| author | haftmann | 
| Fri, 21 Jun 2019 18:55:00 +0000 | |
| changeset 70354 | 9497a6334a26 | 
| parent 69085 | 9999d7823b8f | 
| child 71989 | bad75618fb82 | 
| permissions | -rw-r--r-- | 
| 13673 | 1 | (* Title: HOL/MicroJava/Comp/CorrCompTp.thy | 
| 2 | Author: Martin Strecker | |
| 3 | *) | |
| 4 | ||
| 15481 | 5 | theory CorrCompTp | 
| 6 | imports LemmasComp TypeInf "../BV/JVM" "../BV/Altern" | |
| 7 | begin | |
| 13673 | 8 | |
| 9 | declare split_paired_All [simp del] | |
| 10 | declare split_paired_Ex [simp del] | |
| 11 | ||
| 12 | ||
| 13 | (**********************************************************************) | |
| 14 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 15 | definition inited_LT :: "[cname, ty list, (vname \<times> ty) list] \<Rightarrow> locvars_type" where | 
| 13673 | 16 | "inited_LT C pTs lvars == (OK (Class C))#((map OK pTs))@(map (Fun.comp OK snd) lvars)" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 17 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 18 | definition is_inited_LT :: "[cname, ty list, (vname \<times> ty) list, locvars_type] \<Rightarrow> bool" where | 
| 13673 | 19 | "is_inited_LT C pTs lvars LT == (LT = (inited_LT C pTs lvars))" | 
| 20 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 21 | definition local_env :: "[java_mb prog, cname, sig, vname list,(vname \<times> ty) list] \<Rightarrow> java_mb env" where | 
| 13673 | 22 | "local_env G C S pns lvars == | 
| 23 | let (mn, pTs) = S in (G,map_of lvars(pns[\<mapsto>]pTs)(This\<mapsto>Class C))" | |
| 24 | ||
| 25 | lemma local_env_fst [simp]: "fst (local_env G C S pns lvars) = G" | |
| 60304 | 26 | by (simp add: local_env_def split_beta) | 
| 27 | ||
| 28 | ||
| 29 | lemma wt_class_expr_is_class: | |
| 30 | "\<lbrakk> ws_prog G; E \<turnstile> expr :: Class cname; E = local_env G C (mn, pTs) pns lvars\<rbrakk> | |
| 13673 | 31 | \<Longrightarrow> is_class G cname " | 
| 60304 | 32 | apply (subgoal_tac "((fst E), (snd E)) \<turnstile> expr :: Class cname") | 
| 33 | apply (frule ty_expr_is_type) | |
| 34 | apply simp | |
| 35 | apply simp | |
| 36 | apply (simp (no_asm_use)) | |
| 37 | done | |
| 13673 | 38 | |
| 39 | ||
| 40 | ||
| 41 | (********************************************************************************) | |
| 58886 | 42 | subsection "index" | 
| 13673 | 43 | |
| 60304 | 44 | lemma local_env_snd: | 
| 45 | "snd (local_env G C (mn, pTs) pns lvars) = map_of lvars(pns[\<mapsto>]pTs)(This\<mapsto>Class C)" | |
| 46 | by (simp add: local_env_def) | |
| 47 | ||
| 48 | ||
| 49 | ||
| 50 | lemma index_in_bounds: | |
| 51 | "length pns = length pTs \<Longrightarrow> | |
| 13673 | 52 | snd (local_env G C (mn, pTs) pns lvars) vname = Some T | 
| 53 | \<Longrightarrow> index (pns, lvars, blk, res) vname < length (inited_LT C pTs lvars)" | |
| 60304 | 54 | apply (simp add: local_env_snd index_def split_beta) | 
| 55 | apply (case_tac "vname = This") | |
| 56 | apply (simp add: inited_LT_def) | |
| 57 | apply simp | |
| 58 | apply (drule map_of_upds_SomeD) | |
| 59 | apply (drule length_takeWhile) | |
| 60 | apply (simp add: inited_LT_def) | |
| 61 | done | |
| 62 | ||
| 63 | ||
| 64 | lemma map_upds_append: | |
| 65 | "length k1s = length x1s \<Longrightarrow> m(k1s[\<mapsto>]x1s)(k2s[\<mapsto>]x2s) = m ((k1s@k2s)[\<mapsto>](x1s@x2s))" | |
| 66 | apply (induct k1s arbitrary: x1s m) | |
| 67 | apply simp | |
| 68 | apply (subgoal_tac "\<exists>x xr. x1s = x # xr") | |
| 69 | apply clarsimp | |
| 13673 | 70 | (* subgoal *) | 
| 60304 | 71 | apply (case_tac x1s) | 
| 72 | apply auto | |
| 73 | done | |
| 74 | ||
| 75 | ||
| 76 | lemma map_of_append: | |
| 77 | "map_of ((rev xs) @ ys) = (map_of ys) ((map fst xs) [\<mapsto>] (map snd xs))" | |
| 78 | apply (induct xs arbitrary: ys) | |
| 79 | apply simp | |
| 80 | apply (rename_tac a xs ys) | |
| 81 | apply (drule_tac x="a # ys" in meta_spec) | |
| 82 | apply (simp only: rev.simps append_assoc append_Cons append_Nil | |
| 83 | list.map map_of.simps map_upds_Cons list.sel) | |
| 84 | done | |
| 13673 | 85 | |
| 68451 | 86 | lemma map_of_as_map_upds: "map_of (rev xs) = Map.empty ((map fst xs) [\<mapsto>] (map snd xs))" | 
| 60304 | 87 | by (rule map_of_append [of _ "[]", simplified]) | 
| 13673 | 88 | |
| 89 | lemma map_of_rev: "unique xs \<Longrightarrow> map_of (rev xs) = map_of xs" | |
| 60304 | 90 | apply (induct xs) | 
| 91 | apply simp | |
| 92 | apply (simp add: unique_def map_of_append map_of_as_map_upds [symmetric] | |
| 93 | Map.map_of_append[symmetric] del:Map.map_of_append) | |
| 94 | done | |
| 95 | ||
| 96 | lemma map_upds_rev: | |
| 97 | "\<lbrakk> distinct ks; length ks = length xs \<rbrakk> \<Longrightarrow> m (rev ks [\<mapsto>] rev xs) = m (ks [\<mapsto>] xs)" | |
| 98 | apply (induct ks arbitrary: xs) | |
| 99 | apply simp | |
| 100 | apply (subgoal_tac "\<exists>x xr. xs = x # xr") | |
| 101 | apply clarify | |
| 102 | apply (drule_tac x=xr in meta_spec) | |
| 103 | apply (simp add: map_upds_append [symmetric]) | |
| 104 | apply (case_tac xs, auto) | |
| 105 | done | |
| 13673 | 106 | |
| 107 | lemma map_upds_takeWhile [rule_format]: | |
| 68451 | 108 | "\<forall>ks. (Map.empty(rev ks[\<mapsto>]rev xs)) k = Some x \<longrightarrow> length ks = length xs \<longrightarrow> | 
| 13673 | 109 | xs ! length (takeWhile (\<lambda>z. z \<noteq> k) ks) = x" | 
| 60304 | 110 | apply (induct xs) | 
| 111 | apply simp | |
| 112 | apply (intro strip) | |
| 113 | apply (subgoal_tac "\<exists>k' kr. ks = k' # kr") | |
| 114 | apply (clarify) | |
| 115 | apply (drule_tac x=kr in spec) | |
| 116 | apply (simp only: rev.simps) | |
| 68451 | 117 | apply (subgoal_tac "(Map.empty(rev kr @ [k'][\<mapsto>]rev xs @ [a])) = Map.empty (rev kr[\<mapsto>]rev xs)([k'][\<mapsto>][a])") | 
| 62390 | 118 | apply (simp split:if_split_asm) | 
| 60304 | 119 | apply (simp add: map_upds_append [symmetric]) | 
| 120 | apply (case_tac ks) | |
| 121 | apply auto | |
| 122 | done | |
| 123 | ||
| 124 | ||
| 125 | lemma local_env_inited_LT: | |
| 126 | "\<lbrakk> snd (local_env G C (mn, pTs) pns lvars) vname = Some T; | |
| 13673 | 127 | length pns = length pTs; distinct pns; unique lvars \<rbrakk> | 
| 128 | \<Longrightarrow> (inited_LT C pTs lvars ! index (pns, lvars, blk, res) vname) = OK T" | |
| 60304 | 129 | apply (simp add: local_env_snd index_def) | 
| 130 | apply (case_tac "vname = This") | |
| 131 | apply (simp add: inited_LT_def) | |
| 132 | apply (simp add: inited_LT_def) | |
| 133 | apply (simp (no_asm_simp) only: map_map [symmetric] map_append [symmetric] list.map [symmetric]) | |
| 134 | apply (subgoal_tac "length (takeWhile (\<lambda>z. z \<noteq> vname) (pns @ map fst lvars)) < length (pTs @ map snd lvars)") | |
| 135 | apply (simp (no_asm_simp) only: List.nth_map ok_val.simps) | |
| 136 | apply (subgoal_tac "map_of lvars = map_of (map (\<lambda> p. (fst p, snd p)) lvars)") | |
| 137 | apply (simp only:) | |
| 138 | apply (subgoal_tac "distinct (map fst lvars)") | |
| 139 | apply (frule_tac g=snd in AuxLemmas.map_of_map_as_map_upd) | |
| 140 | apply (simp only:) | |
| 141 | apply (simp add: map_upds_append) | |
| 142 | apply (frule map_upds_SomeD) | |
| 143 | apply (rule map_upds_takeWhile) | |
| 144 | apply (simp (no_asm_simp)) | |
| 145 | apply (simp add: map_upds_append [symmetric]) | |
| 146 | apply (simp add: map_upds_rev) | |
| 147 | ||
| 148 | (* show length (pns @ map fst lvars) = length (pTs @ map snd lvars) *) | |
| 149 | apply simp | |
| 150 | ||
| 151 | (* show distinct (map fst lvars) *) | |
| 152 | apply (simp only: unique_def Fun.comp_def) | |
| 153 | ||
| 154 | (* show map_of lvars = map_of (map (\<lambda>p. (fst p, snd p)) lvars) *) | |
| 155 | apply simp | |
| 13673 | 156 | |
| 157 | (* show length (takeWhile (\<lambda>z. z \<noteq> vname) (pns @ map fst lvars)) < length (pTs @ map snd lvars) *) | |
| 60304 | 158 | apply (drule map_of_upds_SomeD) | 
| 159 | apply (drule length_takeWhile) | |
| 160 | apply simp | |
| 161 | done | |
| 162 | ||
| 163 | ||
| 164 | lemma inited_LT_at_index_no_err: | |
| 165 | "i < length (inited_LT C pTs lvars) \<Longrightarrow> inited_LT C pTs lvars ! i \<noteq> Err" | |
| 166 | apply (simp only: inited_LT_def) | |
| 167 | apply (simp only: map_map [symmetric] map_append [symmetric] list.map [symmetric] length_map) | |
| 168 | apply (simp only: nth_map) | |
| 169 | apply simp | |
| 170 | done | |
| 13673 | 171 | |
| 172 | ||
| 173 | lemma sup_loc_update_index: " | |
| 174 | \<lbrakk> G \<turnstile> T \<preceq> T'; is_type G T'; length pns = length pTs; distinct pns; unique lvars; | |
| 175 | snd (local_env G C (mn, pTs) pns lvars) vname = Some T' \<rbrakk> | |
| 176 | \<Longrightarrow> | |
| 69085 | 177 | comp G \<turnstile> (inited_LT C pTs lvars) [index (pns, lvars, blk, res) vname := OK T] <=l | 
| 60304 | 178 | inited_LT C pTs lvars" | 
| 179 | apply (subgoal_tac " index (pns, lvars, blk, res) vname < length (inited_LT C pTs lvars)") | |
| 180 | apply (frule_tac blk=blk and res=res in local_env_inited_LT, assumption+) | |
| 181 | apply (rule sup_loc_trans) | |
| 182 | apply (rule_tac b="OK T'" in sup_loc_update) | |
| 183 | apply (simp add: comp_widen) | |
| 184 | apply assumption | |
| 185 | apply (rule sup_loc_refl) | |
| 186 | apply (simp add: list_update_same_conv [THEN iffD2]) | |
| 13673 | 187 | (* subgoal *) | 
| 60304 | 188 | apply (rule index_in_bounds) | 
| 189 | apply simp+ | |
| 190 | done | |
| 13673 | 191 | |
| 192 | ||
| 193 | (********************************************************************************) | |
| 194 | ||
| 58886 | 195 | subsection "Preservation of ST and LT by compTpExpr / compTpStmt" | 
| 13673 | 196 | |
| 197 | lemma sttp_of_comb_nil [simp]: "sttp_of (comb_nil sttp) = sttp" | |
| 60304 | 198 | by (simp add: comb_nil_def) | 
| 13673 | 199 | |
| 200 | lemma mt_of_comb_nil [simp]: "mt_of (comb_nil sttp) = []" | |
| 60304 | 201 | by (simp add: comb_nil_def) | 
| 13673 | 202 | |
| 203 | ||
| 204 | lemma sttp_of_comb [simp]: "sttp_of ((f1 \<box> f2) sttp) = sttp_of (f2 (sttp_of (f1 sttp)))" | |
| 60304 | 205 | apply (case_tac "f1 sttp") | 
| 206 | apply (case_tac "(f2 (sttp_of (f1 sttp)))") | |
| 207 | apply (simp add: comb_def) | |
| 208 | done | |
| 13673 | 209 | |
| 210 | lemma mt_of_comb: "(mt_of ((f1 \<box> f2) sttp)) = | |
| 211 | (mt_of (f1 sttp)) @ (mt_of (f2 (sttp_of (f1 sttp))))" | |
| 60304 | 212 | by (simp add: comb_def split_beta) | 
| 13673 | 213 | |
| 214 | ||
| 215 | lemma mt_of_comb_length [simp]: "\<lbrakk> n1 = length (mt_of (f1 sttp)); n1 \<le> n \<rbrakk> | |
| 216 | \<Longrightarrow> (mt_of ((f1 \<box> f2) sttp) ! n) = (mt_of (f2 (sttp_of (f1 sttp))) ! (n - n1))" | |
| 60304 | 217 | by (simp add: comb_def nth_append split_beta) | 
| 13673 | 218 | |
| 219 | ||
| 220 | lemma compTpExpr_Exprs_LT_ST: " | |
| 60304 | 221 | \<lbrakk>jmb = (pns, lvars, blk, res); | 
| 13673 | 222 | wf_prog wf_java_mdecl G; | 
| 223 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 224 | E = local_env G C (mn, pTs) pns lvars \<rbrakk> | |
| 60304 | 225 | \<Longrightarrow> | 
| 226 | (\<forall> ST LT T. | |
| 13673 | 227 | E \<turnstile> ex :: T \<longrightarrow> | 
| 228 | is_inited_LT C pTs lvars LT \<longrightarrow> | |
| 229 | sttp_of (compTpExpr jmb G ex (ST, LT)) = (T # ST, LT)) | |
| 60304 | 230 | \<and> | 
| 231 | (\<forall> ST LT Ts. | |
| 13673 | 232 | E \<turnstile> exs [::] Ts \<longrightarrow> | 
| 233 | is_inited_LT C pTs lvars LT \<longrightarrow> | |
| 234 | sttp_of (compTpExprs jmb G exs (ST, LT)) = ((rev Ts) @ ST, LT))" | |
| 235 | ||
| 60304 | 236 | apply (rule compat_expr_expr_list.induct) | 
| 237 | ||
| 238 | (* expresssions *) | |
| 239 | ||
| 240 | (* NewC *) | |
| 241 | apply (intro strip) | |
| 242 | apply (drule NewC_invers) | |
| 243 | apply (simp add: pushST_def) | |
| 244 | ||
| 245 | (* Cast *) | |
| 246 | apply (intro strip) | |
| 247 | apply (drule Cast_invers, clarify) | |
| 248 | apply ((drule_tac x=ST in spec), (drule spec)+, (drule mp, assumption)+) | |
| 249 | apply (simp add: replST_def split_beta) | |
| 250 | ||
| 251 | (* Lit *) | |
| 252 | apply (intro strip) | |
| 253 | apply (drule Lit_invers) | |
| 254 | apply (simp add: pushST_def) | |
| 255 | ||
| 256 | (* BinOp *) | |
| 257 | apply (intro strip) | |
| 258 | apply (drule BinOp_invers, clarify) | |
| 259 | apply (drule_tac x=ST in spec) | |
| 260 | apply (drule_tac x="Ta # ST" in spec) | |
| 261 | apply ((drule spec)+, (drule mp, assumption)+) | |
| 262 | apply (rename_tac binop x2 x3 ST LT T Ta, case_tac binop) | |
| 263 | apply (simp (no_asm_simp)) | |
| 264 | apply (simp (no_asm_simp) add: popST_def pushST_def) | |
| 265 | apply (simp) | |
| 266 | apply (simp (no_asm_simp) add: replST_def) | |
| 267 | ||
| 268 | ||
| 269 | (* LAcc *) | |
| 270 | apply (intro strip) | |
| 271 | apply (drule LAcc_invers) | |
| 272 | apply (simp add: pushST_def is_inited_LT_def) | |
| 273 | apply (simp add: wf_prog_def) | |
| 274 | apply (frule wf_java_mdecl_disjoint_varnames) | |
| 275 | apply (simp add: disjoint_varnames_def) | |
| 276 | apply (frule wf_java_mdecl_length_pTs_pns) | |
| 277 | apply (erule conjE)+ | |
| 278 | apply (simp (no_asm_simp) add: local_env_inited_LT) | |
| 279 | ||
| 280 | (* LAss *) | |
| 281 | apply (intro strip) | |
| 282 | apply (drule LAss_invers, clarify) | |
| 283 | apply (drule LAcc_invers) | |
| 284 | apply ((drule_tac x=ST in spec), (drule spec)+, (drule mp, assumption)+) | |
| 285 | apply (simp add: popST_def dupST_def) | |
| 286 | ||
| 287 | (* FAcc *) | |
| 288 | apply (intro strip) | |
| 289 | apply (drule FAcc_invers, clarify) | |
| 290 | apply ((drule_tac x=ST in spec), (drule spec)+, (drule mp, assumption)+) | |
| 291 | apply (simp add: replST_def) | |
| 292 | ||
| 293 | (* show snd (the (field (G, cname) vname)) = T *) | |
| 294 | apply (subgoal_tac "is_class G Ca") | |
| 295 | apply (rename_tac cname x2 vname ST LT T Ca, subgoal_tac "is_class G cname \<and> field (G, cname) vname = Some (cname, T)") | |
| 296 | apply simp | |
| 297 | ||
| 298 | (* show is_class G cname \<and> field (G, cname) vname = Some (cname, T) *) | |
| 299 | apply (rule field_in_fd) apply assumption+ | |
| 300 | (* show is_class G Ca *) | |
| 301 | apply (fast intro: wt_class_expr_is_class) | |
| 302 | ||
| 303 | (* FAss *) | |
| 304 | apply (intro strip) | |
| 305 | apply (drule FAss_invers, clarify) | |
| 306 | apply (drule FAcc_invers, clarify) | |
| 307 | apply (drule_tac x=ST in spec) | |
| 308 | apply (drule_tac x="Class Ca # ST" in spec) | |
| 309 | apply ((drule spec)+, (drule mp, assumption)+) | |
| 310 | apply (simp add: popST_def dup_x1ST_def) | |
| 311 | ||
| 312 | ||
| 313 | (* Call *) | |
| 314 | apply (intro strip) | |
| 315 | apply (drule Call_invers, clarify) | |
| 316 | apply (drule_tac x=ST in spec) | |
| 317 | apply (rename_tac cname x2 x3 x4 x5 ST LT T pTsa md, drule_tac x="Class cname # ST" in spec) | |
| 318 | apply ((drule spec)+, (drule mp, assumption)+) | |
| 319 | apply (simp add: replST_def) | |
| 320 | ||
| 321 | ||
| 322 | (* expression lists *) | |
| 323 | (* nil *) | |
| 324 | ||
| 325 | apply (intro strip) | |
| 326 | apply (drule Nil_invers) | |
| 327 | apply (simp add: comb_nil_def) | |
| 328 | ||
| 329 | (* cons *) | |
| 330 | ||
| 331 | apply (intro strip) | |
| 332 | apply (drule Cons_invers, clarify) | |
| 333 | apply (drule_tac x=ST in spec) | |
| 334 | apply (drule_tac x="T # ST" in spec) | |
| 335 | apply ((drule spec)+, (drule mp, assumption)+) | |
| 13673 | 336 | apply simp | 
| 337 | ||
| 60304 | 338 | done | 
| 13673 | 339 | |
| 340 | ||
| 341 | ||
| 342 | lemmas compTpExpr_LT_ST [rule_format (no_asm)] = | |
| 343 | compTpExpr_Exprs_LT_ST [THEN conjunct1] | |
| 344 | ||
| 345 | lemmas compTpExprs_LT_ST [rule_format (no_asm)] = | |
| 346 | compTpExpr_Exprs_LT_ST [THEN conjunct2] | |
| 347 | ||
