| author | nipkow | 
| Sat, 07 Apr 2018 22:09:57 +0200 | |
| changeset 67963 | 9541f2c5ce8d | 
| parent 67673 | c8caefb20564 | 
| child 67968 | a5ad4c015d1c | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Lebesgue_Measure.thy | 
| 42067 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Robert Himmelmann, TU München | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 4 | Author: Jeremy Avigad | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 5 | Author: Luke Serafin | 
| 42067 | 6 | *) | 
| 7 | ||
| 61808 | 8 | section \<open>Lebesgue measure\<close> | 
| 42067 | 9 | |
| 38656 | 10 | theory Lebesgue_Measure | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 11 | imports Finite_Product_Measure Bochner_Integration Caratheodory Complete_Measure Summation_Tests Regularity | 
| 38656 | 12 | begin | 
| 13 | ||
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 14 | lemma measure_eqI_lessThan: | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 15 | fixes M N :: "real measure" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 16 | assumes sets: "sets M = sets borel" "sets N = sets borel" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 17 |   assumes fin: "\<And>x. emeasure M {x <..} < \<infinity>"
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 18 |   assumes "\<And>x. emeasure M {x <..} = emeasure N {x <..}"
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 19 | shows "M = N" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 20 | proof (rule measure_eqI_generator_eq_countable) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 21 |   let ?LT = "\<lambda>a::real. {a <..}" let ?E = "range ?LT"
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 22 | show "Int_stable ?E" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 23 | by (auto simp: Int_stable_def lessThan_Int_lessThan) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 24 | |
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 25 | show "?E \<subseteq> Pow UNIV" "sets M = sigma_sets UNIV ?E" "sets N = sigma_sets UNIV ?E" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 26 | unfolding sets borel_Ioi by auto | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 27 | |
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 28 | show "?LT`Rats \<subseteq> ?E" "(\<Union>i\<in>Rats. ?LT i) = UNIV" "\<And>a. a \<in> ?LT`Rats \<Longrightarrow> emeasure M a \<noteq> \<infinity>" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 29 | using fin by (auto intro: Rats_no_bot_less simp: less_top) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 30 | qed (auto intro: assms countable_rat) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 31 | |
| 61808 | 32 | subsection \<open>Every right continuous and nondecreasing function gives rise to a measure\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 33 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 34 | definition interval_measure :: "(real \<Rightarrow> real) \<Rightarrow> real measure" where | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 35 |   "interval_measure F = extend_measure UNIV {(a, b). a \<le> b} (\<lambda>(a, b). {a <.. b}) (\<lambda>(a, b). ennreal (F b - F a))"
 | 
| 49777 | 36 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 37 | lemma emeasure_interval_measure_Ioc: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 38 | assumes "a \<le> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 39 | assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 40 | assumes right_cont_F : "\<And>a. continuous (at_right a) F" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 41 |   shows "emeasure (interval_measure F) {a <.. b} = F b - F a"
 | 
| 61808 | 42 | proof (rule extend_measure_caratheodory_pair[OF interval_measure_def \<open>a \<le> b\<close>]) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 43 |   show "semiring_of_sets UNIV {{a<..b} |a b :: real. a \<le> b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 44 | proof (unfold_locales, safe) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 45 | fix a b c d :: real assume *: "a \<le> b" "c \<le> d" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 46 |     then show "\<exists>C\<subseteq>{{a<..b} |a b. a \<le> b}. finite C \<and> disjoint C \<and> {a<..b} - {c<..d} = \<Union>C"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 47 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 48 |       let ?C = "{{a<..b}}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 49 | assume "b < c \<or> d \<le> a \<or> d \<le> c" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 50 |       with * have "?C \<subseteq> {{a<..b} |a b. a \<le> b} \<and> finite ?C \<and> disjoint ?C \<and> {a<..b} - {c<..d} = \<Union>?C"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 51 | by (auto simp add: disjoint_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 52 | thus ?thesis .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 53 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 54 |       let ?C = "{{a<..c}, {d<..b}}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 55 | assume "\<not> (b < c \<or> d \<le> a \<or> d \<le> c)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 56 |       with * have "?C \<subseteq> {{a<..b} |a b. a \<le> b} \<and> finite ?C \<and> disjoint ?C \<and> {a<..b} - {c<..d} = \<Union>?C"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 57 | by (auto simp add: disjoint_def Ioc_inj) (metis linear)+ | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 58 | thus ?thesis .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 59 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 60 | qed (auto simp: Ioc_inj, metis linear) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 61 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 62 | fix l r :: "nat \<Rightarrow> real" and a b :: real | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 63 |   assume l_r[simp]: "\<And>n. l n \<le> r n" and "a \<le> b" and disj: "disjoint_family (\<lambda>n. {l n<..r n})"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 64 |   assume lr_eq_ab: "(\<Union>i. {l i<..r i}) = {a<..b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 65 | |
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 66 | have [intro, simp]: "\<And>a b. a \<le> b \<Longrightarrow> F a \<le> F b" | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 67 | by (auto intro!: l_r mono_F) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 68 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 69 |   { fix S :: "nat set" assume "finite S"
 | 
| 61808 | 70 | moreover note \<open>a \<le> b\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 71 |     moreover have "\<And>i. i \<in> S \<Longrightarrow> {l i <.. r i} \<subseteq> {a <.. b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 72 | unfolding lr_eq_ab[symmetric] by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 73 | ultimately have "(\<Sum>i\<in>S. F (r i) - F (l i)) \<le> F b - F a" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 74 | proof (induction S arbitrary: a rule: finite_psubset_induct) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 75 | case (psubset S) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 76 | show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 77 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 78 | assume "\<exists>i\<in>S. l i < r i" | 
| 61808 | 79 |         with \<open>finite S\<close> have "Min (l ` {i\<in>S. l i < r i}) \<in> l ` {i\<in>S. l i < r i}"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 80 | by (intro Min_in) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 81 |         then obtain m where m: "m \<in> S" "l m < r m" "l m = Min (l ` {i\<in>S. l i < r i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 82 | by fastforce | 
| 50104 | 83 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 84 |         have "(\<Sum>i\<in>S. F (r i) - F (l i)) = (F (r m) - F (l m)) + (\<Sum>i\<in>S - {m}. F (r i) - F (l i))"
 | 
| 64267 | 85 | using m psubset by (intro sum.remove) auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 86 |         also have "(\<Sum>i\<in>S - {m}. F (r i) - F (l i)) \<le> F b - F (r m)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 87 | proof (intro psubset.IH) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 88 |           show "S - {m} \<subset> S"
 | 
| 61808 | 89 | using \<open>m\<in>S\<close> by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 90 | show "r m \<le> b" | 
| 61808 | 91 | using psubset.prems(2)[OF \<open>m\<in>S\<close>] \<open>l m < r m\<close> by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 92 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 93 |           fix i assume "i \<in> S - {m}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 94 | then have i: "i \<in> S" "i \<noteq> m" by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 95 |           { assume i': "l i < r i" "l i < r m"
 | 
| 63540 | 96 | with \<open>finite S\<close> i m have "l m \<le> l i" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 97 | by auto | 
| 63540 | 98 |             with i' have "{l i <.. r i} \<inter> {l m <.. r m} \<noteq> {}"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 99 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 100 | then have False | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 101 | using disjoint_family_onD[OF disj, of i m] i by auto } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 102 | then have "l i \<noteq> r i \<Longrightarrow> r m \<le> l i" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 103 | unfolding not_less[symmetric] using l_r[of i] by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 104 |           then show "{l i <.. r i} \<subseteq> {r m <.. b}"
 | 
| 61808 | 105 | using psubset.prems(2)[OF \<open>i\<in>S\<close>] by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 106 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 107 | also have "F (r m) - F (l m) \<le> F (r m) - F a" | 
| 61808 | 108 | using psubset.prems(2)[OF \<open>m \<in> S\<close>] \<open>l m < r m\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 109 | by (auto simp add: Ioc_subset_iff intro!: mono_F) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 110 | finally show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 111 | by (auto intro: add_mono) | 
| 61808 | 112 | qed (auto simp add: \<open>a \<le> b\<close> less_le) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 113 | qed } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 114 | note claim1 = this | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 115 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 116 | (* second key induction: a lower bound on the measures of any finite collection of Ai's | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 117 |      that cover an interval {u..v} *)
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 118 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 119 |   { fix S u v and l r :: "nat \<Rightarrow> real"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 120 |     assume "finite S" "\<And>i. i\<in>S \<Longrightarrow> l i < r i" "{u..v} \<subseteq> (\<Union>i\<in>S. {l i<..< r i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 121 | then have "F v - F u \<le> (\<Sum>i\<in>S. F (r i) - F (l i))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 122 | proof (induction arbitrary: v u rule: finite_psubset_induct) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 123 | case (psubset S) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 124 | show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 125 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 126 |         assume "S = {}" then show ?case
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 127 | using psubset by (simp add: mono_F) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 128 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 129 |         assume "S \<noteq> {}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 130 | then obtain j where "j \<in> S" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 131 | by auto | 
| 47694 | 132 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 133 |         let ?R = "r j < u \<or> l j > v \<or> (\<exists>i\<in>S-{j}. l i \<le> l j \<and> r j \<le> r i)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 134 | show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 135 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 136 | assume "?R" | 
| 61808 | 137 |           with \<open>j \<in> S\<close> psubset.prems have "{u..v} \<subseteq> (\<Union>i\<in>S-{j}. {l i<..< r i})"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 138 | apply (auto simp: subset_eq Ball_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 139 | apply (metis Diff_iff less_le_trans leD linear singletonD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 140 | apply (metis Diff_iff less_le_trans leD linear singletonD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 141 | apply (metis order_trans less_le_not_le linear) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 142 | done | 
