| author | wenzelm | 
| Wed, 14 Oct 2009 23:44:37 +0200 | |
| changeset 32936 | 9491bec20595 | 
| parent 31723 | f5cafe803b55 | 
| child 32988 | d1d4d7a08a66 | 
| permissions | -rw-r--r-- | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 1 | (* Title: HOL/Hilbert_Choice.thy | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 2 | Author: Lawrence C Paulson | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 3 | Copyright 2001 University of Cambridge | 
| 12023 | 4 | *) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 5 | |
| 14760 | 6 | header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 7 | |
| 15131 | 8 | theory Hilbert_Choice | 
| 29655 
ac31940cfb69
Plain, Main form meeting points in import hierarchy
 haftmann parents: 
27760diff
changeset | 9 | imports Nat Wellfounded Plain | 
| 31723 
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
 haftmann parents: 
31454diff
changeset | 10 | uses ("Tools/meson.ML") ("Tools/choice_specification.ML")
 | 
| 15131 | 11 | begin | 
| 12298 | 12 | |
| 13 | subsection {* Hilbert's epsilon *}
 | |
| 14 | ||
| 31454 | 15 | axiomatization Eps :: "('a => bool) => 'a" where
 | 
| 22690 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 wenzelm parents: 
21999diff
changeset | 16 | someI: "P x ==> P (Eps P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 17 | |
| 14872 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 18 | syntax (epsilon) | 
| 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 19 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 20 | syntax (HOL) | 
| 12298 | 21 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 22 | syntax | 
| 12298 | 23 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 24 | translations | 
| 22690 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 wenzelm parents: 
21999diff
changeset | 25 | "SOME x. P" == "CONST Eps (%x. P)" | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 26 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 27 | print_translation {*
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 28 | (* to avoid eta-contraction of body *) | 
| 22690 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 wenzelm parents: 
21999diff
changeset | 29 | [(@{const_syntax Eps}, fn [Abs abs] =>
 | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 30 | let val (x,t) = atomic_abs_tr' abs | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 31 | in Syntax.const "_Eps" $ x $ t end)] | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 32 | *} | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 33 | |
| 12298 | 34 | constdefs | 
| 35 |   inv :: "('a => 'b) => ('b => 'a)"
 | |
| 36 | "inv(f :: 'a => 'b) == %y. SOME x. f x = y" | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 37 | |
| 12298 | 38 |   Inv :: "'a set => ('a => 'b) => ('b => 'a)"
 | 
| 14760 | 39 | "Inv A f == %x. SOME y. y \<in> A & f y = x" | 
| 40 | ||
| 41 | ||
| 42 | subsection {*Hilbert's Epsilon-operator*}
 | |
| 43 | ||
| 44 | text{*Easier to apply than @{text someI} if the witness comes from an
 | |
| 45 | existential formula*} | |
| 46 | lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)" | |
| 47 | apply (erule exE) | |
| 48 | apply (erule someI) | |
| 49 | done | |
| 50 | ||
| 51 | text{*Easier to apply than @{text someI} because the conclusion has only one
 | |
| 52 | occurrence of @{term P}.*}
 | |
| 53 | lemma someI2: "[| P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" | |
| 54 | by (blast intro: someI) | |
| 55 | ||
| 56 | text{*Easier to apply than @{text someI2} if the witness comes from an
 | |
| 57 | existential formula*} | |
| 58 | lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" | |
| 59 | by (blast intro: someI2) | |
| 60 | ||
| 61 | lemma some_equality [intro]: | |
| 62 | "[| P a; !!x. P x ==> x=a |] ==> (SOME x. P x) = a" | |
| 63 | by (blast intro: someI2) | |
| 64 | ||
| 65 | lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a" | |
| 66 | by (blast intro: some_equality) | |
| 67 | ||
| 68 | lemma some_eq_ex: "P (SOME x. P x) = (\<exists>x. P x)" | |
| 69 | by (blast intro: someI) | |
| 70 | ||
| 71 | lemma some_eq_trivial [simp]: "(SOME y. y=x) = x" | |
| 72 | apply (rule some_equality) | |
| 73 | apply (rule refl, assumption) | |
| 74 | done | |
| 75 | ||
| 76 | lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x" | |
| 77 | apply (rule some_equality) | |