| 348 | lemma compTpStmt_LT_ST [rule_format (no_asm)]: " | |
| 349 | \<lbrakk> jmb = (pns,lvars,blk,res); | |
| 350 | wf_prog wf_java_mdecl G; | |
| 351 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 352 | E = (local_env G C (mn, pTs) pns lvars)\<rbrakk> | |
| 353 | \<Longrightarrow> (\<forall> ST LT. | |
| 354 | E \<turnstile> s\<surd> \<longrightarrow> | |
| 355 | (is_inited_LT C pTs lvars LT) | |
| 356 | \<longrightarrow> sttp_of (compTpStmt jmb G s (ST, LT)) = (ST, LT))" | |
| 357 | ||
| 60304 | 358 | apply (rule stmt.induct) | 
| 359 | ||
| 360 | (* Skip *) | |
| 361 | apply (intro strip) | |
| 362 | apply simp | |
| 363 | ||
| 364 | (* Expr *) | |
| 365 | apply (intro strip) | |
| 366 | apply (drule Expr_invers, erule exE) | |
| 367 | apply (simp (no_asm_simp) add: compTpExpr_LT_ST) | |
| 368 | apply (frule_tac ST=ST in compTpExpr_LT_ST, assumption+) | |
| 369 | apply (simp add: popST_def) | |
| 370 | ||
| 371 | (* Comp *) | |
| 372 | apply (intro strip) | |
| 373 | apply (drule Comp_invers, clarify) | |
| 374 | apply (simp (no_asm_use)) | |
| 375 | apply simp | |
| 376 | ||
| 377 | (* Cond *) | |
| 378 | apply (intro strip) | |
| 379 | apply (drule Cond_invers) | |
| 380 | apply (erule conjE)+ | |
| 381 | apply (drule_tac x=ST in spec) | |
| 382 | apply (drule_tac x=ST in spec) | |
| 383 | apply (drule spec)+ apply (drule mp, assumption)+ | |
| 384 | apply (drule_tac ST="PrimT Boolean # ST" in compTpExpr_LT_ST, assumption+) | |
| 385 | apply (simp add: popST_def pushST_def nochangeST_def) | |
| 386 | ||
| 387 | (* Loop *) | |
| 388 | apply (intro strip) | |
| 389 | apply (drule Loop_invers) | |
| 390 | apply (erule conjE)+ | |
| 391 | apply (drule_tac x=ST in spec) | |
| 392 | apply (drule spec)+ apply (drule mp, assumption)+ | |
| 393 | apply (drule_tac ST="PrimT Boolean # ST" in compTpExpr_LT_ST, assumption+) | |
| 394 | apply (simp add: popST_def pushST_def nochangeST_def) | |
| 395 | done | |
| 13673 | 396 | |
| 397 | ||
| 398 | ||
| 399 | lemma compTpInit_LT_ST: " | |
| 400 | sttp_of (compTpInit jmb (vn,ty) (ST, LT)) = (ST, LT[(index jmb vn):= OK ty])" | |
| 60304 | 401 | by (simp add: compTpInit_def storeST_def pushST_def) | 
| 13673 | 402 | |
| 403 | ||
| 404 | lemma compTpInitLvars_LT_ST_aux [rule_format (no_asm)]: | |
| 405 | "\<forall> pre lvars_pre lvars0. | |
| 406 | jmb = (pns,lvars0,blk,res) \<and> | |
| 407 | lvars0 = (lvars_pre @ lvars) \<and> | |
| 408 | (length pns) + (length lvars_pre) + 1 = length pre \<and> | |
| 409 | disjoint_varnames pns (lvars_pre @ lvars) | |
| 410 | \<longrightarrow> | |
| 411 | sttp_of (compTpInitLvars jmb lvars (ST, pre @ replicate (length lvars) Err)) | |
| 412 | = (ST, pre @ map (Fun.comp OK snd) lvars)" | |
| 60304 | 413 | apply (induct lvars) | 
| 414 | apply simp | |
| 415 | ||
| 416 | apply (intro strip) | |
| 417 | apply (subgoal_tac "\<exists>vn ty. a = (vn, ty)") | |
| 418 | prefer 2 | |
| 419 | apply (simp (no_asm_simp)) | |
| 13673 | 420 | apply ((erule exE)+, simp (no_asm_simp)) | 
| 421 | ||
| 60304 | 422 | apply (drule_tac x="pre @ [OK ty]" in spec) | 
| 423 | apply (drule_tac x="lvars_pre @ [a]" in spec) | |
| 424 | apply (drule_tac x="lvars0" in spec) | |
| 425 | apply (simp add: compTpInit_LT_ST index_of_var2) | |
| 426 | done | |
| 13673 | 427 | |
| 428 | lemma compTpInitLvars_LT_ST: | |
| 429 | "\<lbrakk> jmb = (pns, lvars, blk, res); wf_java_mdecl G C ((mn, pTs), rT, jmb) \<rbrakk> | |
| 60304 | 430 | \<Longrightarrow> sttp_of (compTpInitLvars jmb lvars (ST, start_LT C pTs (length lvars))) | 
| 431 | = (ST, inited_LT C pTs lvars)" | |
| 432 | apply (simp add: start_LT_def inited_LT_def) | |
| 433 | apply (simp only: append_Cons [symmetric]) | |
| 434 | apply (rule compTpInitLvars_LT_ST_aux) | |
| 435 | apply (auto dest: wf_java_mdecl_length_pTs_pns wf_java_mdecl_disjoint_varnames) | |
| 436 | done | |
| 13673 | 437 | |
| 438 | ||
| 439 | ||
| 440 | (********************************************************************************) | |
| 441 | ||
| 442 | lemma max_of_list_elem: "x \<in> set xs \<Longrightarrow> x \<le> (max_of_list xs)" | |
| 60304 | 443 | by (induct xs, auto intro: max.cobounded1 simp: le_max_iff_disj max_of_list_def) | 
| 13673 | 444 | |
| 445 | lemma max_of_list_sublist: "set xs \<subseteq> set ys | |
| 446 | \<Longrightarrow> (max_of_list xs) \<le> (max_of_list ys)" | |
| 60304 | 447 | by (induct xs, auto dest: max_of_list_elem simp: max_of_list_def) | 
| 13673 | 448 | |
| 449 | lemma max_of_list_append [simp]: | |
| 450 | "max_of_list (xs @ ys) = max (max_of_list xs) (max_of_list ys)" | |
| 60304 | 451 | apply (simp add: max_of_list_def) | 
| 452 | apply (induct xs) | |
| 453 | apply simp | |
| 454 | using [[linarith_split_limit = 0]] | |
| 455 | apply simp | |
| 456 | apply arith | |
| 457 | done | |
| 13673 | 458 | |
| 459 | ||
| 460 | lemma app_mono_mxs: "\<lbrakk> app i G mxs rT pc et s; mxs \<le> mxs' \<rbrakk> | |
| 461 | \<Longrightarrow> app i G mxs' rT pc et s" | |
| 60304 | 462 | apply (case_tac s) | 
| 463 | apply (simp add: app_def) | |
| 464 | apply (case_tac i, auto intro: less_trans) | |
| 465 | done | |
| 13673 | 466 | |
| 467 | ||
| 468 | ||
| 469 | lemma err_mono [simp]: "A \<subseteq> B \<Longrightarrow> err A \<subseteq> err B" | |
| 60304 | 470 | by (auto simp: err_def) | 
| 13673 | 471 | |
| 472 | lemma opt_mono [simp]: "A \<subseteq> B \<Longrightarrow> opt A \<subseteq> opt B" | |
| 60304 | 473 | by (auto simp: opt_def) | 
| 13673 | 474 | |
| 475 | ||
| 476 | lemma states_mono: "\<lbrakk> mxs \<le> mxs' \<rbrakk> | |
| 477 | \<Longrightarrow> states G mxs mxr \<subseteq> states G mxs' mxr" | |
| 60304 | 478 | apply (simp add: states_def JVMType.sl_def) | 
| 479 | apply (simp add: Product.esl_def stk_esl_def reg_sl_def | |
| 480 | upto_esl_def Listn.sl_def Err.sl_def JType.esl_def) | |
| 481 | apply (simp add: Err.esl_def Err.le_def Listn.le_def) | |
| 482 | apply (simp add: Product.le_def Product.sup_def Err.sup_def) | |
| 483 | apply (simp add: Opt.esl_def Listn.sup_def) | |
| 484 | apply (rule err_mono) | |
| 485 | apply (rule opt_mono) | |
| 486 | apply (rule Sigma_mono) | |
| 487 | apply (rule Union_mono) | |
| 488 | apply auto | |
| 489 | done | |
| 490 | ||
| 491 | ||
| 492 | lemma check_type_mono: | |
| 493 | "\<lbrakk> check_type G mxs mxr s; mxs \<le> mxs' \<rbrakk> \<Longrightarrow> check_type G mxs' mxr s" | |
| 494 | apply (simp add: check_type_def) | |
| 495 | apply (frule_tac G=G and mxr=mxr in states_mono) | |
| 496 | apply auto | |
| 497 | done | |
| 498 | ||
| 499 | ||
| 500 | (* wt is preserved when adding instructions/state-types at the end *) | |
| 13673 | 501 | lemma wt_instr_prefix: " | 
| 60304 | 502 | \<lbrakk> wt_instr_altern (bc ! pc) cG rT mt mxs mxr max_pc et pc; | 
| 503 | bc' = bc @ bc_post; mt' = mt @ mt_post; | |
| 504 | mxs \<le> mxs'; max_pc \<le> max_pc'; | |
| 505 | pc < length bc; pc < length mt; | |
| 506 | max_pc = (length mt)\<rbrakk> | |
| 507 | \<Longrightarrow> wt_instr_altern (bc' ! pc) cG rT mt' mxs' mxr max_pc' et pc" | |
| 508 | apply (simp add: wt_instr_altern_def nth_append) | |
| 509 | apply (auto intro: app_mono_mxs check_type_mono) | |
| 510 | done | |
| 13673 | 511 | |
| 512 | ||
| 513 | (************************************************************************) | |
| 514 | ||
| 515 | ||
| 516 | ||
| 60304 | 517 | lemma pc_succs_shift: | 
| 518 | "pc'\<in>set (succs i (pc'' + n)) \<Longrightarrow> ((pc' - n) \<in>set (succs i pc''))" | |
| 519 | apply (induct i, simp_all) | |
| 520 | apply arith | |
| 521 | done | |
| 522 | ||
| 523 | ||
| 524 | lemma pc_succs_le: | |
| 525 | "\<lbrakk> pc' \<in> set (succs i (pc'' + n)); | |
| 526 | \<forall>b. ((i = (Goto b) \<or> i=(Ifcmpeq b)) \<longrightarrow> 0 \<le> (int pc'' + b)) \<rbrakk> | |
| 13673 | 527 | \<Longrightarrow> n \<le> pc'" | 
| 60304 | 528 | apply (induct i, simp_all) | 
| 529 | apply arith | |
| 530 | done | |
| 13673 | 531 | |
| 532 | ||
| 533 | (**********************************************************************) | |
| 534 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 535 | definition offset_xcentry :: "[nat, exception_entry] \<Rightarrow> exception_entry" where | 
| 13673 | 536 | "offset_xcentry == | 
| 537 | \<lambda> n (start_pc, end_pc, handler_pc, catch_type). | |
| 538 | (start_pc + n, end_pc + n, handler_pc + n, catch_type)" | |
| 539 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 540 | definition offset_xctable :: "[nat, exception_table] \<Rightarrow> exception_table" where | 
| 13673 | 541 | "offset_xctable n == (map (offset_xcentry n))" | 
| 542 | ||
| 543 | lemma match_xcentry_offset [simp]: " | |
| 544 | match_exception_entry G cn (pc + n) (offset_xcentry n ee) = | |
| 545 | match_exception_entry G cn pc ee" | |
| 60304 | 546 | by (simp add: match_exception_entry_def offset_xcentry_def split_beta) | 
| 13673 | 547 | |
| 548 | lemma match_xctable_offset: " | |
| 549 | (match_exception_table G cn (pc + n) (offset_xctable n et)) = | |
| 55466 | 550 | (map_option (\<lambda> pc'. pc' + n) (match_exception_table G cn pc et))" | 
| 60304 | 551 | apply (induct et) | 
| 552 | apply (simp add: offset_xctable_def)+ | |
| 553 | apply (case_tac "match_exception_entry G cn pc a") | |
| 554 | apply (simp add: offset_xcentry_def split_beta)+ | |
| 555 | done | |
| 13673 | 556 | |
| 557 | ||
| 558 | lemma match_offset [simp]: " | |
| 559 | match G cn (pc + n) (offset_xctable n et) = match G cn pc et" | |
| 60304 | 560 | apply (induct et) | 
| 561 | apply (simp add: offset_xctable_def)+ | |
| 562 | done | |
| 13673 | 563 | |
| 564 | lemma match_any_offset [simp]: " | |
| 565 | match_any G (pc + n) (offset_xctable n et) = match_any G pc et" | |
| 60304 | 566 | apply (induct et) | 
| 567 | apply (simp add: offset_xctable_def offset_xcentry_def split_beta)+ | |
| 568 | done | |
| 13673 | 569 | |
| 570 | lemma app_mono_pc: "\<lbrakk> app i G mxs rT pc et s; pc'= pc + n \<rbrakk> | |
| 571 | \<Longrightarrow> app i G mxs rT pc' (offset_xctable n et) s" | |
| 60304 | 572 | apply (case_tac s) | 
| 573 | apply (simp add: app_def) | |
| 574 | apply (case_tac i, auto) | |
| 575 | done | |
| 13673 | 576 | |
| 577 | (**********************************************************************) | |
| 578 | ||
| 579 | (* Currently: empty exception_table *) | |
| 580 | ||
| 35102 | 581 | abbreviation (input) | 
| 13673 | 582 | empty_et :: exception_table | 
| 35102 | 583 | where "empty_et == []" | 
| 13673 | 584 | |
| 585 | ||
| 586 | ||
| 587 | (* move into Effect.thy *) | |
| 588 | lemma xcpt_names_Nil [simp]: "(xcpt_names (i, G, pc, [])) = []" | |
| 60304 | 589 | by (induct i, simp_all) | 
| 13673 | 590 | |
| 591 | lemma xcpt_eff_Nil [simp]: "(xcpt_eff i G pc s []) = []" | |
| 60304 | 592 | by (simp add: xcpt_eff_def) | 
| 13673 | 593 | |
| 594 | ||
| 595 | lemma app_jumps_lem: "\<lbrakk> app i cG mxs rT pc empty_et s; s=(Some st) \<rbrakk> | |
| 596 | \<Longrightarrow> \<forall> b. ((i = (Goto b) \<or> i=(Ifcmpeq b)) \<longrightarrow> 0 \<le> (int pc + b))" | |
| 60304 | 597 | by (induct i) auto | 
| 13673 | 598 | |
| 599 | ||
| 600 | (* wt is preserved when adding instructions/state-types to the front *) | |
| 601 | lemma wt_instr_offset: " | |
| 602 | \<lbrakk> \<forall> pc'' < length mt. | |
| 603 | wt_instr_altern ((bc@bc_post) ! pc'') cG rT (mt@mt_post) mxs mxr max_pc empty_et pc''; | |
| 604 | bc' = bc_pre @ bc @ bc_post; mt' = mt_pre @ mt @ mt_post; | |
| 605 | length bc_pre = length mt_pre; length bc = length mt; | |
| 606 | length mt_pre \<le> pc; pc < length (mt_pre @ mt); | |
| 607 | mxs \<le> mxs'; max_pc + length mt_pre \<le> max_pc' \<rbrakk> | |
| 608 | \<Longrightarrow> wt_instr_altern (bc' ! pc) cG rT mt' mxs' mxr max_pc' empty_et pc" | |
| 60304 | 609 | apply (simp add: wt_instr_altern_def) | 
| 610 | apply (subgoal_tac "\<exists> pc''. pc = pc'' + length mt_pre", erule exE) | |
| 611 | prefer 2 | |
| 612 | apply (rule_tac x="pc - length mt_pre" in exI, arith) | |
| 613 | ||
| 614 | apply (drule_tac x=pc'' in spec) | |
| 615 | apply (drule mp) | |
| 616 | apply arith (* show pc'' < length mt *) | |
| 617 | apply clarify | |
| 618 | ||
| 619 | apply (rule conjI) | |
| 620 | (* app *) | |
| 621 | apply (simp add: nth_append) | |
| 622 | apply (rule app_mono_mxs) | |
| 623 | apply (frule app_mono_pc) | |
| 624 | apply (rule HOL.refl) | |
| 625 | apply (simp add: offset_xctable_def) | |
| 626 | apply assumption+ | |
| 13673 | 627 | |
| 628 | (* check_type *) | |
| 60304 | 629 | apply (rule conjI) | 
| 630 | apply (simp add: nth_append) | |
| 631 | apply (rule check_type_mono) | |
| 632 | apply assumption+ | |
| 13673 | 633 | |
| 634 | (* ..eff.. *) | |
| 60304 | 635 | apply (intro ballI) | 
| 636 | apply (subgoal_tac "\<exists> pc' s'. x = (pc', s')", (erule exE)+, simp) | |
| 637 | ||
| 638 | apply (case_tac s') | |
| 639 | (* s' = None *) | |
| 640 | apply (simp add: eff_def nth_append norm_eff_def) | |
| 641 | apply (frule_tac x="(pc', None)" and f=fst and b=pc' in rev_image_eqI) | |
| 642 | apply (simp (no_asm_simp)) | |
| 643 | apply (simp add: image_comp Fun.comp_def) | |
| 644 | apply (frule pc_succs_shift) | |
| 645 | apply (drule bspec, assumption) | |
| 646 | apply arith | |
| 647 | ||
| 648 | (* s' = Some a *) | |
| 649 | apply (drule_tac x="(pc' - length mt_pre, s')" in bspec) | |
| 650 | ||
| 651 | (* show (pc' - length mt_pre, s') \<in> set (eff \<dots>) *) | |
| 652 | apply (simp add: eff_def) | |
| 13673 | 653 | (* norm_eff *) | 
| 60304 | 654 | apply (clarsimp simp: nth_append pc_succs_shift) | 
| 655 | ||
| 656 | (* show P x of bspec *) | |
| 657 | apply simp | |
| 658 | apply (subgoal_tac "length mt_pre \<le> pc'") | |
| 659 | apply (simp add: nth_append) | |
| 660 | apply arith | |
| 661 | ||
| 662 | (* subgoals *) | |
| 663 | apply (simp add: eff_def xcpt_eff_def) | |
| 664 | apply (clarsimp) | |
| 665 | apply (rule pc_succs_le, assumption+) | |
| 666 | apply (subgoal_tac "\<exists> st. mt ! pc'' = Some st", erule exE) | |
| 667 | apply (rule_tac s="Some st" and st=st and cG=cG and mxs=mxs and rT=rT in app_jumps_lem) | |
| 668 | apply (simp add: nth_append)+ | |
| 669 | (* subgoal \<exists> st. mt ! pc'' = Some st *) | |
| 670 | apply (simp add: norm_eff_def map_option_case nth_append) | |
| 671 | apply (case_tac "mt ! pc''") | |
| 672 | apply simp+ | |
| 673 | done | |
| 13673 | 674 | |
| 675 | ||
| 676 | (**********************************************************************) | |
| 677 | ||
| 678 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 679 | definition start_sttp_resp_cons :: "[state_type \<Rightarrow> method_type \<times> state_type] \<Rightarrow> bool" where | 
| 13673 | 680 | "start_sttp_resp_cons f == | 
| 681 | (\<forall> sttp. let (mt', sttp') = (f sttp) in (\<exists>mt'_rest. mt' = Some sttp # mt'_rest))" | |
| 682 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 683 | definition start_sttp_resp :: "[state_type \<Rightarrow> method_type \<times> state_type] \<Rightarrow> bool" where | 
| 13673 | 684 | "start_sttp_resp f == (f = comb_nil) \<or> (start_sttp_resp_cons f)" | 
| 685 | ||
| 686 | lemma start_sttp_resp_comb_nil [simp]: "start_sttp_resp comb_nil" | |
| 60304 | 687 | by (simp add: start_sttp_resp_def) | 
| 13673 | 688 | |
| 689 | lemma start_sttp_resp_cons_comb_cons [simp]: "start_sttp_resp_cons f | |
| 690 | \<Longrightarrow> start_sttp_resp_cons (f \<box> f')" | |
| 60304 | 691 | apply (simp add: start_sttp_resp_cons_def comb_def split_beta) | 
| 692 | apply (rule allI) | |
| 693 | apply (drule_tac x=sttp in spec) | |
| 694 | apply auto | |
| 695 | done | |
| 13673 | 696 | |
| 697 | lemma start_sttp_resp_cons_comb_cons_r: "\<lbrakk> start_sttp_resp f; start_sttp_resp_cons f'\<rbrakk> | |
| 698 | \<Longrightarrow> start_sttp_resp_cons (f \<box> f')" | |