| 61808 | 143 |           with \<open>j \<in> S\<close> have "F v - F u \<le> (\<Sum>i\<in>S - {j}. F (r i) - F (l i))"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 144 | by (intro psubset) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 145 | also have "\<dots> \<le> (\<Sum>i\<in>S. F (r i) - F (l i))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 146 | using psubset.prems | 
| 64267 | 147 | by (intro sum_mono2 psubset) (auto intro: less_imp_le) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 148 | finally show ?thesis . | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 149 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 150 | assume "\<not> ?R" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 151 |           then have j: "u \<le> r j" "l j \<le> v" "\<And>i. i \<in> S - {j} \<Longrightarrow> r i < r j \<or> l i > l j"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 152 | by (auto simp: not_less) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 153 |           let ?S1 = "{i \<in> S. l i < l j}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 154 |           let ?S2 = "{i \<in> S. r i > r j}"
 | 
| 40859 | 155 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 156 |           have "(\<Sum>i\<in>S. F (r i) - F (l i)) \<ge> (\<Sum>i\<in>?S1 \<union> ?S2 \<union> {j}. F (r i) - F (l i))"
 | 
| 61808 | 157 | using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j | 
| 64267 | 158 | by (intro sum_mono2) (auto intro: less_imp_le) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 159 |           also have "(\<Sum>i\<in>?S1 \<union> ?S2 \<union> {j}. F (r i) - F (l i)) =
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 160 | (\<Sum>i\<in>?S1. F (r i) - F (l i)) + (\<Sum>i\<in>?S2 . F (r i) - F (l i)) + (F (r j) - F (l j))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 161 | using psubset(1) psubset.prems(1) j | 
| 64267 | 162 | apply (subst sum.union_disjoint) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 163 | apply simp_all | 
| 64267 | 164 | apply (subst sum.union_disjoint) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 165 | apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 166 | apply (metis less_le_not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 167 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 168 | also (xtrans) have "(\<Sum>i\<in>?S1. F (r i) - F (l i)) \<ge> F (l j) - F u" | 
| 61808 | 169 | using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 170 | apply (intro psubset.IH psubset) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 171 | apply (auto simp: subset_eq Ball_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 172 | apply (metis less_le_trans not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 173 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 174 | also (xtrans) have "(\<Sum>i\<in>?S2. F (r i) - F (l i)) \<ge> F v - F (r j)" | 
| 61808 | 175 | using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 176 | apply (intro psubset.IH psubset) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 177 | apply (auto simp: subset_eq Ball_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 178 | apply (metis le_less_trans not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 179 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 180 | finally (xtrans) show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 181 | by (auto simp: add_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 182 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 183 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 184 | qed } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 185 | note claim2 = this | 
| 49777 | 186 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 187 | (* now prove the inequality going the other way *) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 188 | have "ennreal (F b - F a) \<le> (\<Sum>i. ennreal (F (r i) - F (l i)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 189 | proof (rule ennreal_le_epsilon) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 190 | fix epsilon :: real assume egt0: "epsilon > 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 191 | have "\<forall>i. \<exists>d>0. F (r i + d) < F (r i) + epsilon / 2^(i+2)" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 192 | proof | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 193 | fix i | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 194 | note right_cont_F [of "r i"] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 195 | thus "\<exists>d>0. F (r i + d) < F (r i) + epsilon / 2^(i+2)" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 196 | apply - | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 197 | apply (subst (asm) continuous_at_right_real_increasing) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 198 | apply (rule mono_F, assumption) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 199 | apply (drule_tac x = "epsilon / 2 ^ (i + 2)" in spec) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 200 | apply (erule impE) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 201 | using egt0 by (auto simp add: field_simps) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 202 | qed | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 203 | then obtain delta where | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 204 | deltai_gt0: "\<And>i. delta i > 0" and | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 205 | deltai_prop: "\<And>i. F (r i + delta i) < F (r i) + epsilon / 2^(i+2)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 206 | by metis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 207 | have "\<exists>a' > a. F a' - F a < epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 208 | apply (insert right_cont_F [of a]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 209 | apply (subst (asm) continuous_at_right_real_increasing) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 210 | using mono_F apply force | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 211 | apply (drule_tac x = "epsilon / 2" in spec) | 
| 59554 
4044f53326c9
inlined rules to free user-space from technical names
 haftmann parents: 
59425diff
changeset | 212 | using egt0 unfolding mult.commute [of 2] by force | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 213 | then obtain a' where a'lea [arith]: "a' > a" and | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 214 | a_prop: "F a' - F a < epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 215 | by auto | 
| 63040 | 216 |     define S' where "S' = {i. l i < r i}"
 | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 217 | obtain S :: "nat set" where | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 218 | "S \<subseteq> S'" and finS: "finite S" and | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 219 |       Sprop: "{a'..b} \<subseteq> (\<Union>i \<in> S. {l i<..<r i + delta i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 220 | proof (rule compactE_image) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 221 |       show "compact {a'..b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 222 | by (rule compact_Icc) | 
| 65585 
a043de9ad41e
Some fixes related to compactE_image
 paulson <lp15@cam.ac.uk> parents: 
65204diff
changeset | 223 |       show "\<And>i. i \<in> S' \<Longrightarrow> open ({l i<..<r i + delta i})" by auto
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 224 |       have "{a'..b} \<subseteq> {a <.. b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 225 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 226 |       also have "{a <.. b} = (\<Union>i\<in>S'. {l i<..r i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 227 | unfolding lr_eq_ab[symmetric] by (fastforce simp add: S'_def intro: less_le_trans) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 228 |       also have "\<dots> \<subseteq> (\<Union>i \<in> S'. {l i<..<r i + delta i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 229 | apply (intro UN_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 230 | apply (auto simp: S'_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 231 | apply (cut_tac i=i in deltai_gt0) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 232 | apply simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 233 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 234 |       finally show "{a'..b} \<subseteq> (\<Union>i \<in> S'. {l i<..<r i + delta i})" .
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 235 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 236 | with S'_def have Sprop2: "\<And>i. i \<in> S \<Longrightarrow> l i < r i" by auto | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 237 | from finS have "\<exists>n. \<forall>i \<in> S. i \<le> n" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 238 | by (subst finite_nat_set_iff_bounded_le [symmetric]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 239 | then obtain n where Sbound [rule_format]: "\<forall>i \<in> S. i \<le> n" .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 240 | have "F b - F a' \<le> (\<Sum>i\<in>S. F (r i + delta i) - F (l i))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 241 | apply (rule claim2 [rule_format]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 242 | using finS Sprop apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 243 | apply (frule Sprop2) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 244 | apply (subgoal_tac "delta i > 0") | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 245 | apply arith | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 246 | by (rule deltai_gt0) | 
| 61954 | 247 | also have "... \<le> (\<Sum>i \<in> S. F(r i) - F(l i) + epsilon / 2^(i+2))" | 
| 64267 | 248 | apply (rule sum_mono) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 249 | apply simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 250 | apply (rule order_trans) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 251 | apply (rule less_imp_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 252 | apply (rule deltai_prop) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 253 | by auto | 
| 61954 | 254 | also have "... = (\<Sum>i \<in> S. F(r i) - F(l i)) + | 
| 255 | (epsilon / 4) * (\<Sum>i \<in> S. (1 / 2)^i)" (is "_ = ?t + _") | |
| 64267 | 256 | by (subst sum.distrib) (simp add: field_simps sum_distrib_left) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 257 | also have "... \<le> ?t + (epsilon / 4) * (\<Sum> i < Suc n. (1 / 2)^i)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 258 | apply (rule add_left_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 259 | apply (rule mult_left_mono) | 
| 64267 | 260 | apply (rule sum_mono2) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 261 | using egt0 apply auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 262 | by (frule Sbound, auto) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 263 | also have "... \<le> ?t + (epsilon / 2)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 264 | apply (rule add_left_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 265 | apply (subst geometric_sum) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 266 | apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 267 | apply (rule mult_left_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 268 | using egt0 apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 269 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 270 | finally have aux2: "F b - F a' \<le> (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 271 | by simp | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50418diff
changeset | 272 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 273 | have "F b - F a = (F b - F a') + (F a' - F a)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 274 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 275 | also have "... \<le> (F b - F a') + epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 276 | using a_prop by (intro add_left_mono) simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 277 | also have "... \<le> (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon / 2 + epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 278 | apply (intro add_right_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 279 | apply (rule aux2) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 280 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 281 | also have "... = (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 282 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 283 | also have "... \<le> (\<Sum>i\<le>n. F (r i) - F (l i)) + epsilon" | 
| 65680 
378a2f11bec9
Simplification of some proofs. Also key lemmas using !! rather than ! in premises
 paulson <lp15@cam.ac.uk> parents: 
65585diff
changeset | 284 | using finS Sbound Sprop by (auto intro!: add_right_mono sum_mono2) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 285 | finally have "ennreal (F b - F a) \<le> (\<Sum>i\<le>n. ennreal (F (r i) - F (l i))) + epsilon" | 
| 64267 | 286 | using egt0 by (simp add: ennreal_plus[symmetric] sum_nonneg del: ennreal_plus) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 287 | then show "ennreal (F b - F a) \<le> (\<Sum>i. ennreal (F (r i) - F (l i))) + (epsilon :: real)" | 