| 78 | apply (rule refl) | |
| 79 | apply (erule sym) | |
| 80 | done | |
| 81 | ||
| 82 | ||
| 83 | subsection{*Axiom of Choice, Proved Using the Description Operator*}
 | |
| 84 | ||
| 85 | text{*Used in @{text "Tools/meson.ML"}*}
 | |
| 86 | lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)" | |
| 87 | by (fast elim: someI) | |
| 88 | ||
| 89 | lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)" | |
| 90 | by (fast elim: someI) | |
| 91 | ||
| 92 | ||
| 93 | subsection {*Function Inverse*}
 | |
| 94 | ||
| 95 | lemma inv_id [simp]: "inv id = id" | |
| 96 | by (simp add: inv_def id_def) | |
| 97 | ||
| 98 | text{*A one-to-one function has an inverse.*}
 | |
| 99 | lemma inv_f_f [simp]: "inj f ==> inv f (f x) = x" | |
| 100 | by (simp add: inv_def inj_eq) | |
| 101 | ||
| 102 | lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x" | |
| 103 | apply (erule subst) | |
| 104 | apply (erule inv_f_f) | |
| 105 | done | |
| 106 | ||
| 107 | lemma inj_imp_inv_eq: "[| inj f; \<forall>x. f(g x) = x |] ==> inv f = g" | |
| 108 | by (blast intro: ext inv_f_eq) | |
| 109 | ||
| 110 | text{*But is it useful?*}
 | |
| 111 | lemma inj_transfer: | |
| 112 | assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)" | |
| 113 | shows "P x" | |
| 114 | proof - | |
| 115 | have "f x \<in> range f" by auto | |
| 116 | hence "P(inv f (f x))" by (rule minor) | |
| 117 | thus "P x" by (simp add: inv_f_f [OF injf]) | |
| 118 | qed | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 119 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 120 | |
| 14760 | 121 | lemma inj_iff: "(inj f) = (inv f o f = id)" | 
| 122 | apply (simp add: o_def expand_fun_eq) | |
| 123 | apply (blast intro: inj_on_inverseI inv_f_f) | |
| 124 | done | |
| 125 | ||
| 23433 | 126 | lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id" | 
| 127 | by (simp add: inj_iff) | |
| 128 | ||
| 129 | lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g" | |
| 130 | by (simp add: o_assoc[symmetric]) | |
| 131 | ||
| 132 | lemma inv_image_cancel[simp]: | |
| 133 | "inj f ==> inv f ` f ` S = S" | |
| 134 | by (simp add: image_compose[symmetric]) | |
| 135 | ||
| 14760 | 136 | lemma inj_imp_surj_inv: "inj f ==> surj (inv f)" | 
| 137 | by (blast intro: surjI inv_f_f) | |
| 138 | ||
| 139 | lemma f_inv_f: "y \<in> range(f) ==> f(inv f y) = y" | |
| 140 | apply (simp add: inv_def) | |
| 141 | apply (fast intro: someI) | |
| 142 | done | |
| 143 | ||
| 144 | lemma surj_f_inv_f: "surj f ==> f(inv f y) = y" | |
| 145 | by (simp add: f_inv_f surj_range) | |
| 146 | ||
| 147 | lemma inv_injective: | |
| 148 | assumes eq: "inv f x = inv f y" | |
| 149 | and x: "x: range f" | |
| 150 | and y: "y: range f" | |
| 151 | shows "x=y" | |
| 152 | proof - | |
| 153 | have "f (inv f x) = f (inv f y)" using eq by simp | |
| 154 | thus ?thesis by (simp add: f_inv_f x y) | |
| 155 | qed | |
| 156 | ||
| 157 | lemma inj_on_inv: "A <= range(f) ==> inj_on (inv f) A" | |
| 158 | by (fast intro: inj_onI elim: inv_injective injD) | |
| 159 | ||
| 160 | lemma surj_imp_inj_inv: "surj f ==> inj (inv f)" | |
| 161 | by (simp add: inj_on_inv surj_range) | |
| 162 | ||
| 163 | lemma surj_iff: "(surj f) = (f o inv f = id)" | |
| 164 | apply (simp add: o_def expand_fun_eq) | |
| 165 | apply (blast intro: surjI surj_f_inv_f) | |
| 166 | done | |
| 167 | ||
| 168 | lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g" | |
| 169 | apply (rule ext) | |
| 170 | apply (drule_tac x = "inv f x" in spec) | |
| 171 | apply (simp add: surj_f_inv_f) | |
| 172 | done | |
| 173 | ||
| 174 | lemma bij_imp_bij_inv: "bij f ==> bij (inv f)" | |
| 175 | by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv) | |
| 12372 | 176 | |
| 14760 | 177 | lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g" | 
| 178 | apply (rule ext) | |
| 179 | apply (auto simp add: inv_def) | |
| 180 | done | |
| 181 | ||
| 182 | lemma inv_inv_eq: "bij f ==> inv (inv f) = f" | |
| 183 | apply (rule inv_equality) | |
| 184 | apply (auto simp add: bij_def surj_f_inv_f) | |
| 185 | done | |
| 186 | ||
| 187 | (** bij(inv f) implies little about f. Consider f::bool=>bool such that | |
| 188 | f(True)=f(False)=True. Then it's consistent with axiom someI that | |
| 189 | inv f could be any function at all, including the identity function. | |
| 190 | If inv f=id then inv f is a bijection, but inj f, surj(f) and | |
