31807
|
1 |
|
|
2 |
(* Author: Florian Haftmann, TU Muenchen *)
|
|
3 |
|
|
4 |
header {* Executable finite sets *}
|
|
5 |
|
31849
|
6 |
theory Fset
|
31807
|
7 |
imports List_Set
|
|
8 |
begin
|
|
9 |
|
31846
|
10 |
declare mem_def [simp]
|
|
11 |
|
31807
|
12 |
subsection {* Lifting *}
|
|
13 |
|
|
14 |
datatype 'a fset = Fset "'a set"
|
|
15 |
|
|
16 |
primrec member :: "'a fset \<Rightarrow> 'a set" where
|
|
17 |
"member (Fset A) = A"
|
|
18 |
|
|
19 |
lemma Fset_member [simp]:
|
|
20 |
"Fset (member A) = A"
|
|
21 |
by (cases A) simp
|
|
22 |
|
|
23 |
definition Set :: "'a list \<Rightarrow> 'a fset" where
|
|
24 |
"Set xs = Fset (set xs)"
|
|
25 |
|
|
26 |
lemma member_Set [simp]:
|
|
27 |
"member (Set xs) = set xs"
|
|
28 |
by (simp add: Set_def)
|
|
29 |
|
32880
|
30 |
definition Coset :: "'a list \<Rightarrow> 'a fset" where
|
|
31 |
"Coset xs = Fset (- set xs)"
|
|
32 |
|
|
33 |
lemma member_Coset [simp]:
|
|
34 |
"member (Coset xs) = - set xs"
|
|
35 |
by (simp add: Coset_def)
|
|
36 |
|
|
37 |
code_datatype Set Coset
|
|
38 |
|
|
39 |
lemma member_code [code]:
|
|
40 |
"member (Set xs) y \<longleftrightarrow> List.member y xs"
|
|
41 |
"member (Coset xs) y \<longleftrightarrow> \<not> List.member y xs"
|
|
42 |
by (simp_all add: mem_iff fun_Compl_def bool_Compl_def)
|
|
43 |
|
|
44 |
lemma member_image_UNIV [simp]:
|
|
45 |
"member ` UNIV = UNIV"
|
|
46 |
proof -
|
|
47 |
have "\<And>A \<Colon> 'a set. \<exists>B \<Colon> 'a fset. A = member B"
|
|
48 |
proof
|
|
49 |
fix A :: "'a set"
|
|
50 |
show "A = member (Fset A)" by simp
|
|
51 |
qed
|
|
52 |
then show ?thesis by (simp add: image_def)
|
|
53 |
qed
|
31807
|
54 |
|
|
55 |
|
|
56 |
subsection {* Basic operations *}
|
|
57 |
|
|
58 |
definition is_empty :: "'a fset \<Rightarrow> bool" where
|
31846
|
59 |
[simp]: "is_empty A \<longleftrightarrow> List_Set.is_empty (member A)"
|
31807
|
60 |
|
|
61 |
lemma is_empty_Set [code]:
|
|
62 |
"is_empty (Set xs) \<longleftrightarrow> null xs"
|
31846
|
63 |
by (simp add: is_empty_set)
|
31807
|
64 |
|
|
65 |
definition empty :: "'a fset" where
|
31846
|
66 |
[simp]: "empty = Fset {}"
|
31807
|
67 |
|
|
68 |
lemma empty_Set [code]:
|
|
69 |
"empty = Set []"
|
31846
|
70 |
by (simp add: Set_def)
|
31807
|
71 |
|
|
72 |
definition insert :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
31846
|
73 |
[simp]: "insert x A = Fset (Set.insert x (member A))"
|
31807
|
74 |
|
|
75 |
lemma insert_Set [code]:
|
|
76 |
"insert x (Set xs) = Set (List_Set.insert x xs)"
|
32880
|
77 |
"insert x (Coset xs) = Coset (remove_all x xs)"
|
|
78 |
by (simp_all add: Set_def Coset_def insert_set insert_set_compl)
|
31807
|
79 |
|
|
80 |
definition remove :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
31846
|
81 |
[simp]: "remove x A = Fset (List_Set.remove x (member A))"
|
31807
|
82 |
|
|
83 |
lemma remove_Set [code]:
|
|
84 |
"remove x (Set xs) = Set (remove_all x xs)"