| 64267 | 288 | by (rule order_trans) (auto intro!: add_mono sum_le_suminf simp del: sum_ennreal) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 289 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 290 | moreover have "(\<Sum>i. ennreal (F (r i) - F (l i))) \<le> ennreal (F b - F a)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 291 | using \<open>a \<le> b\<close> by (auto intro!: suminf_le_const ennreal_le_iff[THEN iffD2] claim1) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 292 | ultimately show "(\<Sum>n. ennreal (F (r n) - F (l n))) = ennreal (F b - F a)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 293 | by (rule antisym[rotated]) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 294 | qed (auto simp: Ioc_inj mono_F) | 
| 38656 | 295 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 296 | lemma measure_interval_measure_Ioc: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 297 | assumes "a \<le> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 298 | assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 299 | assumes right_cont_F : "\<And>a. continuous (at_right a) F" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 300 |   shows "measure (interval_measure F) {a <.. b} = F b - F a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 301 | unfolding measure_def | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 302 | apply (subst emeasure_interval_measure_Ioc) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 303 | apply fact+ | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 304 | apply (simp add: assms) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 305 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 306 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 307 | lemma emeasure_interval_measure_Ioc_eq: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 308 | "(\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y) \<Longrightarrow> (\<And>a. continuous (at_right a) F) \<Longrightarrow> | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 309 |     emeasure (interval_measure F) {a <.. b} = (if a \<le> b then F b - F a else 0)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 310 | using emeasure_interval_measure_Ioc[of a b F] by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 311 | |
| 59048 | 312 | lemma sets_interval_measure [simp, measurable_cong]: "sets (interval_measure F) = sets borel" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 313 | apply (simp add: sets_extend_measure interval_measure_def borel_sigma_sets_Ioc) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 314 | apply (rule sigma_sets_eqI) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 315 | apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 316 | apply (case_tac "a \<le> ba") | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 317 | apply (auto intro: sigma_sets.Empty) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 318 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 319 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 320 | lemma space_interval_measure [simp]: "space (interval_measure F) = UNIV" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 321 | by (simp add: interval_measure_def space_extend_measure) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 322 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 323 | lemma emeasure_interval_measure_Icc: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 324 | assumes "a \<le> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 325 | assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 326 | assumes cont_F : "continuous_on UNIV F" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 327 |   shows "emeasure (interval_measure F) {a .. b} = F b - F a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 328 | proof (rule tendsto_unique) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 329 |   { fix a b :: real assume "a \<le> b" then have "emeasure (interval_measure F) {a <.. b} = F b - F a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 330 | using cont_F | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 331 | by (subst emeasure_interval_measure_Ioc) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 332 | (auto intro: mono_F continuous_within_subset simp: continuous_on_eq_continuous_within) } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 333 | note * = this | 
| 38656 | 334 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 335 | let ?F = "interval_measure F" | 
| 61973 | 336 |   show "((\<lambda>a. F b - F a) \<longlongrightarrow> emeasure ?F {a..b}) (at_left a)"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 337 | proof (rule tendsto_at_left_sequentially) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 338 | show "a - 1 < a" by simp | 
| 61969 | 339 | fix X assume "\<And>n. X n < a" "incseq X" "X \<longlonglongrightarrow> a" | 
| 340 |     with \<open>a \<le> b\<close> have "(\<lambda>n. emeasure ?F {X n<..b}) \<longlonglongrightarrow> emeasure ?F (\<Inter>n. {X n <..b})"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 341 | apply (intro Lim_emeasure_decseq) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 342 | apply (auto simp: decseq_def incseq_def emeasure_interval_measure_Ioc *) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 343 | apply force | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 344 | apply (subst (asm ) *) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 345 | apply (auto intro: less_le_trans less_imp_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 346 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 347 |     also have "(\<Inter>n. {X n <..b}) = {a..b}"
 | 
| 61808 | 348 | using \<open>\<And>n. X n < a\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 349 | apply auto | 
| 61969 | 350 | apply (rule LIMSEQ_le_const2[OF \<open>X \<longlonglongrightarrow> a\<close>]) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 351 | apply (auto intro: less_imp_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 352 | apply (auto intro: less_le_trans) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 353 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 354 |     also have "(\<lambda>n. emeasure ?F {X n<..b}) = (\<lambda>n. F b - F (X n))"
 | 
| 61808 | 355 | using \<open>\<And>n. X n < a\<close> \<open>a \<le> b\<close> by (subst *) (auto intro: less_imp_le less_le_trans) | 
| 61969 | 356 |     finally show "(\<lambda>n. F b - F (X n)) \<longlonglongrightarrow> emeasure ?F {a..b}" .
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 357 | qed | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 358 | show "((\<lambda>a. ennreal (F b - F a)) \<longlongrightarrow> F b - F a) (at_left a)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 359 | by (rule continuous_on_tendsto_compose[where g="\<lambda>x. x" and s=UNIV]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 360 | (auto simp: continuous_on_ennreal continuous_on_diff cont_F continuous_on_const) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 361 | qed (rule trivial_limit_at_left_real) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 362 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 363 | lemma sigma_finite_interval_measure: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 364 | assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 365 | assumes right_cont_F : "\<And>a. continuous (at_right a) F" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 366 | shows "sigma_finite_measure (interval_measure F)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 367 | apply unfold_locales | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 368 |   apply (intro exI[of _ "(\<lambda>(a, b). {a <.. b}) ` (\<rat> \<times> \<rat>)"])
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 369 | apply (auto intro!: Rats_no_top_le Rats_no_bot_less countable_rat simp: emeasure_interval_measure_Ioc_eq[OF assms]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 370 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 371 | |
| 61808 | 372 | subsection \<open>Lebesgue-Borel measure\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 373 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 374 | definition lborel :: "('a :: euclidean_space) measure" where
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 375 | "lborel = distr (\<Pi>\<^sub>M b\<in>Basis. interval_measure (\<lambda>x. x)) borel (\<lambda>f. \<Sum>b\<in>Basis. f b *\<^sub>R b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 376 | |
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 377 | abbreviation lebesgue :: "'a::euclidean_space measure" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 378 | where "lebesgue \<equiv> completion lborel" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 379 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 380 | abbreviation lebesgue_on :: "'a set \<Rightarrow> 'a::euclidean_space measure" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 381 | where "lebesgue_on \<Omega> \<equiv> restrict_space (completion lborel) \<Omega>" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 382 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 383 | lemma | 
| 59048 | 384 | shows sets_lborel[simp, measurable_cong]: "sets lborel = sets borel" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 385 | and space_lborel[simp]: "space lborel = space borel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 386 | and measurable_lborel1[simp]: "measurable M lborel = measurable M borel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 387 | and measurable_lborel2[simp]: "measurable lborel M = measurable borel M" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 388 | by (simp_all add: lborel_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 389 | |
| 66164 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 390 | lemma sets_lebesgue_on_refl [iff]: "S \<in> sets (lebesgue_on S)" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 391 | by (metis inf_top.right_neutral sets.top space_borel space_completion space_lborel space_restrict_space) | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 392 | |
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 393 | lemma Compl_in_sets_lebesgue: "-A \<in> sets lebesgue \<longleftrightarrow> A \<in> sets lebesgue" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 394 | by (metis Compl_eq_Diff_UNIV double_compl space_borel space_completion space_lborel Sigma_Algebra.sets.compl_sets) | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 395 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 396 | context | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 397 | begin | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 398 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 399 | interpretation sigma_finite_measure "interval_measure (\<lambda>x. x)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 400 | by (rule sigma_finite_interval_measure) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 401 | interpretation finite_product_sigma_finite "\<lambda>_. interval_measure (\<lambda>x. x)" Basis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 402 | proof qed simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 403 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 404 | lemma lborel_eq_real: "lborel = interval_measure (\<lambda>x. x)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 405 | unfolding lborel_def Basis_real_def | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 406 | using distr_id[of "interval_measure (\<lambda>x. x)"] | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 407 | by (subst distr_component[symmetric]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 408 | (simp_all add: distr_distr comp_def del: distr_id cong: distr_cong) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 409 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 410 | lemma lborel_eq: "lborel = distr (\<Pi>\<^sub>M b\<in>Basis. lborel) borel (\<lambda>f. \<Sum>b\<in>Basis. f b *\<^sub>R b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 411 | by (subst lborel_def) (simp add: lborel_eq_real) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 412 | |
| 64272 | 413 | lemma nn_integral_lborel_prod: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 414 | assumes [measurable]: "\<And>b. b \<in> Basis \<Longrightarrow> f b \<in> borel_measurable borel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 415 | assumes nn[simp]: "\<And>b x. b \<in> Basis \<Longrightarrow> 0 \<le> f b x" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 416 | shows "(\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. f b (x \<bullet> b)) \<partial>lborel) = (\<Prod>b\<in>Basis. (\<integral>\<^sup>+x. f b x \<partial>lborel))" | 
| 64272 | 417 | by (simp add: lborel_def nn_integral_distr product_nn_integral_prod | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 418 | product_nn_integral_singleton) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 419 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 420 | lemma emeasure_lborel_Icc[simp]: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 421 | fixes l u :: real | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 422 | assumes [simp]: "l \<le> u" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 423 |   shows "emeasure lborel {l .. u} = u - l"
 | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50418diff