| 191 | inv(inv f)=f all fail. | |
| 192 | **) | |
| 193 | ||
| 194 | lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f" | |
| 195 | apply (rule inv_equality) | |
| 196 | apply (auto simp add: bij_def surj_f_inv_f) | |
| 197 | done | |
| 198 | ||
| 199 | ||
| 200 | lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A" | |
| 201 | by (simp add: image_eq_UN surj_f_inv_f) | |
| 202 | ||
| 203 | lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A" | |
| 204 | by (simp add: image_eq_UN) | |
| 205 | ||
| 206 | lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X" | |
| 207 | by (auto simp add: image_def) | |
| 208 | ||
| 209 | lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
 | |
| 210 | apply auto | |
| 211 | apply (force simp add: bij_is_inj) | |
| 212 | apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric]) | |
| 213 | done | |
| 214 | ||
| 215 | lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" | |
| 216 | apply (auto simp add: bij_is_surj [THEN surj_f_inv_f]) | |
| 217 | apply (blast intro: bij_is_inj [THEN inv_f_f, symmetric]) | |
| 218 | done | |
| 219 | ||
| 31380 | 220 | lemma finite_fun_UNIVD1: | 
| 221 |   assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
 | |
| 222 | and card: "card (UNIV :: 'b set) \<noteq> Suc 0" | |
| 223 | shows "finite (UNIV :: 'a set)" | |
| 224 | proof - | |
| 225 | from fin have finb: "finite (UNIV :: 'b set)" by (rule finite_fun_UNIVD2) | |
| 226 | with card have "card (UNIV :: 'b set) \<ge> Suc (Suc 0)" | |
| 227 | by (cases "card (UNIV :: 'b set)") (auto simp add: card_eq_0_iff) | |
| 228 | then obtain n where "card (UNIV :: 'b set) = Suc (Suc n)" "n = card (UNIV :: 'b set) - Suc (Suc 0)" by auto | |
| 229 | then obtain b1 b2 where b1b2: "(b1 :: 'b) \<noteq> (b2 :: 'b)" by (auto simp add: card_Suc_eq) | |
| 230 | from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" by (rule finite_imageI) | |
| 231 | moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)" | |
| 232 | proof (rule UNIV_eq_I) | |
| 233 | fix x :: 'a | |
| 234 | from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_def) | |
| 235 | thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast | |
| 236 | qed | |
| 237 | ultimately show "finite (UNIV :: 'a set)" by simp | |
| 238 | qed | |
| 14760 | 239 | |
| 240 | subsection {*Inverse of a PI-function (restricted domain)*}
 | |
| 241 | ||
| 242 | lemma Inv_f_f: "[| inj_on f A; x \<in> A |] ==> Inv A f (f x) = x" | |
| 243 | apply (simp add: Inv_def inj_on_def) | |
| 244 | apply (blast intro: someI2) | |
| 245 | done | |
| 246 | ||
| 247 | lemma f_Inv_f: "y \<in> f`A ==> f (Inv A f y) = y" | |
| 248 | apply (simp add: Inv_def) | |
| 13585 | 249 | apply (fast intro: someI2) | 
| 250 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 251 | |
| 14760 | 252 | lemma Inv_injective: | 
| 253 | assumes eq: "Inv A f x = Inv A f y" | |
| 254 | and x: "x: f`A" | |
| 255 | and y: "y: f`A" | |
| 256 | shows "x=y" | |
| 257 | proof - | |
| 258 | have "f (Inv A f x) = f (Inv A f y)" using eq by simp | |
| 259 | thus ?thesis by (simp add: f_Inv_f x y) | |
| 260 | qed | |
| 261 | ||
| 262 | lemma inj_on_Inv: "B <= f`A ==> inj_on (Inv A f) B" | |
| 263 | apply (rule inj_onI) | |
| 264 | apply (blast intro: inj_onI dest: Inv_injective injD) | |
| 265 | done | |
| 266 | ||
| 267 | lemma Inv_mem: "[| f ` A = B; x \<in> B |] ==> Inv A f x \<in> A" | |
| 268 | apply (simp add: Inv_def) | |
| 269 | apply (fast intro: someI2) | |
| 270 | done | |
| 271 | ||
| 272 | lemma Inv_f_eq: "[| inj_on f A; f x = y; x \<in> A |] ==> Inv A f y = x" | |
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 273 | apply (erule subst) | 
| 14760 | 274 | apply (erule Inv_f_f, assumption) | 
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 275 | done | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 276 | |
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 277 | lemma Inv_comp: | 
| 14760 | 278 | "[| inj_on f (g ` A); inj_on g A; x \<in> f ` g ` A |] ==> | 
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 279 | Inv A (f o g) x = (Inv A g o Inv (g ` A) f) x" | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 280 | apply simp | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 281 | apply (rule Inv_f_eq) | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 282 | apply (fast intro: comp_inj_on) | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 283 | apply (simp add: f_Inv_f Inv_mem) | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 284 | apply (simp add: Inv_mem) | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 285 | done | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 286 | |
