| author | wenzelm |
| Thu, 04 Jan 2024 15:16:10 +0100 | |
| changeset 79419 | 93f26d333fb5 |
| parent 67406 | 23307fd33906 |
| permissions | -rw-r--r-- |
| 16417 | 1 |
theory Functions imports Main begin |
| 10294 | 2 |
|
3 |
||
| 67406 | 4 |
text\<open> |
| 10294 | 5 |
@{thm[display] id_def[no_vars]}
|
6 |
\rulename{id_def}
|
|
7 |
||
8 |
@{thm[display] o_def[no_vars]}
|
|
9 |
\rulename{o_def}
|
|
10 |
||
11 |
@{thm[display] o_assoc[no_vars]}
|
|
12 |
\rulename{o_assoc}
|
|
| 67406 | 13 |
\<close> |
| 10294 | 14 |
|
| 67406 | 15 |
text\<open> |
| 10294 | 16 |
@{thm[display] fun_upd_apply[no_vars]}
|
17 |
\rulename{fun_upd_apply}
|
|
18 |
||
19 |
@{thm[display] fun_upd_upd[no_vars]}
|
|
20 |
\rulename{fun_upd_upd}
|
|
| 67406 | 21 |
\<close> |
| 10294 | 22 |
|
23 |
||
| 67406 | 24 |
text\<open> |
| 10294 | 25 |
definitions of injective, surjective, bijective |
26 |
||
27 |
@{thm[display] inj_on_def[no_vars]}
|
|
28 |
\rulename{inj_on_def}
|
|
29 |
||
30 |
@{thm[display] surj_def[no_vars]}
|
|
31 |
\rulename{surj_def}
|
|
32 |
||
33 |
@{thm[display] bij_def[no_vars]}
|
|
34 |
\rulename{bij_def}
|
|
| 67406 | 35 |
\<close> |
| 10294 | 36 |
|
37 |
||
38 |
||
| 67406 | 39 |
text\<open> |
| 10294 | 40 |
possibly interesting theorems about inv |
| 67406 | 41 |
\<close> |
| 10294 | 42 |
|
| 67406 | 43 |
text\<open> |
| 10294 | 44 |
@{thm[display] inv_f_f[no_vars]}
|
45 |
\rulename{inv_f_f}
|
|
46 |
||
47 |
@{thm[display] inj_imp_surj_inv[no_vars]}
|
|
48 |
\rulename{inj_imp_surj_inv}
|
|
49 |
||
50 |
@{thm[display] surj_imp_inj_inv[no_vars]}
|
|
51 |
\rulename{surj_imp_inj_inv}
|
|
52 |
||
53 |
@{thm[display] surj_f_inv_f[no_vars]}
|
|
54 |
\rulename{surj_f_inv_f}
|
|
55 |
||
56 |
@{thm[display] bij_imp_bij_inv[no_vars]}
|
|
57 |
\rulename{bij_imp_bij_inv}
|
|
58 |
||
59 |
@{thm[display] inv_inv_eq[no_vars]}
|
|
60 |
\rulename{inv_inv_eq}
|
|
61 |
||
62 |
@{thm[display] o_inv_distrib[no_vars]}
|
|
63 |
\rulename{o_inv_distrib}
|
|
| 67406 | 64 |
\<close> |
| 10294 | 65 |
|
| 67406 | 66 |
text\<open> |
| 10294 | 67 |
small sample proof |
68 |
||
69 |
@{thm[display] ext[no_vars]}
|
|
70 |
\rulename{ext}
|
|
71 |
||
| 39795 | 72 |
@{thm[display] fun_eq_iff[no_vars]}
|
73 |
\rulename{fun_eq_iff}
|
|
| 67406 | 74 |
\<close> |
| 10294 | 75 |
|
| 58860 | 76 |
lemma "inj f \<Longrightarrow> (f o g = f o h) = (g = h)" |
| 39795 | 77 |
apply (simp add: fun_eq_iff inj_on_def) |
| 10294 | 78 |
apply (auto) |
79 |
done |
|
80 |
||
| 67406 | 81 |
text\<open> |
| 10294 | 82 |
\begin{isabelle}
|
83 |
inj\ f\ \isasymLongrightarrow \ (f\ \isasymcirc \ g\ =\ f\ \isasymcirc \ h)\ =\ (g\ =\ h)\isanewline |
|
84 |
\ 1.\ \isasymforall x\ y.\ f\ x\ =\ f\ y\ \isasymlongrightarrow \ x\ =\ y\ \isasymLongrightarrow \isanewline |
|
85 |
\ \ \ \ (\isasymforall x.\ f\ (g\ x)\ =\ f\ (h\ x))\ =\ (\isasymforall x.\ g\ x\ =\ h\ x) |
|
86 |
\end{isabelle}
|
|
| 67406 | 87 |
\<close> |
| 10294 | 88 |
|
89 |
||
| 67406 | 90 |
text\<open>image, inverse image\<close> |
| 10294 | 91 |
|
| 67406 | 92 |
text\<open> |
| 10294 | 93 |
@{thm[display] image_def[no_vars]}
|
94 |
\rulename{image_def}
|
|
| 67406 | 95 |
\<close> |
| 10294 | 96 |
|
| 67406 | 97 |
text\<open> |
| 10294 | 98 |
@{thm[display] image_Un[no_vars]}
|
99 |
\rulename{image_Un}
|
|
| 67406 | 100 |
\<close> |
| 10294 | 101 |
|
| 67406 | 102 |
text\<open> |
|
56154
f0a927235162
more complete set of lemmas wrt. image and composition
haftmann
parents:
48985
diff
changeset
|
103 |
@{thm[display] image_comp[no_vars]}
|
|
f0a927235162
more complete set of lemmas wrt. image and composition
haftmann
parents:
48985
diff
changeset
|
104 |
\rulename{image_comp}
|
| 10294 | 105 |
|
106 |
@{thm[display] image_Int[no_vars]}
|
|
107 |
\rulename{image_Int}
|
|
108 |
||
109 |
@{thm[display] bij_image_Compl_eq[no_vars]}
|
|
110 |
\rulename{bij_image_Compl_eq}
|
|
| 67406 | 111 |
\<close> |
| 10294 | 112 |
|
113 |
||
| 67406 | 114 |
text\<open> |
| 10294 | 115 |
illustrates Union as well as image |
| 67406 | 116 |
\<close> |
| 10849 | 117 |
|
| 10839 | 118 |
lemma "f`A \<union> g`A = (\<Union>x\<in>A. {f x, g x})"
|
| 10849 | 119 |
by blast |
| 10294 | 120 |
|
| 10839 | 121 |
lemma "f ` {(x,y). P x y} = {f(x,y) | x y. P x y}"
|
| 10849 | 122 |
by blast |
| 10294 | 123 |
|
| 67406 | 124 |
text\<open>actually a macro!\<close> |
| 10294 | 125 |
|
| 10839 | 126 |
lemma "range f = f`UNIV" |
| 10849 | 127 |
by blast |
| 10294 | 128 |
|
129 |
||
| 67406 | 130 |
text\<open> |
| 10294 | 131 |
inverse image |
| 67406 | 132 |
\<close> |
| 10294 | 133 |
|
| 67406 | 134 |
text\<open> |
| 10294 | 135 |
@{thm[display] vimage_def[no_vars]}
|
136 |
\rulename{vimage_def}
|
|
137 |
||
138 |
@{thm[display] vimage_Compl[no_vars]}
|
|
139 |
\rulename{vimage_Compl}
|
|
| 67406 | 140 |
\<close> |
| 10294 | 141 |
|
142 |
||
143 |
end |