changeset | 424 | proof - | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 425 |   have "((\<lambda>f. f 1) -` {l..u} \<inter> space (Pi\<^sub>M {1} (\<lambda>b. interval_measure (\<lambda>x. x)))) = {1::real} \<rightarrow>\<^sub>E {l..u}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 426 | by (auto simp: space_PiM) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 427 | then show ?thesis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 428 | by (simp add: lborel_def emeasure_distr emeasure_PiM emeasure_interval_measure_Icc continuous_on_id) | 
| 50104 | 429 | qed | 
| 430 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 431 | lemma emeasure_lborel_Icc_eq: "emeasure lborel {l .. u} = ennreal (if l \<le> u then u - l else 0)"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 432 | by simp | 
| 47694 | 433 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 434 | lemma emeasure_lborel_cbox[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 435 | assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 436 | shows "emeasure lborel (cbox l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 41654 | 437 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 438 |   have "(\<lambda>x. \<Prod>b\<in>Basis. indicator {l\<bullet>b .. u\<bullet>b} (x \<bullet> b) :: ennreal) = indicator (cbox l u)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 439 | by (auto simp: fun_eq_iff cbox_def split: split_indicator) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 440 |   then have "emeasure lborel (cbox l u) = (\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. indicator {l\<bullet>b .. u\<bullet>b} (x \<bullet> b)) \<partial>lborel)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 441 | by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 442 | also have "\<dots> = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 64272 | 443 | by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left) | 
| 47694 | 444 | finally show ?thesis . | 
| 38656 | 445 | qed | 
| 446 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 447 | lemma AE_lborel_singleton: "AE x in lborel::'a::euclidean_space measure. x \<noteq> c" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 448 |   using SOME_Basis AE_discrete_difference [of "{c}" lborel] emeasure_lborel_cbox [of c c]
 | 
| 64272 | 449 | by (auto simp add: cbox_sing prod_constant power_0_left) | 
| 47757 
5e6fe71e2390
equate positive Lebesgue integral and MV-Analysis' Gauge integral
 hoelzl parents: 
47694diff
changeset | 450 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 451 | lemma emeasure_lborel_Ioo[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 452 | assumes [simp]: "l \<le> u" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 453 |   shows "emeasure lborel {l <..< u} = ennreal (u - l)"
 | 
| 40859 | 454 | proof - | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 455 |   have "emeasure lborel {l <..< u} = emeasure lborel {l .. u}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 456 | using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto | 
| 47694 | 457 | then show ?thesis | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 458 | by simp | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 459 | qed | 
| 38656 | 460 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 461 | lemma emeasure_lborel_Ioc[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 462 | assumes [simp]: "l \<le> u" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 463 |   shows "emeasure lborel {l <.. u} = ennreal (u - l)"
 | 
| 41654 | 464 | proof - | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 465 |   have "emeasure lborel {l <.. u} = emeasure lborel {l .. u}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 466 | using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 467 | then show ?thesis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 468 | by simp | 
| 38656 | 469 | qed | 
| 470 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 471 | lemma emeasure_lborel_Ico[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 472 | assumes [simp]: "l \<le> u" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 473 |   shows "emeasure lborel {l ..< u} = ennreal (u - l)"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 474 | proof - | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 475 |   have "emeasure lborel {l ..< u} = emeasure lborel {l .. u}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 476 | using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 477 | then show ?thesis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 478 | by simp | 
| 38656 | 479 | qed | 
| 480 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 481 | lemma emeasure_lborel_box[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 482 | assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 483 | shows "emeasure lborel (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 484 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 485 |   have "(\<lambda>x. \<Prod>b\<in>Basis. indicator {l\<bullet>b <..< u\<bullet>b} (x \<bullet> b) :: ennreal) = indicator (box l u)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 486 | by (auto simp: fun_eq_iff box_def split: split_indicator) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 487 |   then have "emeasure lborel (box l u) = (\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. indicator {l\<bullet>b <..< u\<bullet>b} (x \<bullet> b)) \<partial>lborel)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 488 | by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 489 | also have "\<dots> = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 64272 | 490 | by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 491 | finally show ?thesis . | 
| 40859 | 492 | qed | 
| 38656 | 493 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 494 | lemma emeasure_lborel_cbox_eq: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 495 | "emeasure lborel (cbox l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 496 | using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le) | 
| 41654 | 497 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 498 | lemma emeasure_lborel_box_eq: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 499 | "emeasure lborel (box l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 500 | using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force | 
| 40859 | 501 | |
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 502 | lemma emeasure_lborel_singleton[simp]: "emeasure lborel {x} = 0"
 | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 503 | using emeasure_lborel_cbox[of x x] nonempty_Basis | 
| 66164 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 504 | by (auto simp del: emeasure_lborel_cbox nonempty_Basis simp add: prod_constant) | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 505 | |
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 506 | lemma fmeasurable_cbox [iff]: "cbox a b \<in> fmeasurable lborel" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 507 | and fmeasurable_box [iff]: "box a b \<in> fmeasurable lborel" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 508 | by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 509 | |
| 40859 | 510 | lemma | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 511 | fixes l u :: real | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 512 | assumes [simp]: "l \<le> u" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 513 |   shows measure_lborel_Icc[simp]: "measure lborel {l .. u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 514 |     and measure_lborel_Ico[simp]: "measure lborel {l ..< u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 515 |     and measure_lborel_Ioc[simp]: "measure lborel {l <.. u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 516 |     and measure_lborel_Ioo[simp]: "measure lborel {l <..< u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 517 | by (simp_all add: measure_def) | 
| 40859 | 518 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 519 | lemma | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 520 | assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 521 | shows measure_lborel_box[simp]: "measure lborel (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 522 | and measure_lborel_cbox[simp]: "measure lborel (cbox l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 64272 | 523 | by (simp_all add: measure_def inner_diff_left prod_nonneg) | 
| 41654 | 524 | |
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 525 | lemma measure_lborel_cbox_eq: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 526 | "measure lborel (cbox l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 527 | using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 528 | |
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 529 | lemma measure_lborel_box_eq: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 530 | "measure lborel (box l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 531 | using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 532 | |
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 533 | lemma measure_lborel_singleton[simp]: "measure lborel {x} = 0"
 | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 534 | by (simp add: measure_def) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 535 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 536 | lemma sigma_finite_lborel: "sigma_finite_measure lborel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 537 | proof | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 538 | show "\<exists>A::'a set set. countable A \<and> A \<subseteq> sets lborel \<and> \<Union>A = space lborel \<and> (\<forall>a\<in>A. emeasure lborel a \<noteq> \<infinity>)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 539 | by (intro exI[of _ "range (\<lambda>n::nat. box (- real n *\<^sub>R One) (real n *\<^sub>R One))"]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 540 | (auto simp: emeasure_lborel_cbox_eq UN_box_eq_UNIV) | 
| 49777 | 541 | qed | 
| 40859 | 542 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 543 | end | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 544 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 545 | lemma emeasure_lborel_UNIV: "emeasure lborel (UNIV::'a::euclidean_space set) = \<infinity>" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 546 | proof - | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 547 |   { fix n::nat
 | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 548 | let ?Ba = "Basis :: 'a set" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 549 | have "real n \<le> (2::real) ^ card ?Ba * real n" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 550 | by (simp add: mult_le_cancel_right1) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 551 | also | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 552 | have "... \<le> (2::real) ^ card ?Ba * real (Suc n) ^ card ?Ba" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 553 | apply (rule mult_left_mono) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 554 | apply (metis DIM_positive One_nat_def less_eq_Suc_le less_imp_le of_nat_le_iff of_nat_power self_le_power zero_less_Suc) | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 555 | apply (simp add: DIM_positive) | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 556 | done | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 557 | finally have "real n \<le> (2::real) ^ card ?Ba * real (Suc n) ^ card ?Ba" . | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 558 | } note [intro!] = this | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 559 | show ?thesis | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 560 | unfolding UN_box_eq_UNIV[symmetric] | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 561 | apply (subst SUP_emeasure_incseq[symmetric]) | 
| 64272 | 562 | apply (auto simp: incseq_def subset_box inner_add_left prod_constant | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 563 | simp del: Sup_eq_top_iff SUP_eq_top_iff | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 564 | intro!: ennreal_SUP_eq_top) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 565 | done | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 566 | qed | 
| 40859 | 567 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 568 | lemma emeasure_lborel_countable: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 569 | fixes A :: "'a::euclidean_space set" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 570 | assumes "countable A" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 571 | shows "emeasure lborel A = 0" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 572 | proof - | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 573 |   have "A \<subseteq> (\<Union>i. {from_nat_into A i})" using from_nat_into_surj assms by force
 | 
| 63262 | 574 |   then have "emeasure lborel A \<le> emeasure lborel (\<Union>i. {from_nat_into A i})"
 | 
| 575 | by (intro emeasure_mono) auto | |
| 576 |   also have "emeasure lborel (\<Union>i. {from_nat_into A i}) = 0"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 577 | by (rule emeasure_UN_eq_0) auto | 
| 63262 | 578 | finally show ?thesis | 
| 579 | by (auto simp add: ) | |
| 40859 | 580 | qed | 