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 287 | lemma bij_betw_Inv: "bij_betw f A B \<Longrightarrow> bij_betw (Inv A f) B A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 288 | apply (auto simp add: bij_betw_def inj_on_Inv Inv_mem) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 289 | apply (simp add: image_compose [symmetric] o_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 290 | apply (simp add: image_def Inv_f_f) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 291 | done | 
| 14760 | 292 | |
| 293 | subsection {*Other Consequences of Hilbert's Epsilon*}
 | |
| 294 | ||
| 295 | text {*Hilbert's Epsilon and the @{term split} Operator*}
 | |
| 296 | ||
| 297 | text{*Looping simprule*}
 | |
| 298 | lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))" | |
| 26347 | 299 | by simp | 
| 14760 | 300 | |
| 301 | lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))" | |
| 26347 | 302 | by (simp add: split_def) | 
| 14760 | 303 | |
| 304 | lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)" | |
| 26347 | 305 | by blast | 
| 14760 | 306 | |
| 307 | ||
| 308 | text{*A relation is wellfounded iff it has no infinite descending chain*}
 | |
| 309 | lemma wf_iff_no_infinite_down_chain: | |
| 310 | "wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))" | |
| 311 | apply (simp only: wf_eq_minimal) | |
| 312 | apply (rule iffI) | |
| 313 | apply (rule notI) | |
| 314 | apply (erule exE) | |
| 315 |  apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
 | |
| 316 | apply (erule contrapos_np, simp, clarify) | |
| 317 | apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q") | |
| 318 | apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI) | |
| 319 | apply (rule allI, simp) | |
| 320 | apply (rule someI2_ex, blast, blast) | |
| 321 | apply (rule allI) | |
| 322 | apply (induct_tac "n", simp_all) | |
| 323 | apply (rule someI2_ex, blast+) | |
| 324 | done | |
| 325 | ||
| 27760 | 326 | lemma wf_no_infinite_down_chainE: | 
| 327 | assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r" | |
| 328 | using `wf r` wf_iff_no_infinite_down_chain[of r] by blast | |
| 329 | ||
| 330 | ||
| 14760 | 331 | text{*A dynamically-scoped fact for TFL *}
 | 
| 12298 | 332 | lemma tfl_some: "\<forall>P x. P x --> P (Eps P)" | 
| 333 | by (blast intro: someI) | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 334 | |
| 12298 | 335 | |
| 336 | subsection {* Least value operator *}
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 337 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 338 | constdefs | 
| 12298 | 339 | LeastM :: "['a => 'b::ord, 'a => bool] => 'a" | 
| 14760 | 340 | "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 341 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 342 | syntax | 
| 12298 | 343 |   "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 344 | translations | 
| 12298 | 345 | "LEAST x WRT m. P" == "LeastM m (%x. P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 346 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 347 | lemma LeastMI2: | 
| 12298 | 348 | "P x ==> (!!y. P y ==> m x <= m y) | 
| 349 | ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x) | |
| 350 | ==> Q (LeastM m P)" | |
| 14760 | 351 | apply (simp add: LeastM_def) | 
| 14208 | 352 | apply (rule someI2_ex, blast, blast) | 
| 12298 | 353 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 354 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 355 | lemma LeastM_equality: | 
| 12298 | 356 | "P k ==> (!!x. P x ==> m k <= m x) | 
| 357 | ==> m (LEAST x WRT m. P x) = (m k::'a::order)" | |
| 14208 | 358 | apply (rule LeastMI2, assumption, blast) | 
| 12298 | 359 | apply (blast intro!: order_antisym) | 
| 360 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 361 | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 362 | lemma wf_linord_ex_has_least: | 
| 14760 | 363 | "wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k | 
| 364 | ==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)" | |
| 12298 | 365 | apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]]) | 