|
32880
|
85 |
"remove x (Coset xs) = Coset (List_Set.insert x xs)"
|
|
86 |
by (simp_all add: Set_def Coset_def remove_set remove_set_compl)
|
31807
|
87 |
|
|
88 |
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset" where
|
31846
|
89 |
[simp]: "map f A = Fset (image f (member A))"
|
31807
|
90 |
|
|
91 |
lemma map_Set [code]:
|
|
92 |
"map f (Set xs) = Set (remdups (List.map f xs))"
|
31846
|
93 |
by (simp add: Set_def)
|
31807
|
94 |
|
31847
|
95 |
definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
|
96 |
[simp]: "filter P A = Fset (List_Set.project P (member A))"
|
31807
|
97 |
|
31847
|
98 |
lemma filter_Set [code]:
|
|
99 |
"filter P (Set xs) = Set (List.filter P xs)"
|
31846
|
100 |
by (simp add: Set_def project_set)
|
31807
|
101 |
|
|
102 |
definition forall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
|
31846
|
103 |
[simp]: "forall P A \<longleftrightarrow> Ball (member A) P"
|
31807
|
104 |
|
|
105 |
lemma forall_Set [code]:
|
|
106 |
"forall P (Set xs) \<longleftrightarrow> list_all P xs"
|
31846
|
107 |
by (simp add: Set_def ball_set)
|
31807
|
108 |
|
|
109 |
definition exists :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
|
31846
|
110 |
[simp]: "exists P A \<longleftrightarrow> Bex (member A) P"
|
31807
|
111 |
|
|
112 |
lemma exists_Set [code]:
|
|
113 |
"exists P (Set xs) \<longleftrightarrow> list_ex P xs"
|
31846
|
114 |
by (simp add: Set_def bex_set)
|
|
115 |
|
31849
|
116 |
definition card :: "'a fset \<Rightarrow> nat" where
|
|
117 |
[simp]: "card A = Finite_Set.card (member A)"
|
|
118 |
|
|
119 |
lemma card_Set [code]:
|
|
120 |
"card (Set xs) = length (remdups xs)"
|
|
121 |
proof -
|
|
122 |
have "Finite_Set.card (set (remdups xs)) = length (remdups xs)"
|
|
123 |
by (rule distinct_card) simp
|
|
124 |
then show ?thesis by (simp add: Set_def card_def)
|
|
125 |
qed
|
|
126 |
|
31846
|
127 |
|
|
128 |
subsection {* Derived operations *}
|
|
129 |
|
|
130 |
definition subfset_eq :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
|
|
131 |
[simp]: "subfset_eq A B \<longleftrightarrow> member A \<subseteq> member B"
|
|
132 |
|
|
133 |
lemma subfset_eq_forall [code]:
|
32880
|
134 |
"subfset_eq A B \<longleftrightarrow> forall (member B) A"
|
31846
|
135 |
by (simp add: subset_eq)
|
|
136 |
|
|
137 |
definition subfset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
|
|
138 |
[simp]: "subfset A B \<longleftrightarrow> member A \<subset> member B"
|
|
139 |
|
|
140 |
lemma subfset_subfset_eq [code]:
|
|
141 |
"subfset A B \<longleftrightarrow> subfset_eq A B \<and> \<not> subfset_eq B A"
|
|
142 |
by (simp add: subset)
|
|
143 |
|
|
144 |
lemma eq_fset_subfset_eq [code]:
|
|
145 |
"eq_class.eq A B \<longleftrightarrow> subfset_eq A B \<and> subfset_eq B A"
|
|
146 |
by (cases A, cases B) (simp add: eq set_eq)
|
|
147 |
|
31807
|
148 |
|
|
149 |
subsection {* Functorial operations *}
|