| 581 | ||
| 59425 | 582 | lemma countable_imp_null_set_lborel: "countable A \<Longrightarrow> A \<in> null_sets lborel" | 
| 583 | by (simp add: null_sets_def emeasure_lborel_countable sets.countable) | |
| 584 | ||
| 585 | lemma finite_imp_null_set_lborel: "finite A \<Longrightarrow> A \<in> null_sets lborel" | |
| 586 | by (intro countable_imp_null_set_lborel countable_finite) | |
| 587 | ||
| 588 | lemma lborel_neq_count_space[simp]: "lborel \<noteq> count_space (A::('a::ordered_euclidean_space) set)"
 | |
| 589 | proof | |
| 590 | assume asm: "lborel = count_space A" | |
| 591 | have "space lborel = UNIV" by simp | |
| 592 | hence [simp]: "A = UNIV" by (subst (asm) asm) (simp only: space_count_space) | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 593 |   have "emeasure lborel {undefined::'a} = 1"
 | 
| 59425 | 594 | by (subst asm, subst emeasure_count_space_finite) auto | 
| 595 |   moreover have "emeasure lborel {undefined} \<noteq> 1" by simp
 | |
| 596 | ultimately show False by contradiction | |
| 597 | qed | |
| 598 | ||
| 65204 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 599 | lemma mem_closed_if_AE_lebesgue_open: | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 600 | assumes "open S" "closed C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 601 | assumes "AE x \<in> S in lebesgue. x \<in> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 602 | assumes "x \<in> S" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 603 | shows "x \<in> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 604 | proof (rule ccontr) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 605 | assume xC: "x \<notin> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 606 | with openE[of "S - C"] assms | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 607 | obtain e where e: "0 < e" "ball x e \<subseteq> S - C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 608 | by blast | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 609 | then obtain a b where box: "x \<in> box a b" "box a b \<subseteq> S - C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 610 | by (metis rational_boxes order_trans) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 611 | then have "0 < emeasure lebesgue (box a b)" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 612 | by (auto simp: emeasure_lborel_box_eq mem_box algebra_simps intro!: prod_pos) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 613 | also have "\<dots> \<le> emeasure lebesgue (S - C)" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 614 | using assms box | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 615 | by (auto intro!: emeasure_mono) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 616 | also have "\<dots> = 0" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 617 | using assms | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 618 | by (auto simp: eventually_ae_filter completion.complete2 set_diff_eq null_setsD1) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 619 | finally show False by simp | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 620 | qed | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 621 | |
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 622 | lemma mem_closed_if_AE_lebesgue: "closed C \<Longrightarrow> (AE x in lebesgue. x \<in> C) \<Longrightarrow> x \<in> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 623 | using mem_closed_if_AE_lebesgue_open[OF open_UNIV] by simp | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 624 | |
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 625 | |
| 61808 | 626 | subsection \<open>Affine transformation on the Lebesgue-Borel\<close> | 
| 49777 | 627 | |
| 628 | lemma lborel_eqI: | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 629 | fixes M :: "'a::euclidean_space measure" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 630 | assumes emeasure_eq: "\<And>l u. (\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b) \<Longrightarrow> emeasure M (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 49777 | 631 | assumes sets_eq: "sets M = sets borel" | 
| 632 | shows "lborel = M" | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 633 | proof (rule measure_eqI_generator_eq) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 634 | let ?E = "range (\<lambda>(a, b). box a b::'a set)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 635 | show "Int_stable ?E" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 636 | by (auto simp: Int_stable_def box_Int_box) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 637 | |
| 49777 | 638 | show "?E \<subseteq> Pow UNIV" "sets lborel = sigma_sets UNIV ?E" "sets M = sigma_sets UNIV ?E" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 639 | by (simp_all add: borel_eq_box sets_eq) | 
| 49777 | 640 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 641 | let ?A = "\<lambda>n::nat. box (- (real n *\<^sub>R One)) (real n *\<^sub>R One) :: 'a set" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 642 | show "range ?A \<subseteq> ?E" "(\<Union>i. ?A i) = UNIV" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 643 | unfolding UN_box_eq_UNIV by auto | 
| 49777 | 644 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 645 |   { fix i show "emeasure lborel (?A i) \<noteq> \<infinity>" by auto }
 | 
| 49777 | 646 |   { fix X assume "X \<in> ?E" then show "emeasure lborel X = emeasure M X"
 | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 647 | apply (auto simp: emeasure_eq emeasure_lborel_box_eq) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 648 | apply (subst box_eq_empty(1)[THEN iffD2]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 649 | apply (auto intro: less_imp_le simp: not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 650 | done } | 
| 49777 | 651 | qed | 
| 652 | ||
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 653 | lemma lborel_affine_euclidean: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 654 | fixes c :: "'a::euclidean_space \<Rightarrow> real" and t | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 655 | defines "T x \<equiv> t + (\<Sum>j\<in>Basis. (c j * (x \<bullet> j)) *\<^sub>R j)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 656 | assumes c: "\<And>j. j \<in> Basis \<Longrightarrow> c j \<noteq> 0" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 657 | shows "lborel = density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" (is "_ = ?D") | 
| 49777 | 658 | proof (rule lborel_eqI) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 659 | let ?B = "Basis :: 'a set" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 660 | fix l u assume le: "\<And>b. b \<in> ?B \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 661 | have [measurable]: "T \<in> borel \<rightarrow>\<^sub>M borel" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 662 | by (simp add: T_def[abs_def]) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 663 | have eq: "T -` box l u = box | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 664 | (\<Sum>j\<in>Basis. (((if 0 < c j then l - t else u - t) \<bullet> j) / c j) *\<^sub>R j) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 665 | (\<Sum>j\<in>Basis. (((if 0 < c j then u - t else l - t) \<bullet> j) / c j) *\<^sub>R j)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 666 | using c by (auto simp: box_def T_def field_simps inner_simps divide_less_eq) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 667 | with le c show "emeasure ?D (box l u) = (\<Prod>b\<in>?B. (u - l) \<bullet> b)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 668 | by (auto simp: emeasure_density emeasure_distr nn_integral_multc emeasure_lborel_box_eq inner_simps | 
| 64272 | 669 | field_simps divide_simps ennreal_mult'[symmetric] prod_nonneg prod.distrib[symmetric] | 
| 670 | intro!: prod.cong) | |
| 49777 | 671 | qed simp | 
| 672 | ||
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 673 | lemma lborel_affine: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 674 | fixes t :: "'a::euclidean_space" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 675 |   shows "c \<noteq> 0 \<Longrightarrow> lborel = density (distr lborel borel (\<lambda>x. t + c *\<^sub>R x)) (\<lambda>_. \<bar>c\<bar>^DIM('a))"
 | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 676 | using lborel_affine_euclidean[where c="\<lambda>_::'a. c" and t=t] | 
| 64272 | 677 | unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation prod_constant by simp | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 678 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 679 | lemma lborel_real_affine: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 680 | "c \<noteq> 0 \<Longrightarrow> lborel = density (distr lborel borel (\<lambda>x. t + c * x)) (\<lambda>_. ennreal (abs c))" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 681 | using lborel_affine[of c t] by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 682 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 683 | lemma AE_borel_affine: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 684 | fixes P :: "real \<Rightarrow> bool" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 685 | shows "c \<noteq> 0 \<Longrightarrow> Measurable.pred borel P \<Longrightarrow> AE x in lborel. P x \<Longrightarrow> AE x in lborel. P (t + c * x)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 686 | by (subst lborel_real_affine[where t="- t / c" and c="1 / c"]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 687 | (simp_all add: AE_density AE_distr_iff field_simps) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 688 | |
| 56996 | 689 | lemma nn_integral_real_affine: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 690 | fixes c :: real assumes [measurable]: "f \<in> borel_measurable borel" and c: "c \<noteq> 0" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 691 | shows "(\<integral>\<^sup>+x. f x \<partial>lborel) = \<bar>c\<bar> * (\<integral>\<^sup>+x. f (t + c * x) \<partial>lborel)" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 692 | by (subst lborel_real_affine[OF c, of t]) | 
| 56996 | 693 | (simp add: nn_integral_density nn_integral_distr nn_integral_cmult) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 694 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 695 | lemma lborel_integrable_real_affine: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 696 |   fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 697 | assumes f: "integrable lborel f" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 698 | shows "c \<noteq> 0 \<Longrightarrow> integrable lborel (\<lambda>x. f (t + c * x))" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 699 | using f f[THEN borel_measurable_integrable] unfolding integrable_iff_bounded | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 700 | by (subst (asm) nn_integral_real_affine[where c=c and t=t]) (auto simp: ennreal_mult_less_top) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 701 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 702 | lemma lborel_integrable_real_affine_iff: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 703 |   fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 704 | shows "c \<noteq> 0 \<Longrightarrow> integrable lborel (\<lambda>x. f (t + c * x)) \<longleftrightarrow> integrable lborel f" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 705 | using | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 706 | lborel_integrable_real_affine[of f c t] | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 707 | lborel_integrable_real_affine[of "\<lambda>x. f (t + c * x)" "1/c" "-t/c"] | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 708 | by (auto simp add: field_simps) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 709 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 710 | lemma lborel_integral_real_affine: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 711 |   fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}" and c :: real
 | 
| 57166 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 712 | assumes c: "c \<noteq> 0" shows "(\<integral>x. f x \<partial> lborel) = \<bar>c\<bar> *\<^sub>R (\<integral>x. f (t + c * x) \<partial>lborel)" | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 713 | proof cases | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 714 | assume f[measurable]: "integrable lborel f" then show ?thesis | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 715 | using c f f[THEN borel_measurable_integrable] f[THEN lborel_integrable_real_affine, of c t] | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 716 | by (subst lborel_real_affine[OF c, of t]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 717 | (simp add: integral_density integral_distr) | 
| 57166 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 718 | next | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 719 | assume "\<not> integrable lborel f" with c show ?thesis | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 720 | by (simp add: lborel_integrable_real_affine_iff not_integrable_integral_eq) | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 721 | qed | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 722 | |