| 14208 | 366 | apply (drule_tac x = "m`Collect P" in spec, force) | 
| 12298 | 367 | done | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 368 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 369 | lemma ex_has_least_nat: | 
| 14760 | 370 | "P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))" | 
| 12298 | 371 | apply (simp only: pred_nat_trancl_eq_le [symmetric]) | 
| 372 | apply (rule wf_pred_nat [THEN wf_linord_ex_has_least]) | |
| 16796 | 373 | apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption) | 
| 12298 | 374 | done | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 375 | |
| 12298 | 376 | lemma LeastM_nat_lemma: | 
| 14760 | 377 | "P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))" | 
| 378 | apply (simp add: LeastM_def) | |
| 12298 | 379 | apply (rule someI_ex) | 
| 380 | apply (erule ex_has_least_nat) | |
| 381 | done | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 382 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 383 | lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard] | 
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 384 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 385 | lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)" | 
| 14208 | 386 | by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption) | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 387 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 388 | |
| 12298 | 389 | subsection {* Greatest value operator *}
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 390 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 391 | constdefs | 
| 12298 | 392 | GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" | 
| 14760 | 393 | "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)" | 
| 12298 | 394 | |
| 395 |   Greatest :: "('a::ord => bool) => 'a"    (binder "GREATEST " 10)
 | |
| 396 | "Greatest == GreatestM (%x. x)" | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 397 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 398 | syntax | 
| 12298 | 399 | "_GreatestM" :: "[pttrn, 'a=>'b::ord, bool] => 'a" | 
| 400 |       ("GREATEST _ WRT _. _" [0, 4, 10] 10)
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 401 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 402 | translations | 
| 12298 | 403 | "GREATEST x WRT m. P" == "GreatestM m (%x. P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 404 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 405 | lemma GreatestMI2: | 
| 12298 | 406 | "P x ==> (!!y. P y ==> m y <= m x) | 
| 407 | ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x) | |
| 408 | ==> Q (GreatestM m P)" | |
| 14760 | 409 | apply (simp add: GreatestM_def) | 
| 14208 | 410 | apply (rule someI2_ex, blast, blast) | 
| 12298 | 411 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 412 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 413 | lemma GreatestM_equality: | 
| 12298 | 414 | "P k ==> (!!x. P x ==> m x <= m k) | 
| 415 | ==> m (GREATEST x WRT m. P x) = (m k::'a::order)" | |
| 14208 | 416 | apply (rule_tac m = m in GreatestMI2, assumption, blast) | 
| 12298 | 417 | apply (blast intro!: order_antisym) | 
| 418 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 419 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 420 | lemma Greatest_equality: | 
| 12298 | 421 | "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k" | 
| 14760 | 422 | apply (simp add: Greatest_def) | 
| 14208 | 423 | apply (erule GreatestM_equality, blast) | 
| 12298 | 424 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 425 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 426 | lemma ex_has_greatest_nat_lemma: | 
| 14760 | 427 | "P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x)) | 
| 428 | ==> \<exists>y. P y & ~ (m y < m k + n)" | |
| 15251 | 429 | apply (induct n, force) | 
| 12298 | 430 | apply (force simp add: le_Suc_eq) | 
| 431 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 432 | |
| 12298 | 433 | lemma ex_has_greatest_nat: | 
| 14760 | 434 | "P k ==> \<forall>y. P y --> m y < b | 
| 435 | ==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)" | |
| 12298 | 436 | apply (rule ccontr) | 
| 437 | apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma) | |
| 14208 | 438 | apply (subgoal_tac [3] "m k <= b", auto) | 
| 12298 | 439 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 440 | |