| 60304 | 699 | by (auto simp: start_sttp_resp_def) | 
| 13673 | 700 | |
| 701 | lemma start_sttp_resp_cons_comb [simp]: "start_sttp_resp_cons f | |
| 702 | \<Longrightarrow> start_sttp_resp (f \<box> f')" | |
| 60304 | 703 | by (simp add: start_sttp_resp_def) | 
| 13673 | 704 | |
| 705 | lemma start_sttp_resp_comb: "\<lbrakk> start_sttp_resp f; start_sttp_resp f' \<rbrakk> | |
| 706 | \<Longrightarrow> start_sttp_resp (f \<box> f')" | |
| 60304 | 707 | by (auto simp: start_sttp_resp_def) | 
| 13673 | 708 | |
| 709 | lemma start_sttp_resp_cons_nochangeST [simp]: "start_sttp_resp_cons nochangeST" | |
| 60304 | 710 | by (simp add: start_sttp_resp_cons_def nochangeST_def) | 
| 13673 | 711 | |
| 712 | lemma start_sttp_resp_cons_pushST [simp]: "start_sttp_resp_cons (pushST Ts)" | |
| 60304 | 713 | by (simp add: start_sttp_resp_cons_def pushST_def split_beta) | 
| 13673 | 714 | |
| 715 | lemma start_sttp_resp_cons_dupST [simp]: "start_sttp_resp_cons dupST" | |
| 60304 | 716 | by (simp add: start_sttp_resp_cons_def dupST_def split_beta) | 
| 13673 | 717 | |
| 718 | lemma start_sttp_resp_cons_dup_x1ST [simp]: "start_sttp_resp_cons dup_x1ST" | |
| 60304 | 719 | by (simp add: start_sttp_resp_cons_def dup_x1ST_def split_beta) | 
| 13673 | 720 | |
| 721 | lemma start_sttp_resp_cons_popST [simp]: "start_sttp_resp_cons (popST n)" | |
| 60304 | 722 | by (simp add: start_sttp_resp_cons_def popST_def split_beta) | 
| 13673 | 723 | |
| 724 | lemma start_sttp_resp_cons_replST [simp]: "start_sttp_resp_cons (replST n tp)" | |
| 60304 | 725 | by (simp add: start_sttp_resp_cons_def replST_def split_beta) | 
| 13673 | 726 | |
| 727 | lemma start_sttp_resp_cons_storeST [simp]: "start_sttp_resp_cons (storeST i tp)" | |
| 60304 | 728 | by (simp add: start_sttp_resp_cons_def storeST_def split_beta) | 
| 13673 | 729 | |
| 730 | lemma start_sttp_resp_cons_compTpExpr [simp]: "start_sttp_resp_cons (compTpExpr jmb G ex)" | |
| 60304 | 731 | apply (induct ex) | 
| 732 | apply simp+ | |
| 733 | apply (simp add: start_sttp_resp_cons_def comb_def pushST_def split_beta) (* LAcc *) | |
| 734 | apply simp+ | |
| 735 | done | |
| 13673 | 736 | |
| 737 | lemma start_sttp_resp_cons_compTpInit [simp]: "start_sttp_resp_cons (compTpInit jmb lv)" | |
| 60304 | 738 | by (simp add: compTpInit_def split_beta) | 
| 13673 | 739 | |
| 740 | ||
| 741 | lemma start_sttp_resp_nochangeST [simp]: "start_sttp_resp nochangeST" | |
| 60304 | 742 | by (simp add: start_sttp_resp_def) | 
| 13673 | 743 | |
| 744 | lemma start_sttp_resp_pushST [simp]: "start_sttp_resp (pushST Ts)" | |
| 60304 | 745 | by (simp add: start_sttp_resp_def) | 
| 13673 | 746 | |
| 747 | lemma start_sttp_resp_dupST [simp]: "start_sttp_resp dupST" | |
| 60304 | 748 | by (simp add: start_sttp_resp_def) | 
| 13673 | 749 | |
| 750 | lemma start_sttp_resp_dup_x1ST [simp]: "start_sttp_resp dup_x1ST" | |
| 60304 | 751 | by (simp add: start_sttp_resp_def) | 
| 13673 | 752 | |
| 753 | lemma start_sttp_resp_popST [simp]: "start_sttp_resp (popST n)" | |
| 60304 | 754 | by (simp add: start_sttp_resp_def) | 
| 13673 | 755 | |
| 756 | lemma start_sttp_resp_replST [simp]: "start_sttp_resp (replST n tp)" | |
| 60304 | 757 | by (simp add: start_sttp_resp_def) | 
| 13673 | 758 | |
| 759 | lemma start_sttp_resp_storeST [simp]: "start_sttp_resp (storeST i tp)" | |
| 60304 | 760 | by (simp add: start_sttp_resp_def) | 
| 13673 | 761 | |
| 762 | lemma start_sttp_resp_compTpExpr [simp]: "start_sttp_resp (compTpExpr jmb G ex)" | |
| 60304 | 763 | by (simp add: start_sttp_resp_def) | 
| 13673 | 764 | |
| 765 | lemma start_sttp_resp_compTpExprs [simp]: "start_sttp_resp (compTpExprs jmb G exs)" | |
| 60304 | 766 | by (induct exs, (simp add: start_sttp_resp_comb)+) | 
| 13673 | 767 | |
| 768 | lemma start_sttp_resp_compTpStmt [simp]: "start_sttp_resp (compTpStmt jmb G s)" | |
| 60304 | 769 | by (induct s, (simp add: start_sttp_resp_comb)+) | 
| 13673 | 770 | |
| 771 | lemma start_sttp_resp_compTpInitLvars [simp]: "start_sttp_resp (compTpInitLvars jmb lvars)" | |
| 60304 | 772 | by (induct lvars, simp+) | 
| 13673 | 773 | |
| 774 | ||
| 775 | ||
| 776 | ||
| 777 | (* ********************************************************************** *) | |
| 58886 | 778 | subsection "length of compExpr/ compTpExprs" | 
| 13673 | 779 | (* ********************************************************************** *) | 
| 780 | ||
| 781 | lemma length_comb [simp]: "length (mt_of ((f1 \<box> f2) sttp)) = | |
| 782 | length (mt_of (f1 sttp)) + length (mt_of (f2 (sttp_of (f1 sttp))))" | |
| 60304 | 783 | by (simp add: comb_def split_beta) | 
| 13673 | 784 | |
| 785 | ||
| 786 | lemma length_comb_nil [simp]: "length (mt_of (comb_nil sttp)) = 0" | |
| 60304 | 787 | by (simp add: comb_nil_def) | 
| 13673 | 788 | |
| 789 | lemma length_nochangeST [simp]: "length (mt_of (nochangeST sttp)) = 1" | |
| 60304 | 790 | by (simp add: nochangeST_def) | 
| 13673 | 791 | |
| 792 | lemma length_pushST [simp]: "length (mt_of (pushST Ts sttp)) = 1" | |
| 60304 | 793 | by (simp add: pushST_def split_beta) | 
| 13673 | 794 | |
| 795 | lemma length_dupST [simp]: "length (mt_of (dupST sttp)) = 1" | |
| 60304 | 796 | by (simp add: dupST_def split_beta) | 
| 13673 | 797 | |
| 798 | lemma length_dup_x1ST [simp]: "length (mt_of (dup_x1ST sttp)) = 1" | |
| 60304 | 799 | by (simp add: dup_x1ST_def split_beta) | 
| 13673 | 800 | |
| 801 | lemma length_popST [simp]: "length (mt_of (popST n sttp)) = 1" | |
| 60304 | 802 | by (simp add: popST_def split_beta) | 
| 13673 | 803 | |
| 804 | lemma length_replST [simp]: "length (mt_of (replST n tp sttp)) = 1" | |
| 60304 | 805 | by (simp add: replST_def split_beta) | 
| 13673 | 806 | |
| 807 | lemma length_storeST [simp]: "length (mt_of (storeST i tp sttp)) = 1" | |
| 60304 | 808 | by (simp add: storeST_def split_beta) | 
| 13673 | 809 | |
| 810 | ||
| 811 | lemma length_compTpExpr_Exprs [rule_format]: " | |
| 60304 | 812 | (\<forall>sttp. (length (mt_of (compTpExpr jmb G ex sttp)) = length (compExpr jmb ex))) | 
| 813 | \<and> (\<forall>sttp. (length (mt_of (compTpExprs jmb G exs sttp)) = length (compExprs jmb exs)))" | |
| 814 | apply (rule compat_expr_expr_list.induct) | |
| 815 | apply (simp_all)[3] | |
| 816 | apply (rename_tac binop a b, case_tac binop) | |
| 817 | apply (auto simp add: pushST_def split_beta) | |
| 818 | done | |
| 13673 | 819 | |
| 820 | lemma length_compTpExpr: "length (mt_of (compTpExpr jmb G ex sttp)) = length (compExpr jmb ex)" | |
| 60304 | 821 | by (rule length_compTpExpr_Exprs [THEN conjunct1 [THEN spec]]) | 
| 13673 | 822 | |
| 823 | lemma length_compTpExprs: "length (mt_of (compTpExprs jmb G exs sttp)) = length (compExprs jmb exs)" | |
| 60304 | 824 | by (rule length_compTpExpr_Exprs [THEN conjunct2 [THEN spec]]) | 
| 13673 | 825 | |
| 826 | lemma length_compTpStmt [rule_format]: " | |
| 827 | (\<forall> sttp. (length (mt_of (compTpStmt jmb G s sttp)) = length (compStmt jmb s)))" | |
| 60304 | 828 | by (rule stmt.induct) (auto simp: length_compTpExpr) | 
| 13673 | 829 | |
| 830 | lemma length_compTpInit: "length (mt_of (compTpInit jmb lv sttp)) = length (compInit jmb lv)" | |
| 60304 | 831 | by (simp add: compTpInit_def compInit_def split_beta) | 
| 13673 | 832 | |
| 833 | lemma length_compTpInitLvars [rule_format]: | |
| 834 | "\<forall> sttp. length (mt_of (compTpInitLvars jmb lvars sttp)) = length (compInitLvars jmb lvars)" | |
| 60304 | 835 | by (induct lvars, (simp add: compInitLvars_def length_compTpInit split_beta)+) | 
| 13673 | 836 | |
| 837 | ||
| 838 | (* ********************************************************************** *) | |
| 58886 | 839 | subsection "Correspondence bytecode - method types" | 
| 13673 | 840 | (* ********************************************************************** *) | 
| 841 | ||
| 35102 | 842 | abbreviation (input) | 
| 13673 | 843 | ST_of :: "state_type \<Rightarrow> opstack_type" | 
| 35102 | 844 | where "ST_of == fst" | 
| 845 | ||
| 846 | abbreviation (input) | |
| 13673 | 847 | LT_of :: "state_type \<Rightarrow> locvars_type" | 
| 35102 | 848 | where "LT_of == snd" | 
| 13673 | 849 | |
| 850 | lemma states_lower: | |
| 851 | "\<lbrakk> OK (Some (ST, LT)) \<in> states cG mxs mxr; length ST \<le> mxs\<rbrakk> | |
| 852 | \<Longrightarrow> OK (Some (ST, LT)) \<in> states cG (length ST) mxr" | |
| 60304 | 853 | apply (simp add: states_def JVMType.sl_def) | 
| 854 | apply (simp add: Product.esl_def stk_esl_def reg_sl_def upto_esl_def Listn.sl_def Err.sl_def | |
| 855 | JType.esl_def) | |
| 856 | apply (simp add: Err.esl_def Err.le_def Listn.le_def) | |
| 857 | apply (simp add: Product.le_def Product.sup_def Err.sup_def) | |
| 858 | apply (simp add: Opt.esl_def Listn.sup_def) | |
| 859 | apply clarify | |
| 860 | apply auto | |
| 861 | done | |
| 13673 | 862 | |
| 863 | lemma check_type_lower: | |
| 864 | "\<lbrakk> check_type cG mxs mxr (OK (Some (ST, LT))); length ST \<le> mxs\<rbrakk> | |
| 865 | \<Longrightarrow>check_type cG (length ST) mxr (OK (Some (ST, LT)))" | |
| 60304 | 866 | by (simp add: check_type_def states_lower) | 
| 13673 | 867 | |
| 868 | (* ******************************************************************* *) | |
| 869 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 870 | definition bc_mt_corresp :: " | 
| 13673 | 871 | [bytecode, state_type \<Rightarrow> method_type \<times> state_type, state_type, jvm_prog, ty, nat, p_count] | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 872 | \<Rightarrow> bool" where | 
| 13673 | 873 | |
| 874 | "bc_mt_corresp bc f sttp0 cG rT mxr idx == | |
| 875 | let (mt, sttp) = f sttp0 in | |
| 876 | (length bc = length mt \<and> | |
| 877 | ((check_type cG (length (ST_of sttp0)) mxr (OK (Some sttp0))) \<longrightarrow> | |
| 878 | (\<forall> mxs. | |
| 879 | mxs = max_ssize (mt@[Some sttp]) \<longrightarrow> | |
| 880 | (\<forall> pc. pc < idx \<longrightarrow> | |
| 881 | wt_instr_altern (bc ! pc) cG rT (mt@[Some sttp]) mxs mxr (length mt + 1) empty_et pc) | |
| 882 | \<and> | |
| 883 | check_type cG mxs mxr (OK ((mt@[Some sttp]) ! idx)))))" | |
| 884 | ||
| 885 | ||
| 886 | lemma bc_mt_corresp_comb: " | |
| 887 | \<lbrakk> bc' = (bc1@bc2); l' = (length bc'); | |
| 888 | bc_mt_corresp bc1 f1 sttp0 cG rT mxr (length bc1); | |
| 889 | bc_mt_corresp bc2 f2 (sttp_of (f1 sttp0)) cG rT mxr (length bc2); | |
| 890 | start_sttp_resp f2\<rbrakk> | |
| 891 | \<Longrightarrow> bc_mt_corresp bc' (f1 \<box> f2) sttp0 cG rT mxr l'" | |
| 60304 | 892 | apply (subgoal_tac "\<exists>mt1 sttp1. (f1 sttp0) = (mt1, sttp1)", (erule exE)+) | 
| 893 | apply (subgoal_tac "\<exists>mt2 sttp2. (f2 sttp1) = (mt2, sttp2)", (erule exE)+) | |
| 894 | ||
| 895 | (* unfold start_sttp_resp and make case distinction *) | |
| 896 | apply (simp only: start_sttp_resp_def) | |
| 897 | apply (erule disjE) | |
| 898 | (* case f2 = comb_nil *) | |
| 899 | apply (simp add: bc_mt_corresp_def comb_nil_def start_sttp_resp_cons_def) | |
| 900 | apply (erule conjE)+ | |
| 901 | apply (intro strip) | |
| 902 | apply simp | |
| 903 | ||
| 904 | (* case start_sttp_resp_cons f2 *) | |
| 905 | apply (simp add: bc_mt_corresp_def comb_def start_sttp_resp_cons_def del: all_simps) | |
| 906 | apply (intro strip) | |
| 907 | apply (erule conjE)+ | |
| 908 | apply (drule mp, assumption) | |
| 909 | apply (subgoal_tac "check_type cG (length (fst sttp1)) mxr (OK (Some sttp1))") | |
| 910 | apply (erule conjE)+ | |
| 911 | apply (drule mp, assumption) | |
| 912 | apply (erule conjE)+ | |
| 913 | ||
| 914 | apply (rule conjI) | |
| 915 | (* show wt_instr \<dots> *) | |
| 916 | ||
| 917 | apply (drule_tac x=sttp1 in spec, simp) | |
| 918 | apply (erule exE) | |
| 919 | apply (intro strip) | |
| 920 | apply (case_tac "pc < length mt1") | |
| 921 | ||
| 922 | (* case pc < length mt1 *) | |
| 923 | apply (drule spec, drule mp, simp) | |
| 924 | apply simp | |
| 925 | apply (rule_tac mt="mt1 @ [Some sttp1]" in wt_instr_prefix) | |
| 926 | apply assumption+ apply (rule HOL.refl) | |
| 927 | apply (simp (no_asm_simp)) | |
| 928 | apply (simp (no_asm_simp) add: max_ssize_def) | |
| 929 | apply (simp add: max_of_list_def ac_simps) | |
| 930 | apply arith | |
| 931 | apply (simp (no_asm_simp))+ | |
| 932 | ||
| 933 | (* case pc \<ge> length mt1 *) | |
| 934 | apply (rule_tac bc=bc2 and mt=mt2 and bc_post="[]" and mt_post="[Some sttp2]" | |
| 935 | and mxr=mxr | |
| 936 | in wt_instr_offset) | |
| 937 | apply simp | |
| 938 | apply (simp (no_asm_simp))+ | |
| 939 | apply simp | |
| 940 | apply (simp add: max_ssize_def) apply (simp (no_asm_simp)) | |
| 941 | ||
| 942 | (* show check_type \<dots> *) | |
| 943 | apply (subgoal_tac "((mt2 @ [Some sttp2]) ! length bc2) = Some sttp2") | |
| 944 | apply (simp only:) | |
| 945 | apply (rule check_type_mono) apply assumption | |
| 946 | apply (simp (no_asm_simp) add: max_ssize_def ac_simps) | |
| 947 | apply (simp add: nth_append) | |
| 948 | ||
| 949 | apply (erule conjE)+ | |
| 950 | apply (case_tac sttp1) | |
| 951 | apply (simp add: check_type_def) | |
| 952 | apply (rule states_lower, assumption) | |
| 953 | apply (simp (no_asm_simp) add: max_ssize_def) | |
| 954 | apply (simp (no_asm_simp) add: max_of_list_def ssize_sto_def) | |
| 955 | apply (simp (no_asm_simp))+ | |
| 956 | done | |
| 957 | ||
| 958 | ||
| 959 | lemma bc_mt_corresp_zero [simp]: | |
| 960 | "\<lbrakk> length (mt_of (f sttp)) = length bc; start_sttp_resp f\<rbrakk> | |
| 13673 | 961 | \<Longrightarrow> bc_mt_corresp bc f sttp cG rT mxr 0" | 
| 60304 | 962 | apply (simp add: bc_mt_corresp_def start_sttp_resp_def split_beta) | 
| 963 | apply (erule disjE) | |
| 964 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def split: prod.split) | |
| 965 | apply (intro strip) | |
| 966 | apply (simp add: start_sttp_resp_cons_def split_beta) | |
| 967 | apply (drule_tac x=sttp in spec, erule exE) | |
| 968 | apply simp | |
| 969 | apply (rule check_type_mono, assumption) | |
| 970 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def split: prod.split) | |
| 971 | done | |
| 13673 | 972 | |
| 973 | (* ********************************************************************** *) | |
| 974 | ||
| 975 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 976 | definition mt_sttp_flatten :: "method_type \<times> state_type \<Rightarrow> method_type" where | 
| 13673 | 977 | "mt_sttp_flatten mt_sttp == (mt_of mt_sttp) @ [Some (sttp_of mt_sttp)]" | 
| 978 | ||
| 979 | ||
| 980 | lemma mt_sttp_flatten_length [simp]: "n = (length (mt_of (f sttp))) | |
| 60304 | 981 | \<Longrightarrow> (mt_sttp_flatten (f sttp)) ! n = Some (sttp_of (f sttp))" | 
| 982 | by (simp add: mt_sttp_flatten_def) | |
| 13673 | 983 | |
| 984 | lemma mt_sttp_flatten_comb: "(mt_sttp_flatten ((f1 \<box> f2) sttp)) = | |
| 985 | (mt_of (f1 sttp)) @ (mt_sttp_flatten (f2 (sttp_of (f1 sttp))))" | |
| 60304 | 986 | by (simp add: mt_sttp_flatten_def comb_def split_beta) | 
| 13673 | 987 | |
| 988 | lemma mt_sttp_flatten_comb_length [simp]: "\<lbrakk> n1 = length (mt_of (f1 sttp)); n1 \<le> n \<rbrakk> | |
| 989 | \<Longrightarrow> (mt_sttp_flatten ((f1 \<box> f2) sttp) ! n) = (mt_sttp_flatten (f2 (sttp_of (f1 sttp))) ! (n - n1))" | |
| 60304 | 990 | by (simp add: mt_sttp_flatten_comb nth_append) | 
| 991 | ||
| 992 | lemma mt_sttp_flatten_comb_zero [simp]: | |
| 993 | "start_sttp_resp f \<Longrightarrow> (mt_sttp_flatten (f sttp)) ! 0 = Some sttp" | |
| 994 | apply (simp only: start_sttp_resp_def) | |
| 995 | apply (erule disjE) | |
| 996 | apply (simp add: comb_nil_def mt_sttp_flatten_def) | |
| 997 | apply (simp add: start_sttp_resp_cons_def mt_sttp_flatten_def split_beta) | |
| 998 | apply (drule_tac x=sttp in spec) | |
| 999 | apply (erule exE) | |
| 1000 | apply simp | |
| 1001 | done | |
| 13673 | 1002 | |
| 1003 | ||
| 1004 | (* move into prelude -- compare with nat_int_length *) | |