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 723 | lemma | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 724 | fixes c :: "'a::euclidean_space \<Rightarrow> real" and t | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 725 | assumes c: "\<And>j. j \<in> Basis \<Longrightarrow> c j \<noteq> 0" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 726 | defines "T == (\<lambda>x. t + (\<Sum>j\<in>Basis. (c j * (x \<bullet> j)) *\<^sub>R j))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 727 | shows lebesgue_affine_euclidean: "lebesgue = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" (is "_ = ?D") | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 728 | and lebesgue_affine_measurable: "T \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 729 | proof - | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 730 | have T_borel[measurable]: "T \<in> borel \<rightarrow>\<^sub>M borel" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 731 | by (auto simp: T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 732 |   { fix A :: "'a set" assume A: "A \<in> sets borel"
 | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 733 | then have "emeasure lborel A = 0 \<longleftrightarrow> emeasure (density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))) A = 0" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 734 | unfolding T_def using c by (subst lborel_affine_euclidean[symmetric]) auto | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 735 | also have "\<dots> \<longleftrightarrow> emeasure (distr lebesgue lborel T) A = 0" | 
| 64272 | 736 | using A c by (simp add: distr_completion emeasure_density nn_integral_cmult prod_nonneg cong: distr_cong) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 737 | finally have "emeasure lborel A = 0 \<longleftrightarrow> emeasure (distr lebesgue lborel T) A = 0" . } | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 738 | then have eq: "null_sets lborel = null_sets (distr lebesgue lborel T)" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 739 | by (auto simp: null_sets_def) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 740 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 741 | show "T \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 742 | by (rule completion.measurable_completion2) (auto simp: eq measurable_completion) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 743 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 744 | have "lebesgue = completion (density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>)))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 745 | using c by (subst lborel_affine_euclidean[of c t]) (simp_all add: T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 746 | also have "\<dots> = density (completion (distr lebesgue lborel T)) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" | 
| 64272 | 747 | using c by (auto intro!: always_eventually prod_pos completion_density_eq simp: distr_completion cong: distr_cong) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 748 | also have "\<dots> = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 749 | by (subst completion.completion_distr_eq) (auto simp: eq measurable_completion) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 750 | finally show "lebesgue = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" . | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 751 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 752 | |
| 67399 | 753 | lemma lebesgue_measurable_scaling[measurable]: "( *\<^sub>R) x \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 754 | proof cases | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 755 | assume "x = 0" | 
| 67399 | 756 | then have "( *\<^sub>R) x = (\<lambda>x. 0::'a)" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 757 | by (auto simp: fun_eq_iff) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 758 | then show ?thesis by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 759 | next | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 760 | assume "x \<noteq> 0" then show ?thesis | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 761 | using lebesgue_affine_measurable[of "\<lambda>_. x" 0] | 
| 64267 | 762 | unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 763 | by (auto simp add: ac_simps) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 764 | qed | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 765 | |
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 766 | lemma | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 767 | fixes m :: real and \<delta> :: "'a::euclidean_space" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 768 | defines "T r d x \<equiv> r *\<^sub>R x + d" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 769 |   shows emeasure_lebesgue_affine: "emeasure lebesgue (T m \<delta> ` S) = \<bar>m\<bar> ^ DIM('a) * emeasure lebesgue S" (is ?e)
 | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 770 |     and measure_lebesgue_affine: "measure lebesgue (T m \<delta> ` S) = \<bar>m\<bar> ^ DIM('a) * measure lebesgue S" (is ?m)
 | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 771 | proof - | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 772 | show ?e | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 773 | proof cases | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 774 | assume "m = 0" then show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 775 | by (simp add: image_constant_conv T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 776 | next | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 777 | let ?T = "T m \<delta>" and ?T' = "T (1 / m) (- ((1/m) *\<^sub>R \<delta>))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 778 | assume "m \<noteq> 0" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 779 | then have s_comp_s: "?T' \<circ> ?T = id" "?T \<circ> ?T' = id" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 780 | by (auto simp: T_def[abs_def] fun_eq_iff scaleR_add_right scaleR_diff_right) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 781 | then have "inv ?T' = ?T" "bij ?T'" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 782 | by (auto intro: inv_unique_comp o_bij) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 783 | then have eq: "T m \<delta> ` S = T (1 / m) ((-1/m) *\<^sub>R \<delta>) -` S \<inter> space lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 784 | using bij_vimage_eq_inv_image[OF \<open>bij ?T'\<close>, of S] by auto | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 785 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 786 | have trans_eq_T: "(\<lambda>x. \<delta> + (\<Sum>j\<in>Basis. (m * (x \<bullet> j)) *\<^sub>R j)) = T m \<delta>" for m \<delta> | 
| 64267 | 787 | unfolding T_def[abs_def] scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 788 | by (auto simp add: euclidean_representation ac_simps) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 789 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 790 | have T[measurable]: "T r d \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" for r d | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 791 | using lebesgue_affine_measurable[of "\<lambda>_. r" d] | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 792 | by (cases "r = 0") (auto simp: trans_eq_T T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 793 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 794 | show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 795 | proof cases | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 796 | assume "S \<in> sets lebesgue" with \<open>m \<noteq> 0\<close> show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 797 | unfolding eq | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 798 | apply (subst lebesgue_affine_euclidean[of "\<lambda>_. m" \<delta>]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 799 | apply (simp_all add: emeasure_density trans_eq_T nn_integral_cmult emeasure_distr | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 800 | del: space_completion emeasure_completion) | 
| 64272 | 801 | apply (simp add: vimage_comp s_comp_s prod_constant) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 802 | done | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 803 | next | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 804 | assume "S \<notin> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 805 | moreover have "?T ` S \<notin> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 806 | proof | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 807 | assume "?T ` S \<in> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 808 | then have "?T -` (?T ` S) \<inter> space lebesgue \<in> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 809 | by (rule measurable_sets[OF T]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 810 | also have "?T -` (?T ` S) \<inter> space lebesgue = S" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 811 | by (simp add: vimage_comp s_comp_s eq) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 812 | finally show False using \<open>S \<notin> sets lebesgue\<close> by auto | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 813 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 814 | ultimately show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 815 | by (simp add: emeasure_notin_sets) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 816 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 817 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 818 | show ?m | 
| 64272 | 819 | unfolding measure_def \<open>?e\<close> by (simp add: enn2real_mult prod_nonneg) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 820 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 821 | |
| 67135 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 822 | lemma lebesgue_real_scale: | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 823 | assumes "c \<noteq> 0" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 824 | shows "lebesgue = density (distr lebesgue lebesgue (\<lambda>x. c * x)) (\<lambda>x. ennreal \<bar>c\<bar>)" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 825 | using assms by (subst lebesgue_affine_euclidean[of "\<lambda>_. c" 0]) simp_all | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 826 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 827 | lemma divideR_right: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 828 | fixes x y :: "'a::real_normed_vector" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 829 | shows "r \<noteq> 0 \<Longrightarrow> y = x /\<^sub>R r \<longleftrightarrow> r *\<^sub>R y = x" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 830 | using scaleR_cancel_left[of r y "x /\<^sub>R r"] by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 831 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 832 | lemma lborel_has_bochner_integral_real_affine_iff: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 833 |   fixes x :: "'a :: {banach, second_countable_topology}"
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 834 | shows "c \<noteq> 0 \<Longrightarrow> | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 835 | has_bochner_integral lborel f x \<longleftrightarrow> | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 836 | has_bochner_integral lborel (\<lambda>x. f (t + c * x)) (x /\<^sub>R \<bar>c\<bar>)" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 837 | unfolding has_bochner_integral_iff lborel_integrable_real_affine_iff | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 838 | by (simp_all add: lborel_integral_real_affine[symmetric] divideR_right cong: conj_cong) | 
| 49777 | 839 | |
| 59425 | 840 | lemma lborel_distr_uminus: "distr lborel borel uminus = (lborel :: real measure)" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 841 | by (subst lborel_real_affine[of "-1" 0]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 842 | (auto simp: density_1 one_ennreal_def[symmetric]) | 
| 59425 | 843 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 844 | lemma lborel_distr_mult: | 
| 59425 | 845 | assumes "(c::real) \<noteq> 0" | 
| 67399 | 846 | shows "distr lborel borel (( * ) c) = density lborel (\<lambda>_. inverse \<bar>c\<bar>)" | 
| 59425 | 847 | proof- | 
| 67399 | 848 | have "distr lborel borel (( * ) c) = distr lborel lborel (( * ) c)" by (simp cong: distr_cong) | 
| 59425 | 849 | also from assms have "... = density lborel (\<lambda>_. inverse \<bar>c\<bar>)" | 
| 850 | by (subst lborel_real_affine[of "inverse c" 0]) (auto simp: o_def distr_density_distr) | |
| 851 | finally show ?thesis . | |
| 852 | qed | |
| 853 | ||
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 854 | lemma lborel_distr_mult': | 
| 59425 | 855 | assumes "(c::real) \<noteq> 0" | 
| 67399 | 856 | shows "lborel = density (distr lborel borel (( * ) c)) (\<lambda>_. \<bar>c\<bar>)" | 
| 59425 | 857 | proof- | 
| 858 | have "lborel = density lborel (\<lambda>_. 1)" by (rule density_1[symmetric]) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 859 | also from assms have "(\<lambda>_. 1 :: ennreal) = (\<lambda>_. inverse \<bar>c\<bar> * \<bar>c\<bar>)" by (intro ext) simp | 
| 61945 | 860 | also have "density lborel ... = density (density lborel (\<lambda>_. inverse \<bar>c\<bar>)) (\<lambda>_. \<bar>c\<bar>)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 861 | by (subst density_density_eq) (auto simp: ennreal_mult) | 