| 12298 | 441 | lemma GreatestM_nat_lemma: | 
| 14760 | 442 | "P k ==> \<forall>y. P y --> m y < b | 
| 443 | ==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))" | |
| 444 | apply (simp add: GreatestM_def) | |
| 12298 | 445 | apply (rule someI_ex) | 
| 14208 | 446 | apply (erule ex_has_greatest_nat, assumption) | 
| 12298 | 447 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 448 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 449 | lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard] | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 450 | |
| 12298 | 451 | lemma GreatestM_nat_le: | 
| 14760 | 452 | "P x ==> \<forall>y. P y --> m y < b | 
| 12298 | 453 | ==> (m x::nat) <= m (GreatestM m P)" | 
| 21020 | 454 | apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P]) | 
| 12298 | 455 | done | 
| 456 | ||
| 457 | ||
| 458 | text {* \medskip Specialization to @{text GREATEST}. *}
 | |
| 459 | ||
| 14760 | 460 | lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)" | 
| 461 | apply (simp add: Greatest_def) | |
| 14208 | 462 | apply (rule GreatestM_natI, auto) | 
| 12298 | 463 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 464 | |
| 12298 | 465 | lemma Greatest_le: | 
| 14760 | 466 | "P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)" | 
| 467 | apply (simp add: Greatest_def) | |
| 14208 | 468 | apply (rule GreatestM_nat_le, auto) | 
| 12298 | 469 | done | 
| 470 | ||
| 471 | ||
| 472 | subsection {* The Meson proof procedure *}
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 473 | |
| 12298 | 474 | subsubsection {* Negation Normal Form *}
 | 
| 475 | ||
| 476 | text {* de Morgan laws *}
 | |
| 477 | ||
| 478 | lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q" | |
| 479 | and meson_not_disjD: "~(P|Q) ==> ~P & ~Q" | |
| 480 | and meson_not_notD: "~~P ==> P" | |
| 14760 | 481 | and meson_not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)" | 
| 482 | and meson_not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)" | |
| 12298 | 483 | by fast+ | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 484 | |
| 12298 | 485 | text {* Removal of @{text "-->"} and @{text "<->"} (positive and
 | 
| 486 | negative occurrences) *} | |
| 487 | ||
| 488 | lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q" | |
| 489 | and meson_not_impD: "~(P-->Q) ==> P & ~Q" | |
| 490 | and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)" | |
| 491 | and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)" | |
| 492 |     -- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
 | |
| 18389 | 493 | and meson_not_refl_disj_D: "x ~= x | P ==> P" | 
| 12298 | 494 | by fast+ | 
| 495 | ||
| 496 | ||
| 497 | subsubsection {* Pulling out the existential quantifiers *}
 | |
| 498 | ||
| 499 | text {* Conjunction *}
 | |
| 500 | ||
| 14760 | 501 | lemma meson_conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q" | 
| 502 | and meson_conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)" | |
| 12298 | 503 | by fast+ | 
| 504 | ||
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 505 | |
| 12298 | 506 | text {* Disjunction *}
 | 
| 507 | ||
| 14760 | 508 | lemma meson_disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)" | 
| 12298 | 509 |   -- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
 | 
| 510 |   -- {* With ex-Skolemization, makes fewer Skolem constants *}
 | |
| 14760 | 511 | and meson_disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q" | 
| 512 | and meson_disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)" | |
| 12298 | 513 | by fast+ | 
| 514 | ||
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 515 | |
| 12298 | 516 | subsubsection {* Generating clauses for the Meson Proof Procedure *}
 | 
| 517 | ||
| 518 | text {* Disjunctions *}
 | |
| 519 | ||
| 520 | lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)" | |
| 521 | and meson_disj_comm: "P|Q ==> Q|P" | |
| 522 | and meson_disj_FalseD1: "False|P ==> P" | |
| 523 | and meson_disj_FalseD2: "P|False ==> P" | |
| 524 | by fast+ | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 525 | |
| 14760 | 526 | |
| 527 | subsection{*Lemmas for Meson, the Model Elimination Procedure*}
 | |
| 528 | ||
| 529 | text{* Generation of contrapositives *}
 | |
| 530 | ||
| 531 | text{*Inserts negated disjunct after removing the negation; P is a literal.