| 1005 | lemma int_outside_right: "0 \<le> (m::int) \<Longrightarrow> m + (int n) = int ((nat m) + n)" | |
| 60304 | 1006 | by simp | 
| 13673 | 1007 | |
| 1008 | lemma int_outside_left: "0 \<le> (m::int) \<Longrightarrow> (int n) + m = int (n + (nat m))" | |
| 60304 | 1009 | by simp | 
| 13673 | 1010 | |
| 1011 | ||
| 1012 | ||
| 1013 | ||
| 1014 | (* ********************************************************************** *) | |
| 1015 | (* bc_mt_corresp for individual instructions *) | |
| 1016 | (* ---------------------------------------------------------------------- *) | |
| 1017 | ||
| 1018 | lemma less_Suc [simp] : "n \<le> k \<Longrightarrow> (k < Suc n) = (k = n)" | |
| 1019 | by arith | |
| 1020 | ||
| 1021 | lemmas check_type_simps = check_type_def states_def JVMType.sl_def | |
| 1022 | Product.esl_def stk_esl_def reg_sl_def upto_esl_def Listn.sl_def Err.sl_def | |
| 1023 | JType.esl_def Err.esl_def Err.le_def Listn.le_def Product.le_def Product.sup_def Err.sup_def | |
| 1024 | Opt.esl_def Listn.sup_def | |
| 1025 | ||
| 1026 | ||
| 60304 | 1027 | lemma check_type_push: | 
| 1028 | "\<lbrakk> is_class cG cname; check_type cG (length ST) mxr (OK (Some (ST, LT))) \<rbrakk> | |
| 13673 | 1029 | \<Longrightarrow> check_type cG (Suc (length ST)) mxr (OK (Some (Class cname # ST, LT)))" | 
| 60304 | 1030 | apply (simp add: check_type_simps) | 
| 1031 | apply clarify | |
| 1032 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1033 | apply simp+ | |
| 1034 | done | |
| 13673 | 1035 | |
| 1036 | lemma bc_mt_corresp_New: "\<lbrakk>is_class cG cname \<rbrakk> | |
| 1037 | \<Longrightarrow> bc_mt_corresp [New cname] (pushST [Class cname]) (ST, LT) cG rT mxr (Suc 0)" | |
| 60304 | 1038 | apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def | 
| 1039 | max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) | |
| 1040 | apply (intro strip) | |
| 1041 | apply (rule conjI) | |
| 1042 | apply (rule check_type_mono, assumption, simp) | |
| 1043 | apply (simp add: check_type_push) | |
| 1044 | done | |
| 13673 | 1045 | |
| 1046 | lemma bc_mt_corresp_Pop: " | |
| 1047 | bc_mt_corresp [Pop] (popST (Suc 0)) (T # ST, LT) cG rT mxr (Suc 0)" | |
| 1048 | apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 60304 | 1049 | apply (simp add: max_ssize_def ssize_sto_def max_of_list_def) | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
46226diff
changeset | 1050 | apply (simp add: check_type_simps max.absorb1) | 
| 13673 | 1051 | apply clarify | 
| 1052 | apply (rule_tac x="(length ST)" in exI) | |
| 60304 | 1053 | apply simp | 
| 13673 | 1054 | done | 
| 1055 | ||
| 1056 | lemma bc_mt_corresp_Checkcast: "\<lbrakk> is_class cG cname; sttp = (ST, LT); | |
| 1057 | (\<exists>rT STo. ST = RefT rT # STo) \<rbrakk> | |
| 1058 | \<Longrightarrow> bc_mt_corresp [Checkcast cname] (replST (Suc 0) (Class cname)) sttp cG rT mxr (Suc 0)" | |
| 1059 | apply (erule exE)+ | |
| 1060 | apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 32443 | 1061 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def) | 
| 13673 | 1062 | apply (simp add: check_type_simps) | 
| 1063 | apply clarify | |
| 1064 | apply (rule_tac x="Suc (length STo)" in exI) | |
| 60304 | 1065 | apply simp | 
| 13673 | 1066 | done | 
| 1067 | ||
| 1068 | ||
| 1069 | lemma bc_mt_corresp_LitPush: "\<lbrakk> typeof (\<lambda>v. None) val = Some T \<rbrakk> | |
| 1070 | \<Longrightarrow> bc_mt_corresp [LitPush val] (pushST [T]) sttp cG rT mxr (Suc 0)" | |
| 60304 | 1071 | apply (subgoal_tac "\<exists>ST LT. sttp= (ST, LT)", (erule exE)+) | 
| 1072 | apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def | |
| 1073 | max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) | |
| 1074 | apply (intro strip) | |
| 1075 | apply (rule conjI) | |
| 1076 | apply (rule check_type_mono, assumption, simp) | |
| 1077 | apply (simp add: check_type_simps) | |
| 1078 | apply clarify | |
| 1079 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1080 | apply simp | |
| 1081 | apply (drule sym) | |
| 1082 | apply (case_tac val) | |
| 1083 | apply simp+ | |
| 1084 | done | |
| 1085 | ||
| 1086 | ||
| 1087 | lemma bc_mt_corresp_LitPush_CT: | |
| 1088 | "\<lbrakk> typeof (\<lambda>v. None) val = Some T \<and> cG \<turnstile> T \<preceq> T'; is_type cG T' \<rbrakk> | |
| 13673 | 1089 | \<Longrightarrow> bc_mt_corresp [LitPush val] (pushST [T']) sttp cG rT mxr (Suc 0)" | 
| 60304 | 1090 | apply (subgoal_tac "\<exists>ST LT. sttp= (ST, LT)", (erule exE)+) | 
| 1091 | apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def max_ssize_def | |
| 1092 | max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) | |
| 1093 | apply (intro strip) | |
| 1094 | apply (rule conjI) | |
| 1095 | apply (rule check_type_mono, assumption, simp) | |
| 1096 | apply (simp add: check_type_simps) | |
| 1097 | apply (simp add: sup_state_Cons) | |
| 1098 | apply clarify | |
| 1099 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1100 | apply simp | |
| 1101 | apply simp | |
| 1102 | done | |
| 13673 | 1103 | |
| 33954 
1bc3b688548c
backported parts of abstract byte code verifier from AFP/Jinja
 haftmann parents: 
33640diff
changeset | 1104 | declare not_Err_eq [iff del] | 
| 
1bc3b688548c
backported parts of abstract byte code verifier from AFP/Jinja
 haftmann parents: 
33640diff
changeset | 1105 | |
| 13673 | 1106 | lemma bc_mt_corresp_Load: "\<lbrakk> i < length LT; LT ! i \<noteq> Err; mxr = length LT \<rbrakk> | 
| 1107 | \<Longrightarrow> bc_mt_corresp [Load i] | |
| 1108 | (\<lambda>(ST, LT). pushST [ok_val (LT ! i)] (ST, LT)) (ST, LT) cG rT mxr (Suc 0)" | |
| 60304 | 1109 | apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def max_ssize_def max_of_list_def | 
| 1110 | ssize_sto_def eff_def norm_eff_def max.absorb2) | |
| 13673 | 1111 | apply (intro strip) | 
| 1112 | apply (rule conjI) | |
| 60304 | 1113 | apply (rule check_type_mono, assumption, simp) | 
| 1114 | apply (simp add: check_type_simps) | |
| 1115 | apply clarify | |
| 1116 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1117 | apply (simp (no_asm_simp)) | |
| 13673 | 1118 | apply (simp only: err_def) | 
| 60304 | 1119 | apply (frule listE_nth_in) | 
| 1120 | apply assumption | |
| 1121 |   apply (subgoal_tac "LT ! i \<in> {x. \<exists>y\<in>types cG. x = OK y}")
 | |
| 1122 | apply (drule CollectD) | |
| 1123 | apply (erule bexE) | |
| 1124 | apply (simp (no_asm_simp)) | |
| 1125 | apply blast | |
| 1126 | apply blast | |
| 1127 | done | |
| 1128 | ||
| 1129 | ||
| 1130 | lemma bc_mt_corresp_Store_init: | |
| 1131 | "i < length LT \<Longrightarrow> bc_mt_corresp [Store i] (storeST i T) (T # ST, LT) cG rT mxr (Suc 0)" | |
| 1132 | apply (simp add: bc_mt_corresp_def storeST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32443diff
changeset | 1133 | apply (simp add: max_ssize_def max_of_list_def) | 
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
31082diff
changeset | 1134 | apply (simp add: ssize_sto_def) | 
| 13673 | 1135 | apply (intro strip) | 
| 60304 | 1136 | apply (simp add: check_type_simps max.absorb1) | 
| 1137 | apply clarify | |
| 1138 | apply (rule conjI) | |
| 1139 | apply (rule_tac x="(length ST)" in exI) | |
| 1140 | apply simp+ | |
| 1141 | done | |
| 1142 | ||
| 1143 | ||
| 1144 | lemma bc_mt_corresp_Store: | |
| 1145 | "\<lbrakk> i < length LT; cG \<turnstile> LT[i := OK T] <=l LT \<rbrakk> | |
| 13673 | 1146 | \<Longrightarrow> bc_mt_corresp [Store i] (popST (Suc 0)) (T # ST, LT) cG rT mxr (Suc 0)" | 
| 1147 | apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 1148 | apply (simp add: sup_state_conv) | |
| 1149 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def) | |
| 60304 | 1150 | apply (intro strip) | 
| 1151 | apply (simp add: check_type_simps max.absorb1) | |
| 1152 | apply clarify | |
| 1153 | apply (rule_tac x="(length ST)" in exI) | |
| 1154 | apply simp | |
| 1155 | done | |
| 13673 | 1156 | |
| 1157 | ||
| 1158 | lemma bc_mt_corresp_Dup: " | |
| 1159 | bc_mt_corresp [Dup] dupST (T # ST, LT) cG rT mxr (Suc 0)" | |
| 60304 | 1160 | apply (simp add: bc_mt_corresp_def dupST_def wt_instr_altern_def | 
| 1161 | max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) | |
| 13673 | 1162 | apply (intro strip) | 
| 1163 | apply (rule conjI) | |
| 60304 | 1164 | apply (rule check_type_mono, assumption, simp) | 
| 1165 | apply (simp add: check_type_simps) | |
| 1166 | apply clarify | |
| 1167 | apply (rule_tac x="Suc (Suc (length ST))" in exI) | |
| 1168 | apply simp | |
| 1169 | done | |
| 13673 | 1170 | |
| 1171 | lemma bc_mt_corresp_Dup_x1: " | |
| 1172 | bc_mt_corresp [Dup_x1] dup_x1ST (T1 # T2 # ST, LT) cG rT mxr (Suc 0)" | |
| 1173 | apply (simp add: bc_mt_corresp_def dup_x1ST_def wt_instr_altern_def | |
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
46226diff
changeset | 1174 | max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) | 
| 13673 | 1175 | apply (intro strip) | 
| 1176 | apply (rule conjI) | |
| 60304 | 1177 | apply (rule check_type_mono, assumption, simp) | 
| 1178 | apply (simp add: check_type_simps) | |
| 1179 | apply clarify | |
| 1180 | apply (rule_tac x="Suc (Suc (Suc (length ST)))" in exI) | |
| 1181 | apply simp+ | |
| 1182 | done | |
| 13673 | 1183 | |
| 1184 | ||
| 1185 | ||
| 1186 | lemma bc_mt_corresp_IAdd: " | |
| 1187 | bc_mt_corresp [IAdd] (replST 2 (PrimT Integer)) | |
| 1188 | (PrimT Integer # PrimT Integer # ST, LT) cG rT mxr (Suc 0)" | |
| 1189 | apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 32443 | 1190 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def) | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
46226diff
changeset | 1191 | apply (simp add: check_type_simps max.absorb1) | 
| 13673 | 1192 | apply clarify | 
| 1193 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 60304 | 1194 | apply simp | 
| 13673 | 1195 | done | 
| 1196 | ||
| 1197 | lemma bc_mt_corresp_Getfield: "\<lbrakk> wf_prog wf_mb G; | |
| 1198 | field (G, C) vname = Some (cname, T); is_class G C \<rbrakk> | |
| 1199 | \<Longrightarrow> bc_mt_corresp [Getfield vname cname] | |
| 1200 | (replST (Suc 0) (snd (the (field (G, cname) vname)))) | |
| 1201 | (Class C # ST, LT) (comp G) rT mxr (Suc 0)" | |
| 14045 | 1202 | apply (frule wf_prog_ws_prog [THEN wf_subcls1]) | 
| 13673 | 1203 | apply (frule field_in_fd, assumption+) | 
| 1204 | apply (frule widen_field, assumption+) | |
| 1205 | apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 14045 | 1206 | apply (simp add: comp_field comp_subcls1 comp_widen comp_is_class) | 
| 13673 | 1207 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def) | 
| 1208 | apply (intro strip) | |
| 60304 | 1209 | apply (simp add: check_type_simps) | 
| 1210 | apply clarify | |
| 1211 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1212 | apply simp+ | |
| 1213 | apply (simp only: comp_is_type) | |
| 1214 | apply (rule_tac C=cname in fields_is_type) | |
| 1215 | apply (simp add: TypeRel.field_def) | |
| 1216 | apply (drule JBasis.table_of_remap_SomeD)+ | |
| 1217 | apply assumption+ | |
| 1218 | apply (erule wf_prog_ws_prog) | |
| 1219 | apply assumption | |
| 1220 | done | |
| 13673 | 1221 | |
| 1222 | lemma bc_mt_corresp_Putfield: "\<lbrakk> wf_prog wf_mb G; | |
| 1223 | field (G, C) vname = Some (cname, Ta); G \<turnstile> T \<preceq> Ta; is_class G C \<rbrakk> | |
| 1224 | \<Longrightarrow> bc_mt_corresp [Putfield vname cname] (popST 2) (T # Class C # T # ST, LT) | |
| 1225 | (comp G) rT mxr (Suc 0)" | |
| 14045 | 1226 | apply (frule wf_prog_ws_prog [THEN wf_subcls1]) | 
| 13673 | 1227 | apply (frule field_in_fd, assumption+) | 
| 1228 | apply (frule widen_field, assumption+) | |
| 1229 | apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 14045 | 1230 | apply (simp add: comp_field comp_subcls1 comp_widen comp_is_class) | 
| 32443 | 1231 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def) | 
| 13673 | 1232 | |
| 1233 | apply (intro strip) | |
| 60304 | 1234 | apply (simp add: check_type_simps max.absorb1) | 
| 1235 | apply clarify | |
| 1236 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1237 | apply simp+ | |
| 1238 | done | |
| 1239 | ||
| 1240 | ||
| 1241 | ||
| 1242 | lemma Call_app: | |
| 1243 | "\<lbrakk> wf_prog wf_mb G; is_class G cname; | |
| 1244 | STs = rev pTsa @ Class cname # ST; | |
| 1245 |      max_spec G cname (mname, pTsa) = {((md, T), pTs')} \<rbrakk>
 | |
| 13673 | 1246 | \<Longrightarrow> app (Invoke cname mname pTs') (comp G) (length (T # ST)) rT 0 empty_et (Some (STs, LTs))" | 
| 1247 | apply (subgoal_tac "(\<exists>mD' rT' comp_b. | |
| 60304 | 1248 | method (comp G, cname) (mname, pTs') = Some (mD', rT', comp_b))") | 
| 1249 | apply (simp add: comp_is_class) | |
| 1250 | apply (rule_tac x=pTsa in exI) | |
| 1251 | apply (rule_tac x="Class cname" in exI) | |
| 1252 | apply (simp add: max_spec_preserves_length comp_is_class) | |
| 1253 | apply (frule max_spec2mheads, (erule exE)+, (erule conjE)+) | |
| 1254 | apply (simp add: split_paired_all comp_widen list_all2_iff) | |
| 13673 | 1255 | apply (frule max_spec2mheads, (erule exE)+, (erule conjE)+) | 
| 1256 | apply (rule exI)+ | |
| 14045 | 1257 | apply (simp add: wf_prog_ws_prog [THEN comp_method]) | 
| 13673 | 1258 | done | 
| 1259 | ||
| 1260 | ||
| 60304 | 1261 | lemma bc_mt_corresp_Invoke: | 
| 1262 | "\<lbrakk> wf_prog wf_mb G; | |
| 13673 | 1263 |   max_spec G cname (mname, pTsa) = {((md, T), fpTs)};
 | 
| 1264 | is_class G cname \<rbrakk> | |
| 1265 | \<Longrightarrow> bc_mt_corresp [Invoke cname mname fpTs] (replST (Suc (length pTsa)) T) | |
| 1266 | (rev pTsa @ Class cname # ST, LT) (comp G) rT mxr (Suc 0)" | |
| 1267 | apply (simp add: bc_mt_corresp_def wt_instr_altern_def eff_def norm_eff_def) | |
| 1268 | apply (simp add: replST_def del: appInvoke) | |
| 1269 | apply (intro strip) | |
| 1270 | apply (rule conjI) | |
| 1271 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62390diff
changeset | 1272 | \<comment> \<open>app\<close> | 
| 60304 | 1273 | apply (rule Call_app [THEN app_mono_mxs]) | 
| 1274 | apply assumption+ | |
| 1275 | apply (rule HOL.refl) | |
| 1276 | apply assumption | |
| 1277 | apply (simp add: max_ssize_def max_of_list_elem ssize_sto_def) | |
| 13673 | 1278 | |
| 62042 | 1279 | \<comment> \<open>\<open><=s\<close>\<close> | 
| 13673 | 1280 | apply (frule max_spec2mheads, (erule exE)+, (erule conjE)+) | 
| 14045 | 1281 | apply (simp add: wf_prog_ws_prog [THEN comp_method]) | 
| 59199 | 1282 | apply (simp add: max_spec_preserves_length [symmetric]) | 
| 13673 | 1283 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62390diff
changeset | 1284 | \<comment> \<open>\<open>check_type\<close>\<close> | 
| 60304 | 1285 | apply (simp add: max_ssize_def ssize_sto_def) | 
| 1286 | apply (simp add: max_of_list_def) | |
| 1287 | apply (subgoal_tac "(max (length pTsa + length ST) (length ST)) = (length pTsa + length ST)") | |
| 1288 | apply simp | |
| 1289 | apply (simp add: check_type_simps) | |
| 1290 | apply clarify | |
| 1291 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1292 | apply simp+ | |
| 1293 | apply (simp only: comp_is_type) | |
| 1294 | apply (frule method_wf_mdecl) apply assumption apply assumption | |
| 1295 | apply (simp add: wf_mdecl_def wf_mhead_def) | |
| 1296 | apply (simp) | |
| 13673 | 1297 | done | 
| 1298 | ||
| 1299 | ||
| 1300 | lemma wt_instr_Ifcmpeq: "\<lbrakk>Suc pc < max_pc; | |
| 1301 | 0 \<le> (int pc + i); nat (int pc + i) < max_pc; | |
| 1302 | (mt_sttp_flatten f ! pc = Some (ts#ts'#ST,LT)) \<and> | |
| 1303 | ((\<exists>p. ts = PrimT p \<and> ts' = PrimT p) \<or> (\<exists>r r'. ts = RefT r \<and> ts' = RefT r')); | |
| 1304 | mt_sttp_flatten f ! Suc pc = Some (ST,LT); | |
| 1305 | mt_sttp_flatten f ! nat (int pc + i) = Some (ST,LT); | |
| 1306 | check_type (TranslComp.comp G) mxs mxr (OK (Some (ts # ts' # ST, LT))) \<rbrakk> | |