| 67399 | 862 | also from assms have "density lborel (\<lambda>_. inverse \<bar>c\<bar>) = distr lborel borel (( * ) c)" | 
| 59425 | 863 | by (rule lborel_distr_mult[symmetric]) | 
| 864 | finally show ?thesis . | |
| 865 | qed | |
| 866 | ||
| 67399 | 867 | lemma lborel_distr_plus: "distr lborel borel ((+) c) = (lborel :: real measure)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 868 | by (subst lborel_real_affine[of 1 c]) (auto simp: density_1 one_ennreal_def[symmetric]) | 
| 59425 | 869 | |
| 61605 | 870 | interpretation lborel: sigma_finite_measure lborel | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 871 | by (rule sigma_finite_lborel) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 872 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 873 | interpretation lborel_pair: pair_sigma_finite lborel lborel .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 874 | |
| 59425 | 875 | lemma lborel_prod: | 
| 876 |   "lborel \<Otimes>\<^sub>M lborel = (lborel :: ('a::euclidean_space \<times> 'b::euclidean_space) measure)"
 | |
| 877 | proof (rule lborel_eqI[symmetric], clarify) | |
| 878 | fix la ua :: 'a and lb ub :: 'b | |
| 879 | assume lu: "\<And>a b. (a, b) \<in> Basis \<Longrightarrow> (la, lb) \<bullet> (a, b) \<le> (ua, ub) \<bullet> (a, b)" | |
| 880 | have [simp]: | |
| 881 | "\<And>b. b \<in> Basis \<Longrightarrow> la \<bullet> b \<le> ua \<bullet> b" | |
| 882 | "\<And>b. b \<in> Basis \<Longrightarrow> lb \<bullet> b \<le> ub \<bullet> b" | |
| 883 | "inj_on (\<lambda>u. (u, 0)) Basis" "inj_on (\<lambda>u. (0, u)) Basis" | |
| 884 |     "(\<lambda>u. (u, 0)) ` Basis \<inter> (\<lambda>u. (0, u)) ` Basis = {}"
 | |
| 885 | "box (la, lb) (ua, ub) = box la ua \<times> box lb ub" | |
| 886 | using lu[of _ 0] lu[of 0] by (auto intro!: inj_onI simp add: Basis_prod_def ball_Un box_def) | |
| 887 | show "emeasure (lborel \<Otimes>\<^sub>M lborel) (box (la, lb) (ua, ub)) = | |
| 67399 | 888 | ennreal (prod ((\<bullet>) ((ua, ub) - (la, lb))) Basis)" | 
| 64272 | 889 | by (simp add: lborel.emeasure_pair_measure_Times Basis_prod_def prod.union_disjoint | 
| 890 | prod.reindex ennreal_mult inner_diff_left prod_nonneg) | |
| 59425 | 891 | qed (simp add: borel_prod[symmetric]) | 
| 892 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 893 | (* FIXME: conversion in measurable prover *) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 894 | lemma lborelD_Collect[measurable (raw)]: "{x\<in>space borel. P x} \<in> sets borel \<Longrightarrow> {x\<in>space lborel. P x} \<in> sets lborel" by simp
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 895 | lemma lborelD[measurable (raw)]: "A \<in> sets borel \<Longrightarrow> A \<in> sets lborel" by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 896 | |
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 897 | lemma emeasure_bounded_finite: | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 898 | assumes "bounded A" shows "emeasure lborel A < \<infinity>" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 899 | proof - | 
| 61808 | 900 | from bounded_subset_cbox[OF \<open>bounded A\<close>] obtain a b where "A \<subseteq> cbox a b" | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 901 | by auto | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 902 | then have "emeasure lborel A \<le> emeasure lborel (cbox a b)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 903 | by (intro emeasure_mono) auto | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 904 | then show ?thesis | 
| 64272 | 905 | by (auto simp: emeasure_lborel_cbox_eq prod_nonneg less_top[symmetric] top_unique split: if_split_asm) | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 906 | qed | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 907 | |
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 908 | lemma emeasure_compact_finite: "compact A \<Longrightarrow> emeasure lborel A < \<infinity>" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 909 | using emeasure_bounded_finite[of A] by (auto intro: compact_imp_bounded) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 910 | |
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 911 | lemma borel_integrable_compact: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 912 |   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 913 | assumes "compact S" "continuous_on S f" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 914 | shows "integrable lborel (\<lambda>x. indicator S x *\<^sub>R f x)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 915 | proof cases | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 916 |   assume "S \<noteq> {}"
 | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 917 | have "continuous_on S (\<lambda>x. norm (f x))" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 918 | using assms by (intro continuous_intros) | 
| 61808 | 919 |   from continuous_attains_sup[OF \<open>compact S\<close> \<open>S \<noteq> {}\<close> this]
 | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 920 | obtain M where M: "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> M" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 921 | by auto | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 922 | |
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 923 | show ?thesis | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 924 | proof (rule integrable_bound) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 925 | show "integrable lborel (\<lambda>x. indicator S x * M)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 926 | using assms by (auto intro!: emeasure_compact_finite borel_compact integrable_mult_left) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 927 | show "(\<lambda>x. indicator S x *\<^sub>R f x) \<in> borel_measurable lborel" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 928 | using assms by (auto intro!: borel_measurable_continuous_on_indicator borel_compact) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 929 | show "AE x in lborel. norm (indicator S x *\<^sub>R f x) \<le> norm (indicator S x * M)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 930 | by (auto split: split_indicator simp: abs_real_def dest!: M) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 931 | qed | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 932 | qed simp | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 933 | |
| 50418 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 934 | lemma borel_integrable_atLeastAtMost: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 935 | fixes f :: "real \<Rightarrow> real" | 
| 50418 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 936 | assumes f: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x" | 
| 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 937 |   shows "integrable lborel (\<lambda>x. f x * indicator {a .. b} x)" (is "integrable _ ?f")
 | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 938 | proof - | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 939 |   have "integrable lborel (\<lambda>x. indicator {a .. b} x *\<^sub>R f x)"
 | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 940 | proof (rule borel_integrable_compact) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 941 |     from f show "continuous_on {a..b} f"
 | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 942 | by (auto intro: continuous_at_imp_continuous_on) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 943 | qed simp | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 944 | then show ?thesis | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 945 | by (auto simp: mult.commute) | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 946 | qed | 
| 50418 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 947 | |
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 948 | abbreviation lmeasurable :: "'a::euclidean_space set set" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 949 | where | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 950 | "lmeasurable \<equiv> fmeasurable lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 951 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 952 | lemma lmeasurable_iff_integrable: | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 953 | "S \<in> lmeasurable \<longleftrightarrow> integrable lebesgue (indicator S :: 'a::euclidean_space \<Rightarrow> real)" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 954 | by (auto simp: fmeasurable_def integrable_iff_bounded borel_measurable_indicator_iff ennreal_indicator) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 955 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 956 | lemma lmeasurable_cbox [iff]: "cbox a b \<in> lmeasurable" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 957 | and lmeasurable_box [iff]: "box a b \<in> lmeasurable" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 958 | by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 959 | |
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 960 | lemma lmeasurable_compact: "compact S \<Longrightarrow> S \<in> lmeasurable" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 961 | using emeasure_compact_finite[of S] by (intro fmeasurableI) (auto simp: borel_compact) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 962 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 963 | lemma lmeasurable_open: "bounded S \<Longrightarrow> open S \<Longrightarrow> S \<in> lmeasurable" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 964 | using emeasure_bounded_finite[of S] by (intro fmeasurableI) (auto simp: borel_open) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 965 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 966 | lemma lmeasurable_ball: "ball a r \<in> lmeasurable" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 967 | by (simp add: lmeasurable_open) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 968 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 969 | lemma lmeasurable_interior: "bounded S \<Longrightarrow> interior S \<in> lmeasurable" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 970 | by (simp add: bounded_interior lmeasurable_open) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 971 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 972 | lemma null_sets_cbox_Diff_box: "cbox a b - box a b \<in> null_sets lborel" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 973 | proof - | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 974 | have "emeasure lborel (cbox a b - box a b) = 0" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 975 | by (subst emeasure_Diff) (auto simp: emeasure_lborel_cbox_eq emeasure_lborel_box_eq box_subset_cbox) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 976 | then have "cbox a b - box a b \<in> null_sets lborel" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 977 | by (auto simp: null_sets_def) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 978 | then show ?thesis | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 979 | by (auto dest!: AE_not_in) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 980 | qed | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 981 | subsection\<open> A nice lemma for negligibility proofs.\<close> | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 982 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 983 | lemma summable_iff_suminf_neq_top: "(\<And>n. f n \<ge> 0) \<Longrightarrow> \<not> summable f \<Longrightarrow> (\<Sum>i. ennreal (f i)) = top" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 984 | by (metis summable_suminf_not_top) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 985 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 986 | proposition starlike_negligible_bounded_gmeasurable: | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 987 | fixes S :: "'a :: euclidean_space set" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 988 | assumes S: "S \<in> sets lebesgue" and "bounded S" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 989 | and eq1: "\<And>c x. \<lbrakk>(c *\<^sub>R x) \<in> S; 0 \<le> c; x \<in> S\<rbrakk> \<Longrightarrow> c = 1" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 990 | shows "S \<in> null_sets lebesgue" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 991 | proof - | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 992 | obtain M where "0 < M" "S \<subseteq> ball 0 M" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 993 | using \<open>bounded S\<close> by (auto dest: bounded_subset_ballD) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 994 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 995 |   let ?f = "\<lambda>n. root DIM('a) (Suc n)"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 996 | |
| 67399 | 997 | have vimage_eq_image: "( *\<^sub>R) (?f n) -` S = ( *\<^sub>R) (1 / ?f n) ` S" for n | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 998 | apply safe | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 999 | subgoal for x by (rule image_eqI[of _ _ "?f n *\<^sub>R x"]) auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1000 | subgoal by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1001 | done | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1002 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1003 |   have eq: "(1 / ?f n) ^ DIM('a) = 1 / Suc n" for n
