author | wenzelm |
Wed, 12 May 2010 14:17:26 +0200 | |
changeset 36862 | 952b2b102a0a |
parent 31795 | be3e1cc5005c |
permissions | -rw-r--r-- |
15283 | 1 |
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> |
2 |
||
15582 | 3 |
<HTML> |
4 |
||
5 |
<HEAD> |
|
6 |
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> |
|
31795
be3e1cc5005c
standard naming conventions for session and theories;
wenzelm
parents:
29197
diff
changeset
|
7 |
<TITLE>HOL/Hahn_Banach/README</TITLE> |
15582 | 8 |
</HEAD> |
9 |
||
10 |
<BODY> |
|
7655 | 11 |
|
15283 | 12 |
<H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3> |
7655 | 13 |
|
15283 | 14 |
Author: Gertrud Bauer, Technische Universität München<P> |
7655 | 15 |
|
16 |
This directory contains the proof of the Hahn-Banach theorem for real vectorspaces, |
|
17 |
following H. Heuser, Funktionalanalysis, p. 228 -232. |
|
18 |
The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis. |
|
19 |
It is a conclusion of Zorn's lemma.<P> |
|
20 |
||
21 |
Two different formaulations of the theorem are presented, one for general real vectorspaces |
|
22 |
and its application to normed vectorspaces. <P> |
|
23 |
||
24 |
The theorem says, that every continous linearform, defined on arbitrary subspaces |
|
25 |
(not only one-dimensional subspaces), can be extended to a continous linearform on |
|
26 |
the whole vectorspace. |
|
27 |
||
28 |
||
29 |
<HR> |
|
30 |
||
31 |
<ADDRESS> |
|
32 |
<A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A> |
|
33 |
</ADDRESS> |
|
34 |
||
15582 | 35 |
</BODY> |
36 |
</HTML> |