| 1307 | \<Longrightarrow> wt_instr_altern (Ifcmpeq i) (comp G) rT (mt_sttp_flatten f) mxs mxr max_pc empty_et pc" | |
| 60304 | 1308 | by (simp add: wt_instr_altern_def eff_def norm_eff_def) | 
| 13673 | 1309 | |
| 1310 | ||
| 1311 | lemma wt_instr_Goto: "\<lbrakk> 0 \<le> (int pc + i); nat (int pc + i) < max_pc; | |
| 1312 | mt_sttp_flatten f ! nat (int pc + i) = (mt_sttp_flatten f ! pc); | |
| 1313 | check_type (TranslComp.comp G) mxs mxr (OK (mt_sttp_flatten f ! pc)) \<rbrakk> | |
| 1314 | \<Longrightarrow> wt_instr_altern (Goto i) (comp G) rT (mt_sttp_flatten f) mxs mxr max_pc empty_et pc" | |
| 60304 | 1315 | apply (case_tac "(mt_sttp_flatten f ! pc)") | 
| 1316 | apply (simp add: wt_instr_altern_def eff_def norm_eff_def app_def xcpt_app_def)+ | |
| 1317 | done | |
| 13673 | 1318 | |
| 1319 | ||
| 1320 | ||
| 1321 | ||
| 1322 | (* ********************************************************************** *) | |
| 1323 | ||
| 1324 | ||
| 1325 | ||
| 1326 | lemma bc_mt_corresp_comb_inside: " | |
| 1327 | \<lbrakk> | |
| 1328 | bc_mt_corresp bc' f' sttp0 cG rT mxr l1; | |
| 1329 | bc' = (bc1@bc2@bc3); f'= (f1 \<box> f2 \<box> f3); | |
| 1330 | l1 = (length bc1); l12 = (length (bc1@bc2)); | |
| 1331 | bc_mt_corresp bc2 f2 (sttp_of (f1 sttp0)) cG rT mxr (length bc2); | |
| 1332 | length bc1 = length (mt_of (f1 sttp0)); | |
| 1333 | start_sttp_resp f2; start_sttp_resp f3\<rbrakk> | |
| 1334 | \<Longrightarrow> bc_mt_corresp bc' f' sttp0 cG rT mxr l12" | |
| 60304 | 1335 | apply (subgoal_tac "\<exists> mt1 sttp1. (f1 sttp0) = (mt1, sttp1)", (erule exE)+) | 
| 1336 | apply (subgoal_tac "\<exists> mt2 sttp2. (f2 sttp1) = (mt2, sttp2)", (erule exE)+) | |
| 1337 | apply (subgoal_tac "\<exists> mt3 sttp3. (f3 sttp2) = (mt3, sttp3)", (erule exE)+) | |
| 1338 | ||
| 1339 | (* unfold start_sttp_resp and make case distinction *) | |
| 1340 | apply (simp only: start_sttp_resp_def) | |
| 1341 | apply (erule_tac Q="start_sttp_resp_cons f2" in disjE) | |
| 1342 | (* case f2 = comb_nil *) | |
| 1343 | apply (simp add: bc_mt_corresp_def comb_nil_def start_sttp_resp_cons_def) | |
| 1344 | ||
| 1345 | (* case start_sttp_resp_cons f2 *) | |
| 1346 | apply (simp add: bc_mt_corresp_def comb_def start_sttp_resp_cons_def) | |
| 1347 | apply (drule_tac x=sttp1 in spec, simp, erule exE) | |
| 1348 | apply (intro strip, (erule conjE)+) | |
| 1349 | ||
| 1350 | ||
| 1351 | (* get rid of all check_type info *) | |
| 1352 | apply (subgoal_tac "check_type cG (length (fst sttp1)) mxr (OK (Some sttp1))") | |
| 1353 | apply (subgoal_tac "check_type cG (max_ssize (mt2 @ [Some sttp2])) mxr (OK (Some sttp2))") | |
| 1354 | apply (subgoal_tac "check_type cG (max_ssize (mt1 @ mt2 @ mt3 @ [Some sttp3])) mxr | |
| 1355 | (OK ((mt2 @ mt3 @ [Some sttp3]) ! length mt2))") | |
| 1356 | apply simp | |
| 1357 | ||
| 1358 | ||
| 1359 | ||
| 1360 | apply (intro strip, (erule conjE)+) | |
| 1361 | apply (case_tac "pc < length mt1") | |
| 1362 | ||
| 1363 | (* case pc < length mt1 *) | |
| 1364 | apply (drule spec, drule mp, assumption) | |
| 1365 | apply assumption | |
| 1366 | ||
| 1367 | (* case pc \<ge> length mt1 *) | |
| 1368 | (* case distinction on start_sttp_resp f3 *) | |
| 1369 | apply (erule_tac P="f3 = comb_nil" in disjE) | |
| 1370 | ||
| 1371 | (* case f3 = comb_nil *) | |
| 1372 | apply (subgoal_tac "mt3 = [] \<and> sttp2 = sttp3") apply (erule conjE)+ | |
| 1373 | apply (subgoal_tac "bc3=[]") | |
| 1374 | ||
| 1375 | apply (rule_tac bc_pre=bc1 and bc=bc2 and bc_post=bc3 | |
| 1376 | and mt_pre=mt1 and mt=mt2 and mt_post="mt3@ [Some sttp3]" | |
| 1377 | and mxs="(max_ssize (mt2 @ [(Some sttp2)]))" | |
| 1378 | and max_pc="(Suc (length mt2))" | |
| 1379 | in wt_instr_offset) | |
| 1380 | apply simp | |
| 1381 | apply (rule HOL.refl)+ | |
| 1382 | apply (simp (no_asm_simp))+ | |
| 1383 | ||
| 1384 | apply (simp (no_asm_simp) add: max_ssize_def del: max_of_list_append) | |
| 1385 | apply (rule max_of_list_sublist) | |
| 1386 | apply (simp (no_asm_simp) only: set_append list.set list.map) apply blast | |
| 1387 | apply (simp (no_asm_simp)) | |
| 1388 | apply simp (* subgoal bc3 = [] *) | |
| 1389 | apply (simp add: comb_nil_def) (* subgoal mt3 = [] \<and> sttp2 = sttp3 *) | |
| 1390 | ||
| 1391 | (* case start_sttp_resp_cons f3 *) | |
| 1392 | apply (subgoal_tac "\<exists>mt3_rest. (mt3 = Some sttp2 # mt3_rest)", erule exE) | |
| 1393 | apply (rule_tac bc_pre=bc1 and bc=bc2 and bc_post=bc3 | |
| 1394 | and mt_pre=mt1 and mt=mt2 and mt_post="mt3@ [Some sttp3]" | |
| 1395 | and mxs="(max_ssize (mt2 @ [Some sttp2]))" | |
| 1396 | and max_pc="(Suc (length mt2))" | |
| 1397 | in wt_instr_offset) | |
| 1398 | apply (intro strip) | |
| 1399 | apply (rule_tac bc=bc2 and mt="(mt2 @ [Some sttp2])" | |
| 1400 | and mxs="(max_ssize (mt2 @ [Some sttp2]))" | |
| 1401 | and max_pc="(Suc (length mt2))" | |
| 1402 | in wt_instr_prefix) | |
| 1403 | ||
| 1404 | (* preconditions of wt_instr_prefix *) | |
| 1405 | apply simp | |
| 1406 | apply (rule HOL.refl) | |
| 1407 | apply (simp (no_asm_simp))+ | |
| 1408 | apply simp+ | |
| 1409 | (* (some) preconditions of wt_instr_offset *) | |
| 1410 | apply (simp (no_asm_simp) add: max_ssize_def del: max_of_list_append) | |
| 1411 | apply (rule max_of_list_sublist) | |
| 1412 | apply (simp (no_asm_simp) only: set_append list.set list.map) | |
| 1413 | apply blast | |
| 1414 | apply (simp (no_asm_simp)) | |
| 1415 | ||
| 1416 | apply (drule_tac x=sttp2 in spec, simp) (* subgoal \<exists>mt3_rest. \<dots> *) | |
| 1417 | ||
| 1418 | (* subgoals check_type*) | |
| 1419 | (* \<dots> ! length mt2 *) | |
| 1420 | apply simp | |
| 1421 | ||
| 1422 | apply (erule_tac P="f3 = comb_nil" in disjE) | |
| 1423 | ||
| 1424 | (* -- case f3 = comb_nil *) | |
| 1425 | apply (subgoal_tac "mt3 = [] \<and> sttp2 = sttp3") apply (erule conjE)+ | |
| 1426 | apply simp | |
| 1427 | apply (rule check_type_mono, assumption) | |
| 1428 | apply (simp only: max_ssize_def) | |
| 1429 | apply (rule max_of_list_sublist) | |
| 1430 | apply (simp (no_asm_simp)) | |
| 1431 | apply blast | |
| 1432 | apply simp (* subgoal bc3 = [] *) | |
| 1433 | apply (simp add: comb_nil_def) (* subgoal mt3 = [] \<and> sttp2 = sttp3 *) | |
| 1434 | ||
| 1435 | ||
| 1436 | (* -- case start_sttp_resp_cons f3 *) | |
| 1437 | apply (subgoal_tac "\<exists>mt3_rest. (mt3 = Some sttp2 # mt3_rest)", erule exE) | |
| 1438 | apply (simp (no_asm_simp) add: nth_append) | |
| 1439 | apply (erule conjE)+ | |
| 1440 | apply (rule check_type_mono, assumption) | |
| 1441 | apply (simp only: max_ssize_def) | |
| 1442 | apply (rule max_of_list_sublist) | |
| 1443 | apply (simp (no_asm_simp)) | |
| 1444 | apply blast | |
| 1445 | apply (drule_tac x=sttp2 in spec, simp) (* subgoal \<exists>mt3_rest. \<dots> *) | |
| 1446 | ||
| 1447 | ||
| 1448 | (* subgoal check_type \<dots> Some sttp2 *) | |
| 1449 | apply (simp add: nth_append) | |
| 1450 | ||
| 1451 | (* subgoal check_type \<dots> Some sttp1 *) | |
| 1452 | apply (simp add: nth_append) | |
| 1453 | apply (erule conjE)+ | |
| 1454 | apply (case_tac "sttp1", simp) | |
| 1455 | apply (rule check_type_lower, assumption) | |
| 1456 | apply (simp (no_asm_simp) add: max_ssize_def ssize_sto_def) | |
| 1457 | apply (simp (no_asm_simp) add: max_of_list_def) | |
| 1458 | ||
| 1459 | (* subgoals \<exists> ... *) | |
| 1460 | apply (rule surj_pair)+ | |
| 1461 | done | |
| 13673 | 1462 | |
| 1463 | ||
| 1464 | (* ******************** *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 1465 | definition contracting :: "(state_type \<Rightarrow> method_type \<times> state_type) \<Rightarrow> bool" where | 
| 13673 | 1466 | "contracting f == (\<forall> ST LT. | 
| 1467 | let (ST', LT') = sttp_of (f (ST, LT)) | |
| 1468 | in (length ST' \<le> length ST \<and> set ST' \<subseteq> set ST \<and> | |
| 1469 | length LT' = length LT \<and> set LT' \<subseteq> set LT))" | |
| 1470 | ||
| 1471 | ||
| 1472 | (* ### possibly move into HOL *) | |
| 60304 | 1473 | lemma set_drop_Suc [rule_format]: "\<forall>xs. set (drop (Suc n) xs) \<subseteq> set (drop n xs)" | 
| 1474 | apply (induct n) | |
| 1475 | apply simp | |
| 1476 | apply (intro strip) | |
| 1477 | apply (rule list.induct) | |
| 1478 | apply simp | |
| 1479 | apply simp | |
| 1480 | apply blast | |
| 1481 | apply (intro strip) | |
| 1482 | apply (rule_tac P="\<lambda> xs. set (drop (Suc (Suc n)) xs) \<subseteq> set (drop (Suc n) xs)" in list.induct) | |
| 1483 | apply simp+ | |
| 1484 | done | |
| 1485 | ||
| 1486 | lemma set_drop_le [rule_format,simp]: "\<forall>n xs. n \<le> m \<longrightarrow> set (drop m xs) \<subseteq> set (drop n xs)" | |
| 1487 | apply (induct m) | |
| 1488 | apply simp | |
| 1489 | apply (intro strip) | |
| 1490 | apply (subgoal_tac "n \<le> m \<or> n = Suc m") | |
| 1491 | apply (erule disjE) | |
| 1492 | apply (frule_tac x=n in spec, drule_tac x=xs in spec, drule mp, assumption) | |
| 1493 | apply (rule set_drop_Suc [THEN subset_trans], assumption) | |
| 1494 | apply auto | |
| 1495 | done | |
| 1496 | ||
| 1497 | declare set_drop_subset [simp] | |
| 13673 | 1498 | |
| 1499 | lemma contracting_popST [simp]: "contracting (popST n)" | |
| 60304 | 1500 | by (simp add: contracting_def popST_def) | 
| 13673 | 1501 | |
| 1502 | lemma contracting_nochangeST [simp]: "contracting nochangeST" | |
| 60304 | 1503 | by (simp add: contracting_def nochangeST_def) | 
| 13673 | 1504 | |
| 1505 | ||
| 1506 | lemma check_type_contracting: "\<lbrakk> check_type cG mxs mxr (OK (Some sttp)); contracting f\<rbrakk> | |
| 1507 | \<Longrightarrow> check_type cG mxs mxr (OK (Some (sttp_of (f sttp))))" | |
| 60304 | 1508 | apply (subgoal_tac "\<exists> ST LT. sttp = (ST, LT)", (erule exE)+) | 
| 1509 | apply (simp add: check_type_simps contracting_def) | |
| 1510 | apply clarify | |
| 1511 | apply (drule_tac x=ST in spec, drule_tac x=LT in spec) | |
| 1512 | apply (case_tac "(sttp_of (f (ST, LT)))") | |
| 1513 | apply simp | |
| 1514 | apply (erule conjE)+ | |
| 1515 | ||
| 1516 | apply (drule listE_set)+ | |
| 1517 | apply (rule conjI) | |
| 1518 | apply (rule_tac x="length a" in exI) | |
| 1519 | apply simp | |
| 1520 | apply (rule listI) | |
| 1521 | apply simp | |
| 1522 | apply blast | |
| 1523 | apply (rule listI) | |
| 1524 | apply simp | |
| 1525 | apply blast | |
| 1526 | apply auto | |
| 1527 | done | |
| 13673 | 1528 | |
| 1529 | (* ******************** *) | |
| 1530 | ||
| 1531 | ||
| 1532 | lemma bc_mt_corresp_comb_wt_instr: " | |
| 1533 | \<lbrakk> bc_mt_corresp bc' f' sttp0 cG rT mxr l1; | |
| 1534 | bc' = (bc1@[inst]@bc3); f'= (f1 \<box> f2 \<box> f3); | |
| 1535 | l1 = (length bc1); | |
| 1536 | length bc1 = length (mt_of (f1 sttp0)); | |
| 1537 | length (mt_of (f2 (sttp_of (f1 sttp0)))) = 1; | |
| 1538 | start_sttp_resp_cons f1; start_sttp_resp_cons f2; start_sttp_resp f3; | |
| 1539 | ||
| 1540 | check_type cG (max_ssize (mt_sttp_flatten (f' sttp0))) mxr | |
| 1541 | (OK ((mt_sttp_flatten (f' sttp0)) ! (length bc1))) | |
| 1542 | \<longrightarrow> | |
| 1543 | wt_instr_altern inst cG rT | |
| 1544 | (mt_sttp_flatten (f' sttp0)) | |
| 1545 | (max_ssize (mt_sttp_flatten (f' sttp0))) | |
| 1546 | mxr | |
| 1547 | (Suc (length bc')) | |
| 1548 | empty_et | |
| 1549 | (length bc1); | |
| 1550 | contracting f2 | |
| 1551 | \<rbrakk> | |
| 1552 | \<Longrightarrow> bc_mt_corresp bc' f' sttp0 cG rT mxr (length (bc1@[inst]))" | |
| 60304 | 1553 | apply (subgoal_tac "\<exists> mt1 sttp1. (f1 sttp0) = (mt1, sttp1)", (erule exE)+) | 
| 1554 | apply (subgoal_tac "\<exists> mt2 sttp2. (f2 sttp1) = (mt2, sttp2)", (erule exE)+) | |
| 1555 | apply (subgoal_tac "\<exists> mt3 sttp3. (f3 sttp2) = (mt3, sttp3)", (erule exE)+) | |
| 1556 | ||
| 1557 | apply (simp add: bc_mt_corresp_def comb_def start_sttp_resp_cons_def | |
| 1558 | mt_sttp_flatten_def) | |
| 1559 | ||
| 1560 | apply (intro strip, (erule conjE)+) | |
| 1561 | apply (drule mp, assumption)+ | |
| 1562 | apply (erule conjE)+ | |
| 1563 | apply (drule mp, assumption) | |
| 1564 | apply (rule conjI) | |
| 1565 | ||
| 1566 | (* wt_instr \<dots> *) | |
| 1567 | apply (intro strip) | |
| 1568 | apply (case_tac "pc < length mt1") | |
| 1569 | ||
| 1570 | (* case pc < length mt1 *) | |
| 1571 | apply (drule spec, drule mp, assumption) | |
| 1572 | apply assumption | |
| 1573 | ||
| 1574 | (* case pc \<ge> length mt1 *) | |
| 1575 | apply (subgoal_tac "pc = length mt1") prefer 2 apply arith | |
| 1576 | apply (simp only:) | |
| 1577 | apply (simp add: nth_append mt_sttp_flatten_def) | |
| 1578 | ||
| 1579 | ||
| 1580 | (* check_type \<dots> *) | |
| 1581 | apply (simp add: start_sttp_resp_def) | |
| 1582 | apply (drule_tac x="sttp0" in spec, simp, erule exE) | |
| 1583 | apply (drule_tac x="sttp1" in spec, simp, erule exE) | |
| 1584 | ||
| 1585 | apply (subgoal_tac "check_type cG (max_ssize (mt1 @ mt2 @ mt3 @ [Some sttp3])) mxr | |
| 1586 | (OK (Some (sttp_of (f2 sttp1))))") | |
| 1587 | ||
| 1588 | apply (simp only:) | |
| 1589 | ||
| 1590 | apply (erule disjE) | |
| 1591 | (* case f3 = comb_nil *) | |
| 1592 | apply (subgoal_tac "((mt1 @ mt2 @ mt3 @ [Some sttp3]) ! Suc (length mt1)) = (Some (snd (f2 sttp1)))") | |
| 1593 | apply (subgoal_tac "mt3 = [] \<and> sttp2 = sttp3") | |
| 1594 | apply (erule conjE)+ | |
| 1595 | apply (simp add: nth_append) | |
| 1596 | apply (simp add: comb_nil_def) (* subgoal mt3 = [] \<and> sttp2 = sttp3 *) | |
| 1597 | apply (simp add: nth_append comb_nil_def) (* subgoal \<dots> ! Suc (length mt1) *) | |
| 1598 | ||
| 1599 | (* case start_sttp_resp_cons f3 *) | |
| 1600 | apply (simp add: start_sttp_resp_cons_def) | |
| 1601 | apply (drule_tac x="sttp2" in spec, simp, erule exE) | |
| 1602 | apply (simp add: nth_append) | |
| 1603 | ||
| 1604 | (* subgoal check_type *) | |
| 1605 | apply (rule check_type_contracting) | |
| 1606 | apply (subgoal_tac "((mt1 @ mt2 @ mt3 @ [Some sttp3]) ! length mt1) = (Some sttp1)") | |
| 1607 | apply (simp add: nth_append) | |
| 1608 | apply (simp add: nth_append) | |
| 1609 | ||
| 1610 | apply assumption | |
| 1611 | ||
| 1612 | (* subgoals *) | |
| 1613 | apply (rule surj_pair)+ | |
| 1614 | done | |
| 1615 | ||
| 1616 | ||
| 1617 | lemma compTpExpr_LT_ST_rewr [simp]: | |
| 1618 | "\<lbrakk> wf_java_prog G; wf_java_mdecl G C ((mn, pTs), rT, (pns, lvars, blk, res)); | |
| 1619 | local_env G C (mn, pTs) pns lvars \<turnstile> ex :: T; | |
| 1620 | is_inited_LT C pTs lvars LT\<rbrakk> | |
| 1621 | \<Longrightarrow> sttp_of (compTpExpr (pns, lvars, blk, res) G ex (ST, LT)) = (T # ST, LT)" | |
| 1622 | by (rule compTpExpr_LT_ST) auto | |
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 1623 | |
| 13673 | 1624 | |
| 1625 | lemma wt_method_compTpExpr_Exprs_corresp: " | |
| 1626 | \<lbrakk> jmb = (pns,lvars,blk,res); | |
| 1627 | wf_prog wf_java_mdecl G; | |
| 1628 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 1629 | E = (local_env G C (mn, pTs) pns lvars)\<rbrakk> | |
| 1630 | \<Longrightarrow> | |
| 1631 | (\<forall> ST LT T bc' f'. | |
| 1632 | E \<turnstile> ex :: T \<longrightarrow> | |
| 1633 | (is_inited_LT C pTs lvars LT) \<longrightarrow> | |
| 1634 | bc' = (compExpr jmb ex) \<longrightarrow> | |
| 1635 | f' = (compTpExpr jmb G ex) | |
| 1636 | \<longrightarrow> bc_mt_corresp bc' f' (ST, LT) (comp G) rT (length LT) (length bc')) | |
| 1637 | \<and> | |
| 1638 | (\<forall> ST LT Ts. | |
| 1639 | E \<turnstile> exs [::] Ts \<longrightarrow> | |
| 1640 | (is_inited_LT C pTs lvars LT) | |
| 1641 | \<longrightarrow> bc_mt_corresp (compExprs jmb exs) (compTpExprs jmb G exs) (ST, LT) (comp G) rT (length LT) (length (compExprs jmb exs)))" | |
| 60304 | 1642 | apply (rule compat_expr_expr_list.induct) | 
| 1643 | ||
| 1644 | (* expresssions *) | |
| 1645 | ||
| 1646 | (* NewC *) | |
| 1647 | apply (intro allI impI) | |
| 1648 | apply (simp only:) | |