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1004 | by (simp add: field_simps) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1005 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1006 |   { fix n x assume x: "root DIM('a) (1 + real n) *\<^sub>R x \<in> S"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1007 |     have "1 * norm x \<le> root DIM('a) (1 + real n) * norm x"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1008 | by (rule mult_mono) auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1009 | also have "\<dots> < M" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1010 | using x \<open>S \<subseteq> ball 0 M\<close> by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1011 | finally have "norm x < M" by simp } | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1012 | note less_M = this | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1013 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1014 | have "(\<Sum>n. ennreal (1 / Suc n)) = top" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1015 | using not_summable_harmonic[where 'a=real] summable_Suc_iff[where f="\<lambda>n. 1 / (real n)"] | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1016 | by (intro summable_iff_suminf_neq_top) (auto simp add: inverse_eq_divide) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1017 |   then have "top * emeasure lebesgue S = (\<Sum>n. (1 / ?f n)^DIM('a) * emeasure lebesgue S)"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1018 | unfolding ennreal_suminf_multc eq by simp | 
| 67399 | 1019 | also have "\<dots> = (\<Sum>n. emeasure lebesgue (( *\<^sub>R) (?f n) -` S))" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1020 | unfolding vimage_eq_image using emeasure_lebesgue_affine[of "1 / ?f n" 0 S for n] by simp | 
| 67399 | 1021 | also have "\<dots> = emeasure lebesgue (\<Union>n. ( *\<^sub>R) (?f n) -` S)" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1022 | proof (intro suminf_emeasure) | 
| 67399 | 1023 | show "disjoint_family (\<lambda>n. ( *\<^sub>R) (?f n) -` S)" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1024 | unfolding disjoint_family_on_def | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1025 | proof safe | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1026 | fix m n :: nat and x assume "m \<noteq> n" "?f m *\<^sub>R x \<in> S" "?f n *\<^sub>R x \<in> S" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1027 |       with eq1[of "?f m / ?f n" "?f n *\<^sub>R x"] show "x \<in> {}"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1028 | by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1029 | qed | 
| 67399 | 1030 | have "( *\<^sub>R) (?f i) -` S \<in> sets lebesgue" for i | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1031 | using measurable_sets[OF lebesgue_measurable_scaling[of "?f i"] S] by auto | 
| 67399 | 1032 | then show "range (\<lambda>i. ( *\<^sub>R) (?f i) -` S) \<subseteq> sets lebesgue" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1033 | by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1034 | qed | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1035 | also have "\<dots> \<le> emeasure lebesgue (ball 0 M :: 'a set)" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1036 | using less_M by (intro emeasure_mono) auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1037 | also have "\<dots> < top" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1038 | using lmeasurable_ball by (auto simp: fmeasurable_def) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1039 | finally have "emeasure lebesgue S = 0" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1040 | by (simp add: ennreal_top_mult split: if_split_asm) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1041 | then show "S \<in> null_sets lebesgue" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1042 | unfolding null_sets_def using \<open>S \<in> sets lebesgue\<close> by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1043 | qed | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1044 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1045 | corollary starlike_negligible_compact: | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1046 | "compact S \<Longrightarrow> (\<And>c x. \<lbrakk>(c *\<^sub>R x) \<in> S; 0 \<le> c; x \<in> S\<rbrakk> \<Longrightarrow> c = 1) \<Longrightarrow> S \<in> null_sets lebesgue" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1047 | using starlike_negligible_bounded_gmeasurable[of S] by (auto simp: compact_eq_bounded_closed) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1048 | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1049 | lemma outer_regular_lborel: | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1050 | assumes B: "B \<in> fmeasurable lborel" "0 < (e::real)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1051 | shows "\<exists>U. open U \<and> B \<subseteq> U \<and> emeasure lborel U \<le> emeasure lborel B + e" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1052 | proof - | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1053 | let ?\<mu> = "emeasure lborel" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1054 | let ?B = "\<lambda>n::nat. ball 0 n :: 'a set" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1055 | have B[measurable]: "B \<in> sets borel" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1056 | using B by auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1057 | let ?e = "\<lambda>n. e*((1/2)^Suc n)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1058 | have "\<forall>n. \<exists>U. open U \<and> ?B n \<inter> B \<subseteq> U \<and> ?\<mu> (U - B) < ?e n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1059 | proof | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1060 | fix n :: nat | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1061 | let ?A = "density lborel (indicator (?B n))" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1062 | have emeasure_A: "X \<in> sets borel \<Longrightarrow> emeasure ?A X = ?\<mu> (?B n \<inter> X)" for X | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1063 | by (auto simp add: emeasure_density borel_measurable_indicator indicator_inter_arith[symmetric]) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1064 | |
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1065 | have finite_A: "emeasure ?A (space ?A) \<noteq> \<infinity>" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1066 | using emeasure_bounded_finite[of "?B n"] by (auto simp add: emeasure_A) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1067 | interpret A: finite_measure ?A | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1068 | by rule fact | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1069 |     have "emeasure ?A B + ?e n > (INF U:{U. B \<subseteq> U \<and> open U}. emeasure ?A U)"
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1070 | using \<open>0<e\<close> by (auto simp: outer_regular[OF _ finite_A B, symmetric]) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1071 | then obtain U where U: "B \<subseteq> U" "open U" "?\<mu> (?B n \<inter> B) + ?e n > ?\<mu> (?B n \<inter> U)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1072 | unfolding INF_less_iff by (auto simp: emeasure_A) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1073 | moreover | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1074 |     { have "?\<mu> ((?B n \<inter> U) - B) = ?\<mu> ((?B n \<inter> U) - (?B n \<inter> B))"
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1075 | using U by (intro arg_cong[where f="?\<mu>"]) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1076 | also have "\<dots> = ?\<mu> (?B n \<inter> U) - ?\<mu> (?B n \<inter> B)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1077 | using U A.emeasure_finite[of B] | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1078 | by (intro emeasure_Diff) (auto simp del: A.emeasure_finite simp: emeasure_A) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1079 | also have "\<dots> < ?e n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1080 | using U(1,2,3) A.emeasure_finite[of B] | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1081 | by (subst minus_less_iff_ennreal) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1082 | (auto simp del: A.emeasure_finite simp: emeasure_A less_top ac_simps intro!: emeasure_mono) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1083 | finally have "?\<mu> ((?B n \<inter> U) - B) < ?e n" . } | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1084 | ultimately show "\<exists>U. open U \<and> ?B n \<inter> B \<subseteq> U \<and> ?\<mu> (U - B) < ?e n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1085 | by (intro exI[of _ "?B n \<inter> U"]) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1086 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1087 | then obtain U | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1088 | where U: "\<And>n. open (U n)" "\<And>n. ?B n \<inter> B \<subseteq> U n" "\<And>n. ?\<mu> (U n - B) < ?e n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1089 | by metis | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1090 | then show ?thesis | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1091 | proof (intro exI conjI) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1092 |     { fix x assume "x \<in> B"
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1093 | moreover | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1094 | have "\<exists>n. norm x < real n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1095 | by (simp add: reals_Archimedean2) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1096 | then guess n .. | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1097 | ultimately have "x \<in> (\<Union>n. U n)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1098 | using U(2)[of n] by auto } | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1099 | note * = this | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1100 | then show "open (\<Union>n. U n)" "B \<subseteq> (\<Union>n. U n)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1101 | using U(1,2) by auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1102 | have "?\<mu> (\<Union>n. U n) = ?\<mu> (B \<union> (\<Union>n. U n - B))" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1103 | using * U(2) by (intro arg_cong[where ?f="?\<mu>"]) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1104 | also have "\<dots> = ?\<mu> B + ?\<mu> (\<Union>n. U n - B)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1105 | using U(1) by (intro plus_emeasure[symmetric]) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1106 | also have "\<dots> \<le> ?\<mu> B + (\<Sum>n. ?\<mu> (U n - B))" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1107 | using U(1) by (intro add_mono emeasure_subadditive_countably) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1108 | also have "\<dots> \<le> ?\<mu> B + (\<Sum>n. ennreal (?e n))" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1109 | using U(3) by (intro add_mono suminf_le) (auto intro: less_imp_le) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1110 | also have "(\<Sum>n. ennreal (?e n)) = ennreal (e * 1)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1111 | using \<open>0<e\<close> by (intro suminf_ennreal_eq sums_mult power_half_series) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1112 | finally show "emeasure lborel (\<Union>n. U n) \<le> emeasure lborel B + ennreal e" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1113 | by simp | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1114 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1115 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1116 | |
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1117 | lemma lmeasurable_outer_open: | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1118 | assumes S: "S \<in> lmeasurable" and "0 < e" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1119 | obtains T where "open T" "S \<subseteq> T" "T \<in> lmeasurable" "measure lebesgue T \<le> measure lebesgue S + e" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1120 | proof - | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1121 | obtain S' where S': "S \<subseteq> S'" "S' \<in> sets borel" "emeasure lborel S' = emeasure lebesgue S" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1122 | using completion_upper[of S lborel] S by auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1123 | then have f_S': "S' \<in> fmeasurable lborel" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1124 | using S by (auto simp: fmeasurable_def) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1125 | from outer_regular_lborel[OF this \<open>0<e\<close>] guess U .. note U = this | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1126 | show thesis | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1127 | proof (rule that) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1128 | show "open U" "S \<subseteq> U" "U \<in> lmeasurable" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1129 | using f_S' U S' by (auto simp: fmeasurable_def less_top[symmetric] top_unique