 | |
| 532 | Model elimination requires assuming the negation of every attempted subgoal, | |
| 533 | hence the negated disjuncts.*} | |
| 534 | lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)" | |
| 535 | by blast | |
| 536 | ||
| 537 | text{*Version for Plaisted's "Postive refinement" of the Meson procedure*}
 | |
| 538 | lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)" | |
| 539 | by blast | |
| 540 | ||
| 541 | text{*@{term P} should be a literal*}
 | |
| 542 | lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)" | |
| 543 | by blast | |
| 544 | ||
| 545 | text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't
 | |
| 546 | insert new assumptions, for ordinary resolution.*} | |
| 547 | ||
| 548 | lemmas make_neg_rule' = make_refined_neg_rule | |
| 549 | ||
| 550 | lemma make_pos_rule': "[|P|Q; ~P|] ==> Q" | |
| 551 | by blast | |
| 552 | ||
| 553 | text{* Generation of a goal clause -- put away the final literal *}
 | |
| 554 | ||
| 555 | lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)" | |
| 556 | by blast | |
| 557 | ||
| 558 | lemma make_pos_goal: "P ==> ((P==>~P) ==> False)" | |
| 559 | by blast | |
| 560 | ||
| 561 | ||
| 562 | subsubsection{* Lemmas for Forward Proof*}
 | |
| 563 | ||
| 564 | text{*There is a similarity to congruence rules*}
 | |
| 565 | ||
| 566 | (*NOTE: could handle conjunctions (faster?) by | |
| 567 | nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *) | |
| 568 | lemma conj_forward: "[| P'&Q'; P' ==> P; Q' ==> Q |] ==> P&Q" | |
| 569 | by blast | |
| 570 | ||
| 571 | lemma disj_forward: "[| P'|Q'; P' ==> P; Q' ==> Q |] ==> P|Q" | |
| 572 | by blast | |
| 573 | ||
| 574 | (*Version of @{text disj_forward} for removal of duplicate literals*)
 | |
| 575 | lemma disj_forward2: | |
| 576 | "[| P'|Q'; P' ==> P; [| Q'; P==>False |] ==> Q |] ==> P|Q" | |
| 577 | apply blast | |
| 578 | done | |
| 579 | ||
| 580 | lemma all_forward: "[| \<forall>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)" | |
| 581 | by blast | |
| 582 | ||
| 583 | lemma ex_forward: "[| \<exists>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)" | |
| 584 | by blast | |
| 585 | ||
| 17420 | 586 | |
| 21999 
0cf192e489e2
improvements to proof reconstruction. Some files loaded in a different order
 paulson parents: 
21243diff
changeset | 587 | subsection {* Meson package *}
 | 
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 588 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 589 | use "Tools/meson.ML" | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 590 | |
| 26562 
9d25ef112cf6
* Metis: the maximum number of clauses that can be produced from a theorem is now given by the attribute max_clauses. Theorems that exceed this number are ignored, with a warning printed.
 paulson parents: 
26347diff
changeset | 591 | setup Meson.setup | 
| 
9d25ef112cf6
* Metis: the maximum number of clauses that can be produced from a theorem is now given by the attribute max_clauses. Theorems that exceed this number are ignored, with a warning printed.
 paulson parents: 
26347diff
changeset | 592 | |
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 593 | |
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 594 | subsection {* Specification package -- Hilbertized version *}
 | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 595 | |
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 596 | lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c" | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 597 | by (simp only: someI_ex) | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 598 | |
| 31723 
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
 haftmann parents: 
31454diff
changeset | 599 | use "Tools/choice_specification.ML" | 
| 14115 | 600 | |
| 31454 | 601 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 602 | end |