| 1649 | apply (drule NewC_invers) | |
| 1650 | apply (simp (no_asm_use)) | |
| 1651 | apply (rule bc_mt_corresp_New) | |
| 1652 | apply (simp add: comp_is_class) | |
| 1653 | ||
| 1654 | (* Cast *) | |
| 1655 | apply (intro allI impI) | |
| 1656 | apply (simp only:) | |
| 1657 | apply (drule Cast_invers) | |
| 1658 | apply clarify | |
| 1659 | apply (simp (no_asm_use)) | |
| 1660 | apply (rule bc_mt_corresp_comb) | |
| 1661 | apply (rule HOL.refl, simp (no_asm_simp), blast) | |
| 1662 | apply (simp (no_asm_simp), rule bc_mt_corresp_Checkcast) | |
| 1663 | apply (simp add: comp_is_class) | |
| 1664 | apply (simp only: compTpExpr_LT_ST) | |
| 1665 | apply (drule cast_RefT) | |
| 1666 | apply blast | |
| 1667 | apply (simp add: start_sttp_resp_def) | |
| 1668 | ||
| 1669 | (* Lit *) | |
| 1670 | apply (intro allI impI) | |
| 1671 | apply (simp only:) | |
| 1672 | apply (drule Lit_invers) | |
| 1673 | apply simp | |
| 1674 | apply (rule bc_mt_corresp_LitPush) | |
| 1675 | apply assumption | |
| 1676 | ||
| 1677 | ||
| 1678 | (* BinOp *) | |
| 1679 | ||
| 1680 | apply (intro allI impI) | |
| 1681 | apply (simp (no_asm_simp) only:) | |
| 1682 | apply (drule BinOp_invers, erule exE, (erule conjE)+) | |
| 1683 | apply (rename_tac binop expr1 expr2 ST LT T bc' f' Ta, case_tac binop) | |
| 1684 | apply (simp (no_asm_simp)) | |
| 1685 | ||
| 1686 | (* case Eq *) | |
| 1687 | apply (subgoal_tac "bc_mt_corresp bc' f' (ST, LT) (comp G) rT (length LT) 0") | |
| 1688 | prefer 2 | |
| 1689 | apply (rule bc_mt_corresp_zero) | |
| 1690 | apply (simp add: length_compTpExpr) | |
| 1691 | apply (simp (no_asm_simp)) | |
| 1692 | ||
| 1693 | apply (drule_tac ?bc1.0="[]" and ?bc2.0 = "compExpr jmb expr1" | |
| 1694 | and ?f1.0=comb_nil and ?f2.0 = "compTpExpr jmb G expr1" | |
| 1695 | in bc_mt_corresp_comb_inside) | |
| 1696 | apply (simp (no_asm_simp))+ | |
| 1697 | apply blast | |
| 1698 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 1699 | ||
| 1700 | apply (drule_tac ?bc2.0 = "compExpr jmb expr2" and ?f2.0 = "compTpExpr jmb G expr2" | |
| 1701 | in bc_mt_corresp_comb_inside) | |
| 1702 | apply (simp (no_asm_simp))+ | |
| 1703 | apply (simp only: compTpExpr_LT_ST) | |
| 1704 | apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 1705 | apply (simp (no_asm_simp)) | |
| 1706 | apply (simp (no_asm_simp)) | |
| 1707 | ||
| 1708 | apply (drule_tac ?bc1.0 = "compExpr jmb expr1 @ compExpr jmb expr2" | |
| 1709 | and inst = "Ifcmpeq 3" and ?bc3.0 = "[LitPush (Bool False),Goto 2, LitPush (Bool True)]" | |
| 1710 | and ?f1.0="compTpExpr jmb G expr1 \<box> compTpExpr jmb G expr2" | |
| 1711 | and ?f2.0="popST 2" and ?f3.0="pushST [PrimT Boolean] \<box> popST 1 \<box> pushST [PrimT Boolean]" | |
| 1712 | in bc_mt_corresp_comb_wt_instr) | |
| 1713 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 1714 | ||
| 1715 | (* wt_instr *) | |
| 1716 | apply (intro strip) | |
| 1717 | apply (simp (no_asm_simp) add: wt_instr_altern_def length_compTpExpr eff_def) | |
| 1718 | apply (simp (no_asm_simp) add: norm_eff_def) | |
| 1719 | apply (simp (no_asm_simp) only: int_outside_left nat_int) | |
| 1720 | apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 1721 | apply (simp only: compTpExpr_LT_ST)+ | |
| 1722 | apply (simp add: eff_def norm_eff_def popST_def pushST_def mt_sttp_flatten_def) | |
| 1723 | apply (case_tac Ta) | |
| 1724 | apply (simp (no_asm_simp)) | |
| 1725 | apply (simp (no_asm_simp)) | |
| 1726 | apply (rule contracting_popST) (* contracting (popST 2) *) | |
| 1727 | ||
| 1728 | apply (drule_tac ?bc1.0 = "compExpr jmb expr1 @ compExpr jmb expr2 @ [Ifcmpeq 3]" | |
| 1729 | and ?bc2.0 = "[LitPush (Bool False)]" | |
| 1730 | and ?bc3.0 = "[Goto 2, LitPush (Bool True)]" | |
| 1731 | and ?f1.0 = "compTpExpr jmb G expr1 \<box> compTpExpr jmb G expr2 \<box> popST 2" | |
| 1732 | and ?f2.0 = "pushST [PrimT Boolean]" | |
| 1733 | and ?f3.0 = "popST (Suc 0) \<box> pushST [PrimT Boolean]" | |
| 1734 | in bc_mt_corresp_comb_inside) | |
| 1735 | apply (simp (no_asm_simp))+ | |
| 1736 | apply simp | |
| 1737 | apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush) apply (simp (no_asm_simp)) | |
| 1738 | apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 1739 | apply (simp (no_asm_simp)) | |
| 1740 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1741 | ||
| 1742 | ||
| 1743 | apply (drule_tac ?bc1.0 = "compExpr jmb expr1 @ compExpr jmb expr2 @ [Ifcmpeq 3, LitPush (Bool False)]" | |
| 1744 | and inst = "Goto 2" and ?bc3.0 = "[LitPush (Bool True)]" | |
| 1745 | and ?f1.0="compTpExpr jmb G expr1 \<box> compTpExpr jmb G expr2 \<box> popST 2 \<box> pushST [PrimT Boolean]" | |
| 1746 | and ?f2.0="popST 1" and ?f3.0="pushST [PrimT Boolean]" | |
| 1747 | in bc_mt_corresp_comb_wt_instr) | |
| 1748 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 1749 | ||
| 1750 | (* wt_instr *) | |
| 1751 | apply (simp (no_asm_simp) add: wt_instr_altern_def length_compTpExpr) | |
| 1752 | apply (simp (no_asm_simp) add: eff_def norm_eff_def) | |
| 1753 | apply (simp (no_asm_simp) only: int_outside_right nat_int) | |
| 1754 | apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 1755 | apply (simp only: compTpExpr_LT_ST)+ | |
| 1756 | apply (simp add: eff_def norm_eff_def popST_def pushST_def) | |
| 1757 | apply (rule contracting_popST) (* contracting (popST 1) *) | |
| 1758 | ||
| 1759 | apply (drule_tac ?bc1.0 = "compExpr jmb expr1 @ compExpr jmb expr2 @ [Ifcmpeq 3, LitPush (Bool False), Goto 2]" | |
| 1760 | and ?bc2.0 = "[LitPush (Bool True)]" | |
| 1761 | and ?bc3.0 = "[]" | |
| 1762 | and ?f1.0 = "compTpExpr jmb G expr1 \<box> compTpExpr jmb G expr2 \<box> popST 2 \<box> | |
| 1763 | pushST [PrimT Boolean] \<box> popST (Suc 0)" | |
| 1764 | and ?f2.0 = "pushST [PrimT Boolean]" | |
| 1765 | and ?f3.0 = "comb_nil" | |
| 1766 | in bc_mt_corresp_comb_inside) | |
| 1767 | apply (simp (no_asm_simp))+ | |
| 1768 | apply simp | |
| 1769 | apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush) | |
| 1770 | apply (simp (no_asm_simp)) | |
| 1771 | apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 1772 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1773 | apply (simp (no_asm_simp)) | |
| 1774 | ||
| 1775 | apply simp | |
| 1776 | ||
| 1777 | (* case Add *) | |
| 1778 | apply simp | |
| 1779 | apply (rule bc_mt_corresp_comb) | |
| 1780 | apply (rule HOL.refl) | |
| 1781 | apply simp | |
| 1782 | apply blast | |
| 1783 | apply (rule bc_mt_corresp_comb, rule HOL.refl) | |
| 1784 | apply (simp only: compTpExpr_LT_ST) | |
| 1785 | apply (simp only: compTpExpr_LT_ST) | |
| 1786 | apply blast | |
| 1787 | ||
| 1788 | apply (simp only: compTpExpr_LT_ST) | |
| 1789 | apply simp | |
| 1790 | apply (rule bc_mt_corresp_IAdd) | |
| 1791 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1792 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1793 | ||
| 1794 | ||
| 1795 | (* LAcc *) | |
| 1796 | apply (intro allI impI) | |
| 1797 | apply (simp only:) | |
| 1798 | apply (drule LAcc_invers) | |
| 1799 | apply (frule wf_java_mdecl_length_pTs_pns) | |
| 1800 | apply clarify | |
| 1801 | apply (simp add: is_inited_LT_def) | |
| 1802 | apply (rule bc_mt_corresp_Load) | |
| 1803 | apply (rule index_in_bounds) | |
| 1804 | apply simp | |
| 1805 | apply assumption | |
| 1806 | apply (rule inited_LT_at_index_no_err) | |
| 1807 | apply (rule index_in_bounds) | |
| 1808 | apply simp | |
| 1809 | apply assumption | |
| 1810 | apply (rule HOL.refl) | |
| 1811 | ||
| 1812 | ||
| 1813 | (* LAss *) | |
| 1814 | apply (intro allI impI) | |
| 1815 | apply (simp only:) | |
| 1816 | apply (drule LAss_invers, erule exE, (erule conjE)+) | |
| 1817 | apply (drule LAcc_invers) | |
| 1818 | apply (frule wf_java_mdecl_disjoint_varnames, simp add: disjoint_varnames_def) | |
| 1819 | apply (frule wf_java_mdecl_length_pTs_pns) | |
| 1820 | apply clarify | |
| 1821 | apply (simp (no_asm_use)) | |
| 1822 | apply (rule bc_mt_corresp_comb) | |
| 1823 | apply (rule HOL.refl, simp (no_asm_simp), blast) | |
| 1824 | apply (rename_tac vname x2 ST LT T Ta) | |
| 1825 | apply (rule_tac ?bc1.0="[Dup]" and ?bc2.0="[Store (index (pns, lvars, blk, res) vname)]" | |
| 1826 | and ?f1.0="dupST" and ?f2.0="popST (Suc 0)" | |
| 1827 | in bc_mt_corresp_comb) | |
| 1828 | apply (simp (no_asm_simp))+ | |
| 1829 | apply (rule bc_mt_corresp_Dup) | |
| 1830 | apply (simp only: compTpExpr_LT_ST) | |
| 1831 | apply (simp add: dupST_def is_inited_LT_def) | |
| 1832 | apply (rule bc_mt_corresp_Store) | |
| 1833 | apply (rule index_in_bounds) | |
| 1834 | apply simp | |
| 1835 | apply assumption | |
| 1836 | apply (rule sup_loc_update_index, assumption+) | |
| 1837 | apply simp | |
| 1838 | apply assumption+ | |
| 1839 | apply (simp add: start_sttp_resp_def) | |
| 1840 | apply (simp add: start_sttp_resp_def) | |
| 1841 | ||
| 1842 | (* FAcc *) | |
| 1843 | apply (intro allI impI) | |
| 1844 | apply (simp only:) | |
| 1845 | apply (drule FAcc_invers) | |
| 1846 | apply clarify | |
| 1847 | apply (simp (no_asm_use)) | |
| 1848 | apply (rule bc_mt_corresp_comb) | |
| 1849 | apply (rule HOL.refl, simp (no_asm_simp), blast) | |
| 1850 | apply (simp (no_asm_simp)) | |
| 1851 | apply (rule bc_mt_corresp_Getfield) | |
| 1852 | apply assumption+ | |
| 1853 | apply (fast intro: wt_class_expr_is_class) | |
| 1854 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1855 | ||
| 1856 | ||
| 1857 | (* FAss *) | |
| 1858 | apply (intro allI impI) | |
| 1859 | apply (simp only:) | |
| 1860 | apply (drule FAss_invers, erule exE, (erule conjE)+) | |
| 1861 | apply (drule FAcc_invers) | |
| 1862 | apply clarify | |
| 1863 | apply (simp (no_asm_use)) | |
| 1864 | apply (rule bc_mt_corresp_comb) | |
| 1865 | apply (rule HOL.refl) | |
| 1866 | apply simp | |
| 1867 | apply blast | |
| 1868 | apply (simp only: compTpExpr_LT_ST) | |
| 1869 | apply (rule bc_mt_corresp_comb, (rule HOL.refl)+) | |
| 1870 | apply blast | |
| 1871 | apply (simp only: compTpExpr_LT_ST) | |
| 1872 | apply (rename_tac cname x2 vname x4 ST LT T Ta Ca) | |
| 1873 | apply (rule_tac ?bc1.0="[Dup_x1]" and ?bc2.0="[Putfield vname cname]" in bc_mt_corresp_comb) | |
| 1874 | apply (simp (no_asm_simp))+ | |
| 1875 | apply (rule bc_mt_corresp_Dup_x1) | |
| 1876 | apply (simp (no_asm_simp) add: dup_x1ST_def) | |
| 1877 | apply (rule bc_mt_corresp_Putfield, assumption+) | |
| 1878 | apply (fast intro: wt_class_expr_is_class) | |
| 1879 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1880 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1881 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1882 | ||
| 1883 | (* Call *) | |
| 1884 | apply (intro allI impI) | |
| 1885 | apply (simp only:) | |
| 1886 | apply (drule Call_invers) | |
| 1887 | apply clarify | |
| 1888 | apply (simp (no_asm_use)) | |
| 1889 | apply (rule bc_mt_corresp_comb) | |
| 1890 | apply (rule HOL.refl) | |
| 1891 | apply simp | |
| 1892 | apply blast | |
| 1893 | apply (simp only: compTpExpr_LT_ST) | |
| 1894 | apply (rule bc_mt_corresp_comb, (rule HOL.refl)+) | |
| 1895 | apply blast | |
| 1896 | apply (simp only: compTpExprs_LT_ST) | |
| 1897 | apply (simp (no_asm_simp)) | |
| 1898 | apply (rule bc_mt_corresp_Invoke) | |
| 1899 | apply assumption+ | |
| 1900 | apply (fast intro: wt_class_expr_is_class) | |
| 1901 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1902 | apply (rule start_sttp_resp_comb) | |
| 1903 | apply (simp (no_asm_simp)) | |
| 1904 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1905 | ||
| 1906 | ||
| 1907 | (* expression lists *) | |
| 1908 | (* nil *) | |
| 1909 | ||
| 1910 | apply (intro allI impI) | |
| 1911 | apply (drule Nil_invers) | |
| 1912 | apply simp | |
| 1913 | ||
| 1914 | (* cons *) | |
| 1915 | ||
| 1916 | apply (intro allI impI) | |
| 1917 | apply (drule Cons_invers, (erule exE)+, (erule conjE)+) | |
| 1918 | apply clarify | |
| 1919 | apply (simp (no_asm_use)) | |
| 1920 | apply (rule bc_mt_corresp_comb) | |
| 1921 | apply (rule HOL.refl) | |
| 1922 | apply simp | |
| 1923 | apply blast | |
| 1924 | apply (simp only: compTpExpr_LT_ST) | |
| 1925 | apply blast | |
| 46226 | 1926 | apply simp | 
| 13673 | 1927 | |
| 1928 | done | |
| 1929 | ||
| 1930 | ||
| 1931 | lemmas wt_method_compTpExpr_corresp [rule_format (no_asm)] = | |
| 1932 | wt_method_compTpExpr_Exprs_corresp [THEN conjunct1] | |
| 1933 | ||
| 1934 | ||
| 1935 | (* ********************************************************************** *) | |
| 1936 | ||
| 1937 | ||
| 1938 | ||
| 1939 | ||
| 1940 | lemma wt_method_compTpStmt_corresp [rule_format (no_asm)]: " | |
| 1941 | \<lbrakk> jmb = (pns,lvars,blk,res); | |
| 1942 | wf_prog wf_java_mdecl G; | |
| 1943 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 1944 | E = (local_env G C (mn, pTs) pns lvars)\<rbrakk> | |
| 1945 | \<Longrightarrow> | |
| 1946 | (\<forall> ST LT T bc' f'. | |
| 1947 | E \<turnstile> s\<surd> \<longrightarrow> | |
| 1948 | (is_inited_LT C pTs lvars LT) \<longrightarrow> | |
| 1949 | bc' = (compStmt jmb s) \<longrightarrow> | |
| 1950 | f' = (compTpStmt jmb G s) | |
| 1951 | \<longrightarrow> bc_mt_corresp bc' f' (ST, LT) (comp G) rT (length LT) (length bc'))" | |
| 1952 | ||
| 60304 | 1953 | apply (rule stmt.induct) | 
| 1954 | ||
| 1955 | (* Skip *) | |
| 1956 | apply (intro allI impI) | |
| 1957 | apply simp | |
| 1958 | ||
| 1959 | ||
| 1960 | (* Expr *) | |
| 1961 | apply (intro allI impI) | |
| 1962 | apply (drule Expr_invers, erule exE) | |
| 1963 | apply (simp (no_asm_simp)) | |
| 1964 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl, simp (no_asm_simp)) | |
| 1965 | apply (rule wt_method_compTpExpr_corresp) apply assumption+ | |
| 1966 | apply (simp add: compTpExpr_LT_ST [of _ pns lvars blk res])+ | |
| 1967 | apply (rule bc_mt_corresp_Pop) | |
| 1968 | apply (simp add: start_sttp_resp_def) | |
| 1969 | ||
| 1970 | ||
| 1971 | (* Comp *) | |
| 1972 | apply (intro allI impI) | |
| 1973 | apply (drule Comp_invers) | |
| 1974 | apply clarify | |
| 1975 | apply (simp (no_asm_use)) | |
| 1976 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl) | |
| 1977 | apply (simp (no_asm_simp)) apply blast | |
| 1978 | apply (simp only: compTpStmt_LT_ST) | |
| 1979 | apply (simp (no_asm_simp)) | |
| 1980 | ||
| 1981 | (* Cond *) | |
| 1982 | apply (intro allI impI) | |
| 1983 | apply (simp (no_asm_simp) only:) | |
| 1984 | apply (drule Cond_invers, (erule conjE)+) | |
| 1985 | apply (simp (no_asm_simp)) | |
| 1986 | ||
| 1987 | apply (subgoal_tac "bc_mt_corresp bc' f' (ST, LT) (comp G) rT (length LT) 0") | |
| 1988 | prefer 2 | |
| 1989 | apply (rule bc_mt_corresp_zero) | |
| 1990 | apply (simp (no_asm_simp) add: length_compTpStmt length_compTpExpr) | |
| 1991 | apply (simp (no_asm_simp)) | |
| 1992 | ||
| 1993 | apply (rename_tac expr stmt1 stmt2 ST LT bc' f') | |
| 1994 | apply (drule_tac ?bc1.0="[]" and ?bc2.0 = "[LitPush (Bool False)]" | |
| 1995 | and ?bc3.0="compExpr jmb expr @ Ifcmpeq (2 + int (length (compStmt jmb stmt1))) # | |
| 1996 | compStmt jmb stmt1 @ Goto (1 + int (length (compStmt jmb stmt2))) # | |
| 1997 | compStmt jmb stmt2" | |
| 1998 | and ?f1.0=comb_nil and ?f2.0 = "pushST [PrimT Boolean]" | |
| 1999 | and ?f3.0="compTpExpr jmb G expr \<box> popST 2 \<box> compTpStmt jmb G stmt1 \<box> | |
| 2000 | nochangeST \<box> compTpStmt jmb G stmt2" | |
| 2001 | in bc_mt_corresp_comb_inside) | |
| 2002 | apply (simp (no_asm_simp))+ | |
| 2003 | apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush) | |
| 2004 | apply (simp (no_asm_simp) add: start_sttp_resp_def)+ | |
| 2005 | ||
| 2006 | apply (drule_tac ?bc1.0="[LitPush (Bool False)]" and ?bc2.0 = "compExpr jmb expr" | |
| 2007 | and ?bc3.0="Ifcmpeq (2 + int (length (compStmt jmb stmt1))) # | |
| 2008 | compStmt jmb stmt1 @ Goto (1 + int (length (compStmt jmb stmt2))) # | |
| 2009 | compStmt jmb stmt2" | |