|
150 |
|
32880
|
151 |
definition inter :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
|
152 |
[simp]: "inter A B = Fset (member A \<inter> member B)"
|
31807
|
153 |
|
32880
|
154 |
lemma inter_project [code]:
|
|
155 |
"inter A (Set xs) = Set (List.filter (member A) xs)"
|
|
156 |
"inter A (Coset xs) = foldl (\<lambda>A x. remove x A) A xs"
|
31807
|
157 |
proof -
|
32880
|
158 |
show "inter A (Set xs) = Set (List.filter (member A) xs)"
|
|
159 |
by (simp add: inter project_def Set_def)
|
|
160 |
have "foldl (\<lambda>A x. List_Set.remove x A) (member A) xs =
|
|
161 |
member (foldl (\<lambda>A x. Fset (List_Set.remove x (member A))) A xs)"
|
31807
|
162 |
by (rule foldl_apply_inv) simp
|
32880
|
163 |
then show "inter A (Coset xs) = foldl (\<lambda>A x. remove x A) A xs"
|
|
164 |
by (simp add: Diff_eq [symmetric] minus_set)
|
31807
|
165 |
qed
|
|
166 |
|
|
167 |
definition subtract :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
31846
|
168 |
[simp]: "subtract A B = Fset (member B - member A)"
|
31807
|
169 |
|
|
170 |
lemma subtract_remove [code]:
|
|
171 |
"subtract (Set xs) A = foldl (\<lambda>A x. remove x A) A xs"
|
32880
|
172 |
"subtract (Coset xs) A = Set (List.filter (member A) xs)"
|
31807
|
173 |
proof -
|
|
174 |
have "foldl (\<lambda>A x. List_Set.remove x A) (member A) xs =
|
|
175 |
member (foldl (\<lambda>A x. Fset (List_Set.remove x (member A))) A xs)"
|
|
176 |
by (rule foldl_apply_inv) simp
|
32880
|
177 |
then show "subtract (Set xs) A = foldl (\<lambda>A x. remove x A) A xs"
|
|
178 |
by (simp add: minus_set)
|
|
179 |
show "subtract (Coset xs) A = Set (List.filter (member A) xs)"
|
|
180 |
by (auto simp add: Coset_def Set_def)
|
|
181 |
qed
|
|
182 |
|
|
183 |
definition union :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
|
184 |
[simp]: "union A B = Fset (member A \<union> member B)"
|
|
185 |
|
|
186 |
lemma union_insert [code]:
|
|
187 |
"union (Set xs) A = foldl (\<lambda>A x. insert x A) A xs"
|
|
188 |
"union (Coset xs) A = Coset (List.filter (Not \<circ> member A) xs)"
|
|
189 |
proof -
|
|
190 |
have "foldl (\<lambda>A x. Set.insert x A) (member A) xs =
|
|
191 |
member (foldl (\<lambda>A x. Fset (Set.insert x (member A))) A xs)"
|
|
192 |
by (rule foldl_apply_inv) simp
|
|
193 |
then show "union (Set xs) A = foldl (\<lambda>A x. insert x A) A xs"
|
|
194 |
by (simp add: union_set)
|
|
195 |
show "union (Coset xs) A = Coset (List.filter (Not \<circ> member A) xs)"
|
|
196 |
by (auto simp add: Coset_def)
|
31807
|
197 |
qed
|
|
198 |
|
31846
|
199 |
definition Inter :: "'a fset fset \<Rightarrow> 'a fset" where
|
32139
|
200 |
[simp]: "Inter A = Fset (Complete_Lattice.Inter (member ` member A))"
|
31807
|
201 |
|
31846
|
202 |
lemma Inter_inter [code]:
|
32880
|
203 |
"Inter (Set As) = foldl inter (Coset []) As"
|
|
204 |
"Inter (Coset []) = empty"
|
31846
|
205 |
proof -
|
32880
|
206 |
