| 
23914
 | 
     1  | 
(*  Title:      FOL/ex/Propositional_Cla.thy
  | 
| 
 | 
     2  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     3  | 
    Copyright   1991  University of Cambridge
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
60770
 | 
     6  | 
section \<open>First-Order Logic: propositional examples (classical version)\<close>
  | 
| 
23914
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Propositional_Cla
  | 
| 
 | 
     9  | 
imports FOL
  | 
| 
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
62020
 | 
    12  | 
text \<open>commutative laws of \<open>\<and>\<close> and \<open>\<or>\<close>\<close>
  | 
| 
23914
 | 
    13  | 
  | 
| 
61489
 | 
    14  | 
lemma "P \<and> Q \<longrightarrow> Q \<and> P"
  | 
| 
51798
 | 
    15  | 
  by (tactic "IntPr.fast_tac @{context} 1")
 | 
| 
23914
 | 
    16  | 
  | 
| 
61489
 | 
    17  | 
lemma "P \<or> Q \<longrightarrow> Q \<or> P"
  | 
| 
23914
 | 
    18  | 
  by fast
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
  | 
| 
62020
 | 
    21  | 
text \<open>associative laws of \<open>\<and>\<close> and \<open>\<or>\<close>\<close>
  | 
| 
61489
 | 
    22  | 
lemma "(P \<and> Q) \<and> R \<longrightarrow> P \<and> (Q \<and> R)"
  | 
| 
23914
 | 
    23  | 
  by fast
  | 
| 
 | 
    24  | 
  | 
| 
61489
 | 
    25  | 
lemma "(P \<or> Q) \<or> R \<longrightarrow>  P \<or> (Q \<or> R)"
  | 
| 
23914
 | 
    26  | 
  by fast
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
  | 
| 
62020
 | 
    29  | 
text \<open>distributive laws of \<open>\<and>\<close> and \<open>\<or>\<close>\<close>
  | 
| 
61489
 | 
    30  | 
lemma "(P \<and> Q) \<or> R \<longrightarrow> (P \<or> R) \<and> (Q \<or> R)"
  | 
| 
23914
 | 
    31  | 
  by fast
  | 
| 
 | 
    32  | 
  | 
| 
61489
 | 
    33  | 
lemma "(P \<or> R) \<and> (Q \<or> R) \<longrightarrow> (P \<and> Q) \<or> R"
  | 
| 
23914
 | 
    34  | 
  by fast
  | 
| 
 | 
    35  | 
  | 
| 
61489
 | 
    36  | 
lemma "(P \<or> Q) \<and> R \<longrightarrow> (P \<and> R) \<or> (Q \<and> R)"
  | 
| 
23914
 | 
    37  | 
  by fast
  | 
| 
 | 
    38  | 
  | 
| 
61489
 | 
    39  | 
lemma "(P \<and> R) \<or> (Q \<and> R) \<longrightarrow> (P \<or> Q) \<and> R"
  | 
| 
23914
 | 
    40  | 
  by fast
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
  | 
| 
60770
 | 
    43  | 
text \<open>Laws involving implication\<close>
  | 
| 
23914
 | 
    44  | 
  | 
| 
61489
 | 
    45  | 
lemma "(P \<longrightarrow> R) \<and> (Q \<longrightarrow> R) \<longleftrightarrow> (P \<or> Q \<longrightarrow> R)"
  | 
| 
23914
 | 
    46  | 
  by fast
  | 
| 
 | 
    47  | 
  | 
| 
61489
 | 
    48  | 
lemma "(P \<and> Q \<longrightarrow> R) \<longleftrightarrow> (P \<longrightarrow> (Q \<longrightarrow> R))"
  | 
| 
23914
 | 
    49  | 
  by fast
  | 
| 
 | 
    50  | 
  | 
| 
61489
 | 
    51  | 
lemma "((P \<longrightarrow> R) \<longrightarrow> R) \<longrightarrow> ((Q \<longrightarrow> R) \<longrightarrow> R) \<longrightarrow> (P \<and> Q \<longrightarrow> R) \<longrightarrow> R"
  | 
| 
23914
 | 
    52  | 
  by fast
  | 
| 
 | 
    53  | 
  | 
| 
61489
 | 
    54  | 
lemma "\<not> (P \<longrightarrow> R) \<longrightarrow> \<not> (Q \<longrightarrow> R) \<longrightarrow> \<not> (P \<and> Q \<longrightarrow> R)"
  | 
| 
23914
 | 
    55  | 
  by fast
  | 
| 
 | 
    56  | 
  | 
| 
61489
 | 
    57  | 
lemma "(P \<longrightarrow> Q \<and> R) \<longleftrightarrow> (P \<longrightarrow> Q) \<and> (P \<longrightarrow> R)"
  | 
| 
23914
 | 
    58  | 
  by fast
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
  | 
| 
60770
 | 
    61  | 
text \<open>Propositions-as-types\<close>
  | 
| 
23914
 | 
    62  | 
  | 
| 
62020
 | 
    63  | 
\<comment> \<open>The combinator K\<close>
  | 
| 
61489
 | 
    64  | 
lemma "P \<longrightarrow> (Q \<longrightarrow> P)"
  | 
| 
23914
 | 
    65  | 
  by fast
  | 
| 
 | 
    66  | 
  | 
| 
62020
 | 
    67  | 
\<comment> \<open>The combinator S\<close>
  | 
| 
61489
 | 
    68  | 
lemma "(P \<longrightarrow> Q \<longrightarrow> R) \<longrightarrow> (P \<longrightarrow> Q) \<longrightarrow> (P \<longrightarrow> R)"