| 2010 | and ?f1.0="pushST [PrimT Boolean]" and ?f2.0 = "compTpExpr jmb G expr" | |
| 2011 | and ?f3.0="popST 2 \<box> compTpStmt jmb G stmt1 \<box> nochangeST \<box> compTpStmt jmb G stmt2" | |
| 2012 | in bc_mt_corresp_comb_inside) | |
| 2013 | apply (simp (no_asm_simp))+ | |
| 2014 | apply (simp (no_asm_simp) add: pushST_def) | |
| 2015 | apply (rule wt_method_compTpExpr_corresp, assumption+) | |
| 2016 | apply (simp (no_asm_simp))+ | |
| 2017 | ||
| 2018 | ||
| 2019 | apply (drule_tac ?bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr" | |
| 2020 | and inst = "Ifcmpeq (2 + int (length (compStmt jmb stmt1)))" | |
| 2021 | and ?bc3.0 = "compStmt jmb stmt1 @ Goto (1 + int (length (compStmt jmb stmt2))) # | |
| 2022 | compStmt jmb stmt2" | |
| 2023 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr" and ?f2.0 = "popST 2" | |
| 2024 | and ?f3.0="compTpStmt jmb G stmt1 \<box> nochangeST \<box> compTpStmt jmb G stmt2" | |
| 2025 | in bc_mt_corresp_comb_wt_instr) | |
| 2026 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 2027 | apply (simp (no_asm_simp) add: start_sttp_resp_comb) | |
| 2028 | ||
| 2029 | (* wt_instr *) | |
| 2030 | apply (intro strip) | |
| 2031 | apply (rule_tac ts="PrimT Boolean" and ts'="PrimT Boolean" and ST=ST and LT=LT | |
| 2032 | in wt_instr_Ifcmpeq) | |
| 2033 | apply (simp (no_asm_simp)) | |
| 2034 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2035 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2036 | (* current pc *) | |
| 2037 | apply (simp add: length_compTpExpr pushST_def) | |
| 2038 | apply (simp only: compTpExpr_LT_ST) | |
| 2039 | (* Suc pc *) | |
| 2040 | apply (simp add: length_compTpExpr pushST_def) | |
| 2041 | apply (simp add: popST_def start_sttp_resp_comb) | |
| 2042 | (* jump goal *) | |
| 2043 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2044 | apply (simp add: length_compTpExpr pushST_def) | |
| 2045 | apply (simp add: popST_def start_sttp_resp_comb length_compTpStmt) | |
| 2046 | apply (simp only: compTpStmt_LT_ST) | |
| 2047 | apply (simp add: nochangeST_def) | |
| 2048 | (* check_type *) | |
| 2049 | apply (subgoal_tac " | |
| 2050 | (mt_sttp_flatten (f' (ST, LT)) ! length ([LitPush (Bool False)] @ compExpr jmb expr)) = | |
| 2051 | (Some (PrimT Boolean # PrimT Boolean # ST, LT))") | |
| 2052 | apply (simp only:) | |
| 2053 | apply (simp (no_asm_simp)) apply (rule trans, rule mt_sttp_flatten_comb_length) | |
| 2054 | apply (rule HOL.refl) apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 2055 | apply (simp (no_asm_simp) add: length_compTpExpr pushST_def) | |
| 2056 | apply (simp only: compTpExpr_LT_ST_rewr) | |
| 2057 | (* contracting\<dots> *) | |
| 2058 | apply (rule contracting_popST) | |
| 2059 | ||
| 2060 | apply (drule_tac ?bc1.0="[LitPush (Bool False)] @ compExpr jmb expr @ | |
| 2061 | [Ifcmpeq (2 + int (length (compStmt jmb stmt1)))] " | |
| 2062 | and ?bc2.0 = "compStmt jmb stmt1" | |
| 2063 | and ?bc3.0="Goto (1 + int (length (compStmt jmb stmt2))) # compStmt jmb stmt2" | |
| 2064 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr \<box> popST 2" | |
| 2065 | and ?f2.0 = "compTpStmt jmb G stmt1" | |
| 2066 | and ?f3.0="nochangeST \<box> compTpStmt jmb G stmt2" | |
| 2067 | in bc_mt_corresp_comb_inside) | |
| 2068 | apply (simp (no_asm_simp))+ | |
| 2069 | apply (simp (no_asm_simp) add: pushST_def popST_def compTpExpr_LT_ST) | |
| 2070 | apply (simp only: compTpExpr_LT_ST) | |
| 2071 | apply (simp (no_asm_simp)) | |
| 2072 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 2073 | ||
| 2074 | ||
| 2075 | apply (drule_tac ?bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr @ [Ifcmpeq (2 + int (length (compStmt jmb stmt1)))] @ compStmt jmb stmt1" | |
| 2076 | and inst = "Goto (1 + int (length (compStmt jmb stmt2)))" | |
| 2077 | and ?bc3.0 = "compStmt jmb stmt2" | |
| 2078 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr \<box> popST 2 \<box> compTpStmt jmb G stmt1" | |
| 2079 | and ?f2.0 = "nochangeST" | |
| 2080 | and ?f3.0="compTpStmt jmb G stmt2" | |
| 2081 | in bc_mt_corresp_comb_wt_instr) | |
| 2082 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)+ | |
| 2083 | apply (intro strip) | |
| 2084 | apply (rule wt_instr_Goto) | |
| 2085 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2086 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2087 | (* \<dots> ! nat (int pc + i) = \<dots> ! pc *) | |
| 2088 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt) | |
| 2089 | apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def) | |
| 2090 | apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2091 | apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def) | |
| 2092 | apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2093 | apply (simp only:) | |
| 2094 | apply (simp add: length_compTpExpr length_compTpStmt) | |
| 2095 | apply (rule contracting_nochangeST) | |
| 2096 | ||
| 2097 | ||
| 2098 | apply (drule_tac | |
| 2099 | ?bc1.0= "[LitPush (Bool False)] @ compExpr jmb expr @ | |
| 2100 | [Ifcmpeq (2 + int (length (compStmt jmb stmt1)))] @ | |
| 2101 | compStmt jmb stmt1 @ [Goto (1 + int (length (compStmt jmb stmt2)))]" | |
| 2102 | and ?bc2.0 = "compStmt jmb stmt2" | |
| 2103 | and ?bc3.0="[]" | |
| 2104 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr \<box> popST 2 \<box> compTpStmt jmb G stmt1 \<box> nochangeST" | |
| 2105 | and ?f2.0 = "compTpStmt jmb G stmt2" | |
| 2106 | and ?f3.0="comb_nil" | |
| 2107 | in bc_mt_corresp_comb_inside) | |
| 2108 | apply (simp (no_asm_simp))+ | |
| 2109 | apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def compTpExpr_LT_ST) | |
| 2110 | apply (simp only: compTpExpr_LT_ST) | |
| 2111 | apply (simp (no_asm_simp)) | |
| 2112 | apply (simp only: compTpStmt_LT_ST) | |
| 2113 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)+ | |
| 2114 | ||
| 2115 | apply simp | |
| 2116 | ||
| 2117 | ||
| 2118 | (* Loop *) | |
| 2119 | apply (intro allI impI) | |
| 2120 | apply (simp (no_asm_simp) only:) | |
| 2121 | apply (drule Loop_invers, (erule conjE)+) | |
| 13673 | 2122 | apply (simp (no_asm_simp)) | 
| 2123 | ||
| 60304 | 2124 | apply (subgoal_tac "bc_mt_corresp bc' f' (ST, LT) (comp G) rT (length LT) 0") | 
| 2125 | prefer 2 | |
| 2126 | apply (rule bc_mt_corresp_zero) | |
| 2127 | apply (simp (no_asm_simp) add: length_compTpStmt length_compTpExpr) | |
| 2128 | apply (simp (no_asm_simp)) | |
| 2129 | ||
| 2130 | apply (rename_tac expr stmt ST LT bc' f') | |
| 2131 | apply (drule_tac ?bc1.0="[]" and ?bc2.0 = "[LitPush (Bool False)]" | |
| 2132 | and ?bc3.0="compExpr jmb expr @ Ifcmpeq (2 + int (length (compStmt jmb stmt))) # | |
| 2133 | compStmt jmb stmt @ | |
| 2134 | [Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr jmb expr))))]" | |
| 2135 | and ?f1.0=comb_nil and ?f2.0 = "pushST [PrimT Boolean]" | |
| 2136 | and ?f3.0="compTpExpr jmb G expr \<box> popST 2 \<box> compTpStmt jmb G stmt \<box> nochangeST" | |
| 2137 | in bc_mt_corresp_comb_inside) | |
| 2138 | apply (simp (no_asm_simp))+ | |
| 2139 | apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush) | |
| 2140 | apply (simp (no_asm_simp) add: start_sttp_resp_def)+ | |
| 2141 | ||
| 2142 | apply (drule_tac ?bc1.0="[LitPush (Bool False)]" and ?bc2.0 = "compExpr jmb expr" | |
| 2143 | and ?bc3.0="Ifcmpeq (2 + int (length (compStmt jmb stmt))) # | |
| 2144 | compStmt jmb stmt @ | |
| 2145 | [Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr jmb expr))))]" | |
| 2146 | and ?f1.0="pushST [PrimT Boolean]" and ?f2.0 = "compTpExpr jmb G expr" | |
| 2147 | and ?f3.0="popST 2 \<box> compTpStmt jmb G stmt \<box> nochangeST" | |
| 2148 | in bc_mt_corresp_comb_inside) | |
| 2149 | apply (simp (no_asm_simp))+ | |
| 2150 | apply (simp (no_asm_simp) add: pushST_def) | |
| 2151 | apply (rule wt_method_compTpExpr_corresp, assumption+) | |
| 2152 | apply (simp (no_asm_simp))+ | |
| 2153 | ||
| 2154 | ||
| 2155 | apply (drule_tac ?bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr" | |
| 2156 | and inst = "Ifcmpeq (2 + int (length (compStmt jmb stmt)))" | |
| 2157 | and ?bc3.0 = "compStmt jmb stmt @ | |
| 2158 | [Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr jmb expr))))]" | |
| 2159 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr" and ?f2.0 = "popST 2" | |
| 2160 | and ?f3.0="compTpStmt jmb G stmt \<box> nochangeST" | |
| 2161 | in bc_mt_corresp_comb_wt_instr) | |
| 2162 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 2163 | apply (simp (no_asm_simp) add: start_sttp_resp_comb) | |
| 13673 | 2164 | |
| 2165 | (* wt_instr *) | |
| 60304 | 2166 | apply (intro strip) | 
| 2167 | apply (rule_tac ts="PrimT Boolean" and ts'="PrimT Boolean" | |
| 2168 | and ST=ST and LT=LT | |
| 2169 | in wt_instr_Ifcmpeq) | |
| 2170 | apply (simp (no_asm_simp)) | |
| 2171 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2172 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2173 | (* current pc *) | |
| 2174 | apply (simp add: length_compTpExpr pushST_def) | |
| 2175 | apply (simp only: compTpExpr_LT_ST) | |
| 2176 | (* Suc pc *) | |
| 2177 | apply (simp add: length_compTpExpr pushST_def) | |
| 2178 | apply (simp add: popST_def start_sttp_resp_comb) | |
| 2179 | (* jump goal *) | |
| 2180 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2181 | apply (simp add: length_compTpExpr pushST_def) | |
| 2182 | apply (simp add: popST_def start_sttp_resp_comb length_compTpStmt) | |
| 2183 | apply (simp only: compTpStmt_LT_ST) | |
| 2184 | apply (simp add: nochangeST_def) | |
| 13673 | 2185 | (* check_type *) | 
| 60304 | 2186 | apply (subgoal_tac " | 
| 2187 | (mt_sttp_flatten (f' (ST, LT)) ! length ([LitPush (Bool False)] @ compExpr jmb expr)) = | |
| 2188 | (Some (PrimT Boolean # PrimT Boolean # ST, LT))") | |
| 2189 | apply (simp only:) | |
| 2190 | apply (simp (no_asm_simp)) apply (rule trans, rule mt_sttp_flatten_comb_length) | |
| 2191 | apply (rule HOL.refl) apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 13673 | 2192 | apply (simp (no_asm_simp) add: length_compTpExpr pushST_def) | 
| 60304 | 2193 | apply (simp only: compTpExpr_LT_ST_rewr) | 
| 2194 | (* contracting\<dots> *) | |
| 2195 | apply (rule contracting_popST) | |
| 2196 | ||
| 2197 | apply (drule_tac | |
| 2198 | ?bc1.0="[LitPush (Bool False)] @ compExpr jmb expr @ | |
| 2199 | [Ifcmpeq (2 + int (length (compStmt jmb stmt)))] " | |
| 2200 | and ?bc2.0 = "compStmt jmb stmt" | |
| 2201 | and ?bc3.0="[Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr jmb expr))))]" | |
| 2202 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr \<box> popST 2" | |
| 2203 | and ?f2.0 = "compTpStmt jmb G stmt" | |
| 2204 | and ?f3.0="nochangeST" | |
| 2205 | in bc_mt_corresp_comb_inside) | |
| 2206 | apply (simp (no_asm_simp))+ | |
| 2207 | apply (simp (no_asm_simp) add: pushST_def popST_def compTpExpr_LT_ST) | |
| 2208 | apply (simp only: compTpExpr_LT_ST) | |
| 2209 | apply (simp (no_asm_simp)) | |
| 2210 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 2211 | ||
| 2212 | ||
| 2213 | apply (drule_tac ?bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr @ [Ifcmpeq (2 + int (length (compStmt jmb stmt)))] @ compStmt jmb stmt" | |
| 2214 | and inst = "Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr jmb expr))))" | |
| 2215 | and ?bc3.0 = "[]" | |
| 2216 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr \<box> popST 2 \<box> compTpStmt jmb G stmt" | |
| 2217 | and ?f2.0 = "nochangeST" | |
| 2218 | and ?f3.0="comb_nil" | |
| 2219 | in bc_mt_corresp_comb_wt_instr) | |
| 2220 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)+ | |
| 2221 | apply (intro strip) | |
| 2222 | apply (rule wt_instr_Goto) | |
| 2223 | apply arith | |
| 2224 | apply arith | |
| 2225 | (* \<dots> ! nat (int pc + i) = \<dots> ! pc *) | |
| 2226 | apply (simp (no_asm_simp)) | |
| 2227 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt) | |
| 2228 | apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def) | |
| 2229 | apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2230 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt) | |
| 2231 | apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2232 | apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def) | |
| 2233 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt) | |
| 2234 | apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2235 | ||
| 2236 | apply (simp add: length_compTpExpr length_compTpStmt) (* check_type *) | |
| 13673 | 2237 | apply (simp add: pushST_def popST_def compTpExpr_LT_ST compTpStmt_LT_ST) | 
| 60304 | 2238 | apply (rule contracting_nochangeST) | 
| 2239 | apply simp | |
| 2240 | ||
| 2241 | done | |
| 13673 | 2242 | |
| 2243 | ||
| 2244 | (**********************************************************************************) | |
| 2245 | ||
| 2246 | ||
| 2247 | ||
| 2248 | lemma wt_method_compTpInit_corresp: "\<lbrakk> jmb = (pns,lvars,blk,res); | |
| 2249 | wf_java_mdecl G C ((mn, pTs), rT, jmb); mxr = length LT; | |
| 2250 | length LT = (length pns) + (length lvars) + 1; vn \<in> set (map fst lvars); | |
| 2251 | bc = (compInit jmb (vn,ty)); f = (compTpInit jmb (vn,ty)); | |
| 2252 | is_type G ty \<rbrakk> | |
| 2253 | \<Longrightarrow> bc_mt_corresp bc f (ST, LT) (comp G) rT mxr (length bc)" | |
| 60304 | 2254 | apply (simp add: compInit_def compTpInit_def split_beta) | 
| 2255 | apply (rule_tac ?bc1.0="[load_default_val ty]" and ?bc2.0="[Store (index jmb vn)]" | |
| 2256 | in bc_mt_corresp_comb) | |
| 2257 | apply simp+ | |
| 2258 | apply (simp add: load_default_val_def) | |
| 2259 | apply (rule typeof_default_val [THEN exE]) | |
| 2260 | ||
| 2261 | apply (rule bc_mt_corresp_LitPush_CT, assumption) | |
| 13673 | 2262 | apply (simp add: comp_is_type) | 
| 60304 | 2263 | apply (simp add: pushST_def) | 
| 2264 | apply (rule bc_mt_corresp_Store_init) | |
| 2265 | apply simp | |
| 2266 | apply (rule index_length_lvars [THEN conjunct2]) | |
| 2267 | apply auto | |
| 2268 | done | |
| 13673 | 2269 | |
| 2270 | ||
| 2271 | lemma wt_method_compTpInitLvars_corresp_aux [rule_format (no_asm)]: " | |
| 2272 | \<forall> lvars_pre lvars0 ST LT. | |
| 2273 | jmb = (pns,lvars0,blk,res) \<and> | |
| 2274 | lvars0 = (lvars_pre @ lvars) \<and> | |
| 2275 | length LT = (length pns) + (length lvars0) + 1 \<and> | |
| 2276 | wf_java_mdecl G C ((mn, pTs), rT, jmb) | |
| 2277 | \<longrightarrow> bc_mt_corresp (compInitLvars jmb lvars) (compTpInitLvars jmb lvars) (ST, LT) (comp G) rT | |
| 2278 | (length LT) (length (compInitLvars jmb lvars))" | |
| 60304 | 2279 | apply (induct lvars) | 
| 2280 | apply (simp add: compInitLvars_def) | |
| 2281 | ||
| 2282 | apply (intro strip, (erule conjE)+) | |
| 2283 | apply (subgoal_tac "\<exists> vn ty. a = (vn, ty)") | |
| 2284 | prefer 2 | |
| 2285 | apply (simp (no_asm_simp)) | |
| 13673 | 2286 | apply ((erule exE)+, simp (no_asm_simp)) | 
| 60304 | 2287 | apply (drule_tac x="lvars_pre @ [a]" in spec) | 
| 2288 | apply (drule_tac x="lvars0" in spec) | |
| 2289 | apply (simp (no_asm_simp) add: compInitLvars_def) | |
| 2290 | apply (rule_tac ?bc1.0="compInit jmb a" and ?bc2.0="compInitLvars jmb lvars" | |
| 2291 | in bc_mt_corresp_comb) | |
| 2292 | apply (simp (no_asm_simp) add: compInitLvars_def)+ | |
| 2293 | ||
| 2294 | apply (rule_tac vn=vn and ty=ty in wt_method_compTpInit_corresp) | |
| 2295 | apply assumption+ | |
| 2296 | apply (simp (no_asm_simp))+ | |
| 2297 | apply (simp add: wf_java_mdecl_def) (* is_type G ty *) | |
| 2298 | apply (simp add: compTpInit_def storeST_def pushST_def) | |
| 2299 | apply simp | |
| 2300 | done | |
| 13673 | 2301 | |
| 2302 | ||
| 2303 | lemma wt_method_compTpInitLvars_corresp: "\<lbrakk> jmb = (pns,lvars,blk,res); | |
| 2304 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 2305 | length LT = (length pns) + (length lvars) + 1; mxr = (length LT); | |
| 2306 | bc = (compInitLvars jmb lvars); f= (compTpInitLvars jmb lvars) \<rbrakk> | |
| 2307 | \<Longrightarrow> bc_mt_corresp bc f (ST, LT) (comp G) rT mxr (length bc)" | |
| 60304 | 2308 | apply (simp only:) | 
| 2309 | apply (subgoal_tac "bc_mt_corresp (compInitLvars (pns, lvars, blk, res) lvars) | |
| 2310 | (compTpInitLvars (pns, lvars, blk, res) lvars) (ST, LT) (TranslComp.comp G) rT | |
| 2311 | (length LT) (length (compInitLvars (pns, lvars, blk, res) lvars))") | |
| 2312 | apply simp | |
| 2313 | apply (rule_tac lvars_pre="[]" in wt_method_compTpInitLvars_corresp_aux) | |
| 2314 | apply auto | |
| 2315 | done | |
| 13673 | 2316 | |
| 2317 | ||
| 2318 | (**********************************************************************************) | |
| 2319 | ||
| 2320 | ||
| 2321 | ||
| 2322 | lemma wt_method_comp_wo_return: "\<lbrakk> wf_prog wf_java_mdecl G; | |
| 2323 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 2324 | bc = compInitLvars jmb lvars @ compStmt jmb blk @ compExpr jmb res; | |
| 2325 | jmb = (pns,lvars,blk,res); | |
| 2326 | f = (compTpInitLvars jmb lvars \<box> compTpStmt jmb G blk \<box> compTpExpr jmb G res); | |
| 2327 | sttp = (start_ST, start_LT C pTs (length lvars)); | |
| 2328 | li = (length (inited_LT C pTs lvars)) | |
| 2329 | \<rbrakk> | |
| 2330 | \<Longrightarrow> bc_mt_corresp bc f sttp (comp G) rT li (length bc)" | |
| 60304 | 2331 | apply (subgoal_tac "\<exists>E. (E = (local_env G C (mn, pTs) pns lvars) \<and> E \<turnstile> blk \<surd> \<and> | 
| 2332 | (\<exists>T. E\<turnstile>res::T \<and> G\<turnstile>T\<preceq>rT))") | |
| 13673 | 2333 | apply (erule exE, (erule conjE)+)+ | 
| 2334 | apply (simp only:) | |
| 60304 | 2335 | apply (rule bc_mt_corresp_comb, (rule HOL.refl)+) | 
| 2336 | ||
| 2337 | (* InitLvars *) | |
| 2338 | apply (rule wt_method_compTpInitLvars_corresp) | |
| 2339 | apply assumption+ | |
| 2340 | apply (simp only:) | |
| 2341 | apply (simp (no_asm_simp) add: start_LT_def) | |
| 2342 | apply (rule wf_java_mdecl_length_pTs_pns, assumption) | |
| 2343 | apply (simp (no_asm_simp) only: start_LT_def) | |
| 2344 | apply (simp (no_asm_simp) add: inited_LT_def)+ | |
| 2345 | ||
| 2346 | apply (rule bc_mt_corresp_comb, (rule HOL.refl)+) | |
| 2347 | apply (simp (no_asm_simp) add: compTpInitLvars_LT_ST) | |
| 2348 | ||
| 2349 | (* stmt *) | |
| 2350 | apply (simp only: compTpInitLvars_LT_ST) | |
| 2351 | apply (subgoal_tac "(Suc (length pTs + length lvars)) = (length (inited_LT C pTs lvars))") | |
| 2352 | prefer 2 apply (simp (no_asm_simp) add: inited_LT_def) | |
| 2353 | apply (simp only:) | |
| 2354 | apply (rule_tac s=blk in wt_method_compTpStmt_corresp) | |
| 2355 | apply assumption+ | |
| 2356 | apply (simp only:)+ | |
| 2357 | apply (simp (no_asm_simp) add: is_inited_LT_def) | |
| 2358 | apply (simp only:)+ | |
| 13673 | 2359 | |
| 2360 | (* expr *) | |
| 60304 | 2361 | apply (simp only: compTpInitLvars_LT_ST compTpStmt_LT_ST is_inited_LT_def) | 
| 2362 | apply (subgoal_tac "(Suc (length pTs + length lvars)) = (length (inited_LT C pTs lvars))") | |
| 2363 | prefer 2 apply (simp (no_asm_simp) add: inited_LT_def) | |
| 2364 | apply (simp only:) | |
| 2365 | apply (rule_tac ex=res in wt_method_compTpExpr_corresp) | |
| 2366 | apply assumption+ | |
| 2367 | apply (simp only:)+ | |
| 2368 | apply (simp (no_asm_simp) add: is_inited_LT_def) | |
| 2369 | apply (simp only:)+ | |
| 2370 | ||
| 2371 | (* start_sttp_resp *) | |
| 2372 | apply (simp add: start_sttp_resp_comb)+ | |
| 13673 | 2373 | |
| 2374 | (* subgoal *) | |
| 60304 | 2375 | apply (simp add: wf_java_mdecl_def local_env_def) | 
| 2376 | done | |
| 13673 | 2377 | |
| 2378 | ||
| 2379 | (**********************************************************************************) | |
| 2380 | ||
| 2381 | ||
| 2382 | ||
| 60304 | 2383 | lemma check_type_start: | 
| 2384 | "\<lbrakk> wf_mhead cG (mn, pTs) rT; is_class cG C\<rbrakk> | |
| 13673 | 2385 | \<Longrightarrow> check_type cG (length start_ST) (Suc (length pTs + mxl)) | 
| 2386 | (OK (Some (start_ST, start_LT C pTs mxl)))" | |
| 60304 | 2387 | apply (simp add: check_type_def wf_mhead_def start_ST_def start_LT_def) | 
| 2388 | apply (simp add: check_type_simps) | |
| 2389 | apply (simp only: list_def) | |
| 2390 | apply (auto simp: err_def) | |
| 2391 | done | |
| 2392 | ||
| 2393 | ||
| 2394 | lemma wt_method_comp_aux: | |
| 2395 | "\<lbrakk> bc' = bc @ [Return]; f' = (f \<box> nochangeST); | |
| 13673 | 2396 | bc_mt_corresp bc f sttp0 cG rT (1+length pTs+mxl) (length bc); | 
| 2397 | start_sttp_resp_cons f'; | |
| 2398 | sttp0 = (start_ST, start_LT C pTs mxl); | |
| 2399 | mxs = max_ssize (mt_of (f' sttp0)); | |
| 2400 | wf_mhead cG (mn, pTs) rT; is_class cG C; | |
| 2401 | sttp_of (f sttp0) = (T # ST, LT); | |
| 2402 | ||
| 2403 | check_type cG mxs (1+length pTs+mxl) (OK (Some (T # ST, LT))) \<longrightarrow> | |
| 2404 | wt_instr_altern Return cG rT (mt_of (f' sttp0)) mxs (1+length pTs+mxl) | |
| 2405 | (Suc (length bc)) empty_et (length bc) | |
| 2406 | \<rbrakk> | |
| 2407 | \<Longrightarrow> wt_method_altern cG C pTs rT mxs mxl bc' empty_et (mt_of (f' sttp0))" | |
| 60304 | 2408 | apply (subgoal_tac "check_type cG (length start_ST) (Suc (length pTs + mxl)) | 
| 2409 | (OK (Some (start_ST, start_LT C pTs mxl)))") | |
| 2410 | apply (subgoal_tac "check_type cG mxs (1+length pTs+mxl) (OK (Some (T # ST, LT)))") | |
| 2411 | ||
| 2412 | apply (simp add: wt_method_altern_def) | |
| 2413 | ||
| 2414 | (* length (.. f ..) = length bc *) | |
| 2415 | apply (rule conjI) | |
| 2416 | apply (simp add: bc_mt_corresp_def split_beta) | |
| 2417 | ||
| 2418 | (* check_bounded *) | |
| 2419 | apply (rule conjI) | |
| 2420 | apply (simp add: bc_mt_corresp_def split_beta check_bounded_def) | |
| 2421 | apply (erule conjE)+ | |
| 2422 | apply (intro strip) | |
| 2423 | apply (subgoal_tac "pc < (length bc) \<or> pc = length bc") | |
| 2424 | apply (erule disjE) | |
| 2425 | (* case pc < length bc *) | |
| 2426 | apply (subgoal_tac "(bc' ! pc) = (bc ! pc)") | |
| 2427 | apply (simp add: wt_instr_altern_def eff_def) | |
| 2428 | (* subgoal *) | |
| 2429 | apply (simp add: nth_append) | |
| 2430 | (* case pc = length bc *) | |
| 2431 | apply (subgoal_tac "(bc' ! pc) = Return") | |
| 2432 | apply (simp add: wt_instr_altern_def) | |
| 13673 | 2433 | (* subgoal *) | 
| 60304 | 2434 | apply (simp add: nth_append) | 
| 2435 | ||
| 2436 | (* subgoal pc < length bc \<or> pc = length bc *) | |
| 2437 | apply arith | |
| 2438 | ||
| 2439 | (* wt_start *) | |
| 2440 | apply (rule conjI) | |
| 2441 | apply (simp add: wt_start_def start_sttp_resp_cons_def split_beta) | |
| 2442 | apply (drule_tac x=sttp0 in spec) apply (erule exE) | |
| 2443 | apply (simp add: mt_sttp_flatten_def start_ST_def start_LT_def) | |
| 2444 | ||
| 2445 | (* wt_instr *) | |
| 2446 | apply (intro strip) | |
| 2447 | apply (subgoal_tac "pc < (length bc) \<or> pc = length bc") | |
| 2448 | apply (erule disjE) | |
| 2449 | ||
| 2450 | (* pc < (length bc) *) | |
| 2451 | apply (simp (no_asm_use) add: bc_mt_corresp_def mt_sttp_flatten_def split_beta) | |
| 2452 | apply (erule conjE)+ | |
| 2453 | apply (drule mp, assumption)+ | |
| 2454 | apply (erule conjE)+ | |
| 2455 | apply (drule spec, drule mp, assumption) | |
| 2456 | apply (simp add: nth_append) | |
| 2457 | apply (simp (no_asm_simp) add: comb_def split_beta nochangeST_def) | |
| 2458 | ||
| 2459 | (* pc = length bc *) | |
| 2460 | apply (simp add: nth_append) | |
| 2461 | ||
| 2462 | (* subgoal pc < (length bc) \<or> pc = length bc *) | |
| 2463 | apply arith | |
| 2464 | ||
| 2465 | (* subgoals *) | |
| 2466 | apply (simp (no_asm_use) add: bc_mt_corresp_def split_beta) | |
| 2467 | apply (subgoal_tac "check_type cG (length (fst sttp0)) (Suc (length pTs + mxl)) | |
| 2468 | (OK (Some sttp0))") | |
| 2469 | apply ((erule conjE)+, drule mp, assumption) | |
| 13673 | 2470 | apply (simp add: nth_append) | 
| 60304 | 2471 | apply (simp (no_asm_simp) add: comb_def nochangeST_def split_beta) | 
| 2472 | apply (simp (no_asm_simp)) | |
| 2473 | ||
| 2474 | apply (rule check_type_start, assumption+) | |
| 2475 | done | |
| 13673 | 2476 | |
| 2477 | ||
| 2478 | lemma wt_instr_Return: "\<lbrakk>fst f ! pc = Some (T # ST, LT); (G \<turnstile> T \<preceq> rT); pc < max_pc; | |
| 2479 | check_type (TranslComp.comp G) mxs mxr (OK (Some (T # ST, LT))) | |
| 2480 | \<rbrakk> | |
| 2481 | \<Longrightarrow> wt_instr_altern Return (comp G) rT (mt_of f) mxs mxr max_pc empty_et pc" | |
| 2482 | apply (case_tac "(mt_of f ! pc)") | |
| 60304 | 2483 | apply (simp add: wt_instr_altern_def eff_def norm_eff_def app_def)+ | 
| 13673 | 2484 | apply (drule sym) | 
| 2485 | apply (simp add: comp_widen xcpt_app_def) | |
| 2486 | done | |
| 2487 | ||
| 2488 | ||
| 2489 | theorem wt_method_comp: " | |
| 2490 | \<lbrakk> wf_java_prog G; (C, D, fds, mths) \<in> set G; jmdcl \<in> set mths; | |
| 2491 | jmdcl = ((mn,pTs), rT, jmb); | |
| 2492 | mt = (compTpMethod G C jmdcl); | |
| 2493 | (mxs, mxl, bc, et) = mtd_mb (compMethod G C jmdcl) \<rbrakk> | |
| 2494 | \<Longrightarrow> wt_method (comp G) C pTs rT mxs mxl bc et mt" | |
| 2495 | ||
| 2496 | (* show statement for wt_method_altern *) | |
| 60304 | 2497 | apply (rule wt_method_altern_wt_method) | 
| 2498 | ||
| 2499 | apply (subgoal_tac "wf_java_mdecl G C jmdcl") | |
| 2500 | apply (subgoal_tac "wf_mhead G (mn, pTs) rT") | |
| 2501 | apply (subgoal_tac "is_class G C") | |
| 2502 | apply (subgoal_tac "\<forall>jmb. \<exists> pns lvars blk res. jmb = (pns, lvars, blk, res)") | |
| 2503 | apply (drule_tac x=jmb in spec, (erule exE)+) | |
| 2504 | apply (subgoal_tac "\<exists>E. (E = (local_env G C (mn, pTs) pns lvars) \<and> E \<turnstile> blk \<surd> \<and> | |
| 2505 | (\<exists>T. E\<turnstile>res::T \<and> G\<turnstile>T\<preceq>rT))") | |
| 2506 | apply (erule exE, (erule conjE)+)+ | |
| 2507 | apply (simp add: compMethod_def compTpMethod_def split_beta) | |
| 2508 | apply (rule_tac T=T and LT="inited_LT C pTs lvars" and ST=start_ST in wt_method_comp_aux) | |
| 2509 | ||
| 2510 | (* bc *) | |
| 2511 | apply (simp only: append_assoc [symmetric]) | |
| 2512 | ||
| 2513 | (* comb *) | |
| 2514 | apply (simp only: comb_assoc [symmetric]) | |
| 2515 | ||
| 2516 | (* bc_corresp *) | |
| 2517 | apply (rule wt_method_comp_wo_return) | |
| 2518 | apply assumption+ | |
| 2519 | apply (simp (no_asm_use) only: append_assoc) | |
| 2520 | apply (rule HOL.refl) | |
| 2521 | apply (simp (no_asm_simp))+ | |
| 2522 | apply (simp (no_asm_simp) add: inited_LT_def) | |
| 2523 | ||
| 2524 | (* start_sttp_resp *) | |
| 2525 | apply (simp add: start_sttp_resp_cons_comb_cons_r)+ | |
| 2526 | ||
| 2527 | (* wf_mhead / is_class *) | |
| 2528 | apply (simp add: wf_mhead_def comp_is_type) | |
| 2529 | apply (simp add: comp_is_class) | |
| 2530 | ||
| 2531 | (* sttp_of .. = (T # ST, LT) *) | |
| 2532 | apply (simp (no_asm_simp) add: compTpInitLvars_LT_ST compTpExpr_LT_ST compTpStmt_LT_ST is_inited_LT_def) | |
| 2533 | apply (subgoal_tac "(snd (compTpInitLvars (pns, lvars, blk, res) lvars | |
| 2534 | (start_ST, start_LT C pTs (length lvars)))) | |
| 2535 | = (start_ST, inited_LT C pTs lvars)") | |
| 2536 | prefer 2 | |
| 2537 | apply (rule compTpInitLvars_LT_ST) | |
| 2538 | apply (rule HOL.refl) | |
| 2539 | apply assumption | |
| 2540 | apply (subgoal_tac "(snd (compTpStmt (pns, lvars, blk, res) G blk | |
| 2541 | (start_ST, inited_LT C pTs lvars))) | |
| 2542 | = (start_ST, inited_LT C pTs lvars)") | |
| 2543 | prefer 2 apply (erule conjE)+ | |
| 2544 | apply (rule compTpStmt_LT_ST) | |
| 2545 | apply (rule HOL.refl) | |
| 2546 | apply assumption+ | |
| 2547 | apply (simp only:)+ | |
| 2548 | apply (simp (no_asm_simp) add: is_inited_LT_def) | |
| 2549 | apply (simp (no_asm_simp) add: is_inited_LT_def) | |
| 2550 | ||
| 2551 | ||
| 2552 | (* Return *) | |
| 2553 | apply (intro strip) | |
| 2554 | apply (rule_tac T=T and ST=start_ST and LT="inited_LT C pTs lvars" in wt_instr_Return) | |
| 2555 | apply (simp (no_asm_simp) add: nth_append length_compTpInitLvars length_compTpStmt length_compTpExpr) | |
| 2556 | apply (simp only: compTpInitLvars_LT_ST compTpStmt_LT_ST compTpExpr_LT_ST nochangeST_def) | |
| 2557 | apply (simp only: is_inited_LT_def compTpStmt_LT_ST compTpExpr_LT_ST) | |
| 2558 | apply (simp (no_asm_simp))+ | |
| 2559 | apply simp | |
| 2560 | ||
| 2561 | (* subgoal \<exists> E. \<dots> *) | |
| 2562 | apply (simp add: wf_java_mdecl_def local_env_def) | |
| 2563 | ||
| 2564 | (* subgoal jmb = (\<dots>) *) | |
| 2565 | apply (simp only: split_paired_All, simp) | |
| 2566 | ||
| 2567 | (* subgoal is_class / wf_mhead / wf_java_mdecl *) | |
| 2568 | apply (blast intro: methd [THEN conjunct2]) | |
| 2569 | apply (frule wf_prog_wf_mdecl, assumption+) | |
| 2570 | apply (simp only:) | |
| 2571 | apply (simp add: wf_mdecl_def) | |
| 2572 | apply (rule wf_java_prog_wf_java_mdecl, assumption+) | |
| 2573 | done | |
| 13673 | 2574 | |
| 2575 | ||
| 2576 | lemma comp_set_ms: "(C, D, fs, cms)\<in>set (comp G) | |
| 2577 | \<Longrightarrow> \<exists> ms. (C, D, fs, ms) \<in>set G \<and> cms = map (compMethod G C) ms" | |
| 60304 | 2578 | by (auto simp: comp_def compClass_def) | 
| 13673 | 2579 | |
| 14045 | 2580 | |
| 2581 | (* ---------------------------------------------------------------------- *) | |
| 13673 | 2582 | |
| 58886 | 2583 | subsection "Main Theorem" | 
| 13673 | 2584 | (* MAIN THEOREM: | 
| 2585 | Methodtype computed by comp is correct for bytecode generated by compTp *) | |
| 2586 | theorem wt_prog_comp: "wf_java_prog G \<Longrightarrow> wt_jvm_prog (comp G) (compTp G)" | |
| 60304 | 2587 | apply (simp add: wf_prog_def) | 
| 2588 | ||
| 2589 | apply (subgoal_tac "wf_java_prog G") | |
| 2590 | prefer 2 | |
| 2591 | apply (simp add: wf_prog_def) | |
| 2592 | apply (simp (no_asm_simp) add: wf_prog_def wt_jvm_prog_def) | |
| 2593 | apply (simp add: comp_ws_prog) | |
| 2594 | ||
| 2595 | apply (intro strip) | |
| 2596 | apply (subgoal_tac "\<exists>C D fs cms. c = (C, D, fs, cms)") | |
| 2597 | apply clarify | |
| 2598 | apply (frule comp_set_ms) | |
| 2599 | apply clarify | |
| 2600 | apply (drule bspec, assumption) | |
| 2601 | apply (rule conjI) | |
| 2602 | ||
| 2603 | (* wf_mrT *) | |
| 2604 | apply (case_tac "C = Object") | |
| 2605 | apply (simp add: wf_mrT_def) | |
| 2606 | apply (subgoal_tac "is_class G D") | |
| 2607 | apply (simp add: comp_wf_mrT) | |
| 2608 | apply (simp add: wf_prog_def ws_prog_def ws_cdecl_def) | |
| 2609 | apply blast | |
| 2610 | ||
| 2611 | (* wf_cdecl_mdecl *) | |
| 2612 | apply (simp add: wf_cdecl_mdecl_def) | |
| 2613 | apply (simp add: split_beta) | |
| 2614 | apply (intro strip) | |
| 2615 | ||
| 2616 | (* show wt_method \<dots> *) | |
| 2617 | apply (subgoal_tac "\<exists>sig rT mb. x = (sig, rT, mb)") | |
| 2618 | apply (erule exE)+ | |
| 2619 | apply (simp (no_asm_simp) add: compMethod_def split_beta) | |
| 2620 | apply (erule conjE)+ | |
| 2621 | apply (drule_tac x="(sig, rT, mb)" in bspec) | |
| 2622 | apply simp | |
| 2623 | apply (rule_tac mn="fst sig" and pTs="snd sig" in wt_method_comp) | |
| 2624 | apply assumption+ | |
| 2625 | apply simp | |
| 2626 | apply (simp (no_asm_simp) add: compTp_def) | |
| 2627 | apply (simp (no_asm_simp) add: compMethod_def split_beta) | |
| 2628 | apply (frule WellForm.methd) apply assumption+ | |
| 2629 | apply simp | |
| 2630 | apply simp | |
| 2631 | apply (simp add: compMethod_def split_beta) | |
| 2632 | apply auto | |
| 2633 | done | |
| 13673 | 2634 | |
| 2635 | ||
| 2636 | ||
| 2637 | (**********************************************************************************) | |
| 2638 | ||
| 2639 | declare split_paired_All [simp add] | |
| 2640 | declare split_paired_Ex [simp add] | |
| 2641 | ||
| 2642 | ||
| 2643 | end |