj f" |
|
247 |
by (simp add: bij_def) |
|
248 |
||
249 |
lemma bij_is_surj: "bij f ==> surj f" |
|
250 |
by (simp add: bij_def) |
|
251 |
||
252 |
||
253 |
subsection{*Facts About the Identity Function*} |
|
5852 | 254 |
|
13585 | 255 |
text{*We seem to need both the @{term id} forms and the @{term "\<lambda>x. x"} |
256 |
forms. The latter can arise by rewriting, while @{term id} may be used |
|
257 |
explicitly.*} |
|
258 |
||
259 |
lemma image_ident [simp]: "(%x. x) ` Y = Y" |
|
260 |
by blast |
|
261 |
||
262 |
lemma image_id [simp]: "id ` Y = Y" |
|
263 |
by (simp add: id_def) |
|
264 |
||
265 |
lemma vimage_ident [simp]: "(%x. x) -` Y = Y" |
|
266 |
by blast |
|
267 |
||
268 |
lemma vimage_id [simp]: "id -` A = A" |
|
269 |
by (simp add: id_def) |
|
270 |
||
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
24017
diff
changeset
|
271 |
lemma vimage_image_eq [noatp]: "f -` (f ` A) = {y. EX x:A. f x = f y}" |
13585 | 272 |
by (blast intro: sym) |
273 |
||
274 |
lemma image_vimage_subset: "f ` (f -` A) <= A" |
|
275 |
by blast |
|
276 |
||
277 |
lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f" |
|
278 |
by blast |
|
279 |
||
280 |
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A" |
|
281 |
by (simp add: surj_range) |
|
282 |
||
283 |
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A" |
|
284 |
by (simp add: inj_on_def, blast) |
|
285 |
||
286 |
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A" |
|
287 |
apply (unfold surj_def) |
|
288 |
apply (blast intro: sym) |
|
289 |
done |
|
290 |
||
291 |
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A" |
|
292 |
by (unfold inj_on_def, blast) |
|
293 |
||
294 |
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)" |
|
295 |
apply (unfold bij_def) |
|
296 |
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD) |
|
297 |
done |
|
298 |
||
299 |
lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B" |
|
300 |
by blast |
|
301 |
||
302 |
lemma image_diff_subset: "f`A - f`B <= f`(A - B)" |
|
303 |
by blast |
|
5852 | 304 |
|
13585 | 305 |
lemma inj_on_image_Int: |
306 |
"[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B" |
|
307 |
apply (simp add: inj_on_def, blast) |
|
308 |
done |
|
309 |
||
310 |
lemma inj_on_image_set_diff: |
|
311 |
"[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B" |
|
312 |
apply (simp add: inj_on_def, blast) |
|
313 |
done |
|
314 |
||
315 |
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B" |
|
316 |
by (simp add: inj_on_def, blast) |
|
317 |
||
318 |
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B" |
|
319 |
by (simp add: inj_on_def, blast) |
|
320 |
||
321 |
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)" |
|
322 |
by (blast dest: injD) |
|
323 |
||
324 |
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)" |
|
325 |
by (simp add: inj_on_def, blast) |
|
326 |
||
327 |
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)" |
|
328 |
by (blast dest: injD) |
|
329 |
||
330 |
lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))" |
|
331 |
by blast |
|
332 |
||
333 |
(*injectivity's required. Left-to-right inclusion holds even if A is empty*) |
|
334 |
lemma image_INT: |
|
335 |
"[| inj_on f C; ALL x:A. B x <= C; j:A |] |
|
336 |
==> f ` (INTER A B) = (INT x:A. f ` B x)" |
|
337 |
apply (simp add: inj_on_def, blast) |
|
338 |
done |
|
339 |
||
340 |
(*Compare with image_INT: no use of inj_on, and if f is surjective then |
|
341 |
it doesn't matter whether A is empty*) |
|
342 |
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)" |
|
343 |
apply (simp add: bij_def) |
|
344 |
apply (simp add: inj_on_def surj_def, blast) |
|
345 |
done |
|
346 |