  | 
| 
23914
 | 
    69  | 
  by fast
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
  | 
| 
62020
 | 
    72  | 
\<comment> \<open>Converse is classical\<close>
  | 
| 
61489
 | 
    73  | 
lemma "(P \<longrightarrow> Q) \<or> (P \<longrightarrow> R) \<longrightarrow> (P \<longrightarrow> Q \<or> R)"
  | 
| 
23914
 | 
    74  | 
  by fast
  | 
| 
 | 
    75  | 
  | 
| 
61489
 | 
    76  | 
lemma "(P \<longrightarrow> Q) \<longrightarrow> (\<not> Q \<longrightarrow> \<not> P)"
  | 
| 
23914
 | 
    77  | 
  by fast
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
  | 
| 
60770
 | 
    80  | 
text \<open>Schwichtenberg's examples (via T. Nipkow)\<close>
  | 
| 
23914
 | 
    81  | 
  | 
| 
61489
 | 
    82  | 
lemma stab_imp: "(((Q \<longrightarrow> R) \<longrightarrow> R) \<longrightarrow> Q) \<longrightarrow> (((P \<longrightarrow> Q) \<longrightarrow> R) \<longrightarrow> R) \<longrightarrow> P \<longrightarrow> Q"
  | 
| 
23914
 | 
    83  | 
  by fast
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
lemma stab_to_peirce:
  | 
| 
61489
 | 
    86  | 
  "(((P \<longrightarrow> R) \<longrightarrow> R) \<longrightarrow> P) \<longrightarrow> (((Q \<longrightarrow> R) \<longrightarrow> R) \<longrightarrow> Q)
  | 
| 
 | 
    87  | 
    \<longrightarrow> ((P \<longrightarrow> Q) \<longrightarrow> P) \<longrightarrow> P"
  | 
| 
23914
 | 
    88  | 
  by fast
  | 
| 
 | 
    89  | 
  | 
| 
61489
 | 
    90  | 
lemma peirce_imp1:
  | 
| 
 | 
    91  | 
  "(((Q \<longrightarrow> R) \<longrightarrow> Q) \<longrightarrow> Q)
  | 
| 
 | 
    92  | 
    \<longrightarrow> (((P \<longrightarrow> Q) \<longrightarrow> R) \<longrightarrow> P \<longrightarrow> Q) \<longrightarrow> P \<longrightarrow> Q"
  | 
| 
23914
 | 
    93  | 
  by fast
  | 
| 
 | 
    94  | 
  | 
| 
61489
 | 
    95  | 
lemma peirce_imp2: "(((P \<longrightarrow> R) \<longrightarrow> P) \<longrightarrow> P) \<longrightarrow> ((P \<longrightarrow> Q \<longrightarrow> R) \<longrightarrow> P) \<longrightarrow> P"
  | 
| 
 | 
    96  | 
  by fast
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
lemma mints: "((((P \<longrightarrow> Q) \<longrightarrow> P) \<longrightarrow> P) \<longrightarrow> Q) \<longrightarrow> Q"
  | 
| 
23914
 | 
    99  | 
  by fast
  | 
| 
 | 
   100  | 
  | 
| 
61489
 | 
   101  | 
lemma mints_solovev: "(P \<longrightarrow> (Q \<longrightarrow> R) \<longrightarrow> Q) \<longrightarrow> ((P \<longrightarrow> Q) \<longrightarrow> R) \<longrightarrow> R"
  | 
| 
23914
 | 
   102  | 
  by fast
  | 
| 
 | 
   103  | 
  | 
| 
61489
 | 
   104  | 
lemma tatsuta:
  | 
| 
 | 
   105  | 
  "(((P7 \<longrightarrow> P1) \<longrightarrow> P10) \<longrightarrow> P4 \<longrightarrow> P5)
  | 
| 
 | 
   106  | 
  \<longrightarrow> (((P8 \<longrightarrow> P2) \<longrightarrow> P9) \<longrightarrow> P3 \<longrightarrow> P10)
  | 
| 
 | 
   107  | 
  \<longrightarrow> (P1 \<longrightarrow> P8) \<longrightarrow> P6 \<longrightarrow> P7
  | 
| 
 | 
   108  | 
  \<longrightarrow> (((P3 \<longrightarrow> P2) \<longrightarrow> P9) \<longrightarrow> P4)
  | 
| 
 | 
   109  | 
  \<longrightarrow> (P1 \<longrightarrow> P3) \<longrightarrow> (((P6 \<longrightarrow> P1) \<longrightarrow> P2) \<longrightarrow> P9) \<longrightarrow> P5"
  | 
| 
23914
 | 
   110  | 
  by fast
  | 
| 
 | 
   111  | 
  | 
| 
61489
 | 
   112  | 
lemma tatsuta1:
  | 
| 
 | 
   113  | 
  "(((P8 \<longrightarrow> P2) \<longrightarrow> P9) \<longrightarrow> P3 \<longrightarrow> P10)
  | 
| 
 | 
   114  | 
  \<longrightarrow> (((P3 \<longrightarrow> P2) \<longrightarrow> P9) \<longrightarrow> P4)
  | 
| 
 | 
   115  | 
  \<longrightarrow> (((P6 \<longrightarrow> P1) \<longrightarrow> P2) \<longrightarrow> P9)
  | 
| 
 | 
   116  | 
  \<longrightarrow> (((P7 \<longrightarrow> P1) \<longrightarrow> P10) \<longrightarrow> P4 \<longrightarrow> P5)
  | 
| 
 | 
   117  | 
  \<longrightarrow> (P1 \<longrightarrow> P3) \<longrightarrow> (P1 \<longrightarrow> P8) \<longrightarrow> P6 \<longrightarrow> P7 \<longrightarrow> P5"
  | 
| 
23914
 | 
   118  | 
  by fast
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
end
  |