have [simp]: "Coset [] = Fset UNIV"
|
|
207 |
by (simp add: Coset_def)
|
31846
|
208 |
note Inter_image_eq [simp del] set_map [simp del] set.simps [simp del]
|
32880
|
209 |
have "foldl (op \<inter>) (member (Coset [])) (List.map member As) =
|
|
210 |
member (foldl (\<lambda>B A. Fset (member B \<inter> A)) (Coset []) (List.map member As))"
|
31846
|
211 |
by (rule foldl_apply_inv) simp
|
32880
|
212 |
then show "Inter (Set As) = foldl inter (Coset []) As"
|
|
213 |
by (simp add: Inter_set image_set inter inter_def_raw foldl_map)
|
|
214 |
show "Inter (Coset []) = empty"
|
|
215 |
by simp
|
31846
|
216 |
qed
|
31807
|
217 |
|
31846
|
218 |
definition Union :: "'a fset fset \<Rightarrow> 'a fset" where
|
32139
|
219 |
[simp]: "Union A = Fset (Complete_Lattice.Union (member ` member A))"
|
31807
|
220 |
|
31846
|
221 |
lemma Union_union [code]:
|
|
222 |
"Union (Set As) = foldl union empty As"
|
32880
|
223 |
"Union (Coset []) = Coset []"
|
31846
|
224 |
proof -
|
32880
|
225 |
have [simp]: "Coset [] = Fset UNIV"
|
|
226 |
by (simp add: Coset_def)
|
31846
|
227 |
note Union_image_eq [simp del] set_map [simp del]
|
|
228 |
have "foldl (op \<union>) (member empty) (List.map member As) =
|
|
229 |
member (foldl (\<lambda>B A. Fset (member B \<union> A)) empty (List.map member As))"
|
|
230 |
by (rule foldl_apply_inv) simp
|
32880
|
231 |
then show "Union (Set As) = foldl union empty As"
|
31846
|
232 |
by (simp add: Union_set image_set union_def_raw foldl_map)
|
32880
|
233 |
show "Union (Coset []) = Coset []"
|
|
234 |
by simp
|
31846
|
235 |
qed
|
31807
|
236 |
|
|
237 |
|
|
238 |
subsection {* Misc operations *}
|
|
239 |
|
|
240 |
lemma size_fset [code]:
|
|
241 |
"fset_size f A = 0"
|
|
242 |
"size A = 0"
|
|
243 |
by (cases A, simp) (cases A, simp)
|
|
244 |
|
|
245 |
lemma fset_case_code [code]:
|
|
246 |
"fset_case f A = f (member A)"
|
|
247 |
by (cases A) simp
|
|
248 |
|
|
249 |
lemma fset_rec_code [code]:
|
|
250 |
"fset_rec f A = f (member A)"
|
|
251 |
by (cases A) simp
|
|
252 |
|
31846
|
253 |
|
|
254 |
subsection {* Simplified simprules *}
|
|
255 |
|
|
256 |
lemma is_empty_simp [simp]:
|
|
257 |
"is_empty A \<longleftrightarrow> member A = {}"
|
|
258 |
by (simp add: List_Set.is_empty_def)
|
|
259 |
declare is_empty_def [simp del]
|
|
260 |
|
|
261 |
lemma remove_simp [simp]:
|
|
262 |
"remove x A = Fset (member A - {x})"
|
|
263 |
by (simp add: List_Set.remove_def)
|
|
264 |
declare remove_def [simp del]
|
|
265 |
|
31847
|
266 |
lemma filter_simp [simp]:
|
|
267 |
"filter P A = Fset {x \<in> member A. P x}"
|
31846
|
268 |
by (simp add: List_Set.project_def)
|
31847
|
269 |
declare filter_def [simp del]
|
31846
|
270 |
|
|
271 |
declare mem_def [simp del]
|
|
272 |
|
31849
|
273 |
|
|
274 |
hide (open) const is_empty empty insert remove map filter forall exists card
|
|
275 |
subfset_eq subfset inter union subtract Inter Union
|
|
276 |
|
31807
|
277 |
end
|