||
347 |
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)" |
|
348 |
by (auto simp add: surj_def) |
|
349 |
||
350 |
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)" |
|
351 |
by (auto simp add: inj_on_def) |
|
5852 | 352 |
|
13585 | 353 |
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)" |
354 |
apply (simp add: bij_def) |
|
355 |
apply (rule equalityI) |
|
356 |
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset) |
|
357 |
done |
|
358 |
||
359 |
||
360 |
subsection{*Function Updating*} |
|
361 |
||
362 |
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)" |
|
363 |
apply (simp add: fun_upd_def, safe) |
|
364 |
apply (erule subst) |
|
365 |
apply (rule_tac [2] ext, auto) |
|
366 |
done |
|
367 |
||
368 |
(* f x = y ==> f(x:=y) = f *) |
|
369 |
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard] |
|
370 |
||
371 |
(* f(x := f x) = f *) |
|
17084
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
16973
diff
changeset
|
372 |
lemmas fun_upd_triv = refl [THEN fun_upd_idem] |
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
16973
diff
changeset
|
373 |
declare fun_upd_triv [iff] |
13585 | 374 |
|
375 |
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)" |
|
17084
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
16973
diff
changeset
|
376 |
by (simp add: fun_upd_def) |
13585 | 377 |
|
378 |
(* fun_upd_apply supersedes these two, but they are useful |
|
379 |
if fun_upd_apply is intentionally removed from the simpset *) |
|
380 |
lemma fun_upd_same: "(f(x:=y)) x = y" |
|
381 |
by simp |
|
382 |
||
383 |
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z" |
|
384 |
by simp |
|
385 |
||
386 |
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)" |
|
387 |
by (simp add: expand_fun_eq) |
|
388 |
||
389 |
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)" |
|
390 |
by (rule ext, auto) |
|
391 |
||
15303 | 392 |
lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A" |
393 |
by(fastsimp simp:inj_on_def image_def) |
|
394 |
||
15510 | 395 |
lemma fun_upd_image: |
396 |
"f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)" |
|
397 |
by auto |
|
398 |
||
15691 | 399 |
subsection{* @{text override_on} *} |
13910 | 400 |
|
15691 | 401 |
lemma override_on_emptyset[simp]: "override_on f g {} = f" |
402 |
by(simp add:override_on_def) |
|
13910 | 403 |
|
15691 | 404 |
lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a" |
405 |
by(simp add:override_on_def) |
|
13910 | 406 |
|
15691 | 407 |
lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a" |
408 |
by(simp add:override_on_def) |
|
13910 | 409 |
|
15510 | 410 |
subsection{* swap *} |
411 |
||
22744
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
412 |
definition |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
413 |
swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
414 |
where |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
415 |
"swap a b f = f (a := f b, b:= f a)" |
15510 | 416 |
|
417 |
lemma swap_self: "swap a a f = f" |
|
15691 | 418 |
by (simp add: swap_def) |
15510 | 419 |
|
420 |
lemma swap_commute: "swap a b f = swap b a f" |
|
421 |
by (rule ext, simp add: fun_upd_def swap_def) |
|
422 |
||
423 |
lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f" |
|
424 |
by (rule ext, simp add: fun_upd_def swap_def) |
|
425 |
||
426 |
lemma inj_on_imp_inj_on_swap: |
|
22744
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22577
diff
changeset
|
427 |
"[|inj_on f A; a \<in> A; b \<in> A|] ==> inj_on (swap a b f) A" |
15510 | 428 |
by (simp add: inj_on_def swap_def, blast) |
429 |
||
430 |
lemma inj_on_swap_iff [simp]: |
|
431 |
assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A = inj_on f A" |
|
432 |
proof |
|
433 |
assume "inj_on (swap a b f) A" |
|
434 |
with A have "inj_on (swap a b (swap a b f)) A" |
|
17589 | 435 |
by (iprover intro: inj_on_imp_inj_on_swap) |
15510 | 436 |
thus "inj_on f A" by simp |
437 |
next |
|
438 |
assume "inj_on f A" |
|
17589 | 439 |
with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap) |
15510 | 440 |
qed |
441 |
||
442 |
lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)" |
|
443 |
apply (simp add: surj_def swap_def, clarify) |
|
444 |
apply (rule_tac P = "y = f b" in case_split_thm, blast) |
|
445 |
apply (rule_tac P = "y = f a" in case_split_thm, auto) |
|
446 |
--{*We don't yet have @{text case_tac}*} |
|
447 |
done |
|
448 |
||
449 |
lemma surj_swap_iff [simp]: "surj (swap a b f) = surj f" |
|
450 |
proof |
|
451 |
assume "surj (swap a b f)" |
|
452 |
hence "surj (swap a b (swap a b f))" by (rule surj_imp_surj_swap) |
|
453 |
thus "surj f" by simp |
|
454 |
next |
|
455 |
assume "surj f" |
|
456 |
thus "surj (swap a b f)" by (rule surj_imp_surj_swap) |
|
457 |
qed |
|
458 |
||
459 |
lemma bij_swap_iff: "bij (swap a b f) = bij f" |
|
460 |
by (simp add: bij_def) |
|
21547
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
haftmann
parents:
21327
diff
changeset
|
461 |
|
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
haftmann
parents:
21327
diff
changeset
|
462 |
|
22845 | 463 |
subsection {* Proof tool setup *} |
464 |
||
465 |
text {* simplifies terms of the form |
|
466 |
f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *} |
|
467 |
||
24017 | 468 |
simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ => |
22845 | 469 |
let |
470 |
fun gen_fun_upd NONE T _ _ = NONE |
|
24017 | 471 |
| gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y) |
22845 | 472 |
fun dest_fun_T1 (Type (_, T :: Ts)) = T |
473 |
fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) = |
|
474 |
let |
|
475 |
fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) = |
|
476 |
if v aconv x then SOME g else gen_fun_upd (find g) T v w |
|
477 |
| find t = NONE |
|
478 |
in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end |
|
24017 | 479 |
|
480 |
fun proc ss ct = |
|
481 |
let |
|
482 |
val ctxt = Simplifier.the_context ss |
|
483 |
val t = Thm.term_of ct |
|
484 |
in |
|
485 |
case find_double t of |
|
486 |
(T, NONE) => NONE |
|
487 |
| (T, SOME rhs) => |
|
488 |
SOME (Goal.prove ctxt [] [] (Term.equals T $ t $ rhs) |
|
489 |
(fn _ => |
|
490 |
rtac eq_reflection 1 THEN |
|
491 |
rtac ext 1 THEN |
|
492 |
simp_tac (Simplifier.inherit_context ss @{simpset}) 1)) |
|
493 |
end |
|
494 |
in proc end |
|
22845 | 495 |
*} |
496 |
||
497 |
||
21870 | 498 |
subsection {* Code generator setup *} |
499 |
||
500 |
code_const "op \<circ>" |
|
501 |
(SML infixl 5 "o") |
|
502 |
(Haskell infixr 9 ".") |
|
503 |
||
21906 | 504 |
code_const "id" |
505 |
(Haskell "id") |
|
506 |
||
21870 | 507 |
|
21547
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
haftmann
parents:
21327
diff
changeset
|
508 |
subsection {* ML legacy bindings *} |
15510 | 509 |
|
22845 | 510 |
ML {* |
511 |
val set_cs = claset() delrules [equalityI] |
|
512 |
*} |
|
5852 | 513 |
|
22845 | 514 |
ML {* |
515 |
val id_apply = @{thm id_apply} |
|
516 |
val id_def = @{thm id_def} |
|
517 |
val o_apply = @{thm o_apply} |
|
518 |
val o_assoc = @{thm o_assoc} |
|
519 |
val o_def = @{thm o_def} |
|
520 |
val injD = @{thm injD} |
|
521 |
val datatype_injI = @{thm datatype_injI} |
|
522 |
val range_ex1_eq = @{thm range_ex1_eq} |
|
523 |
val expand_fun_eq = @{thm expand_fun_eq} |
|
13585 | 524 |
*} |
5852 | 525 |
|
2912 | 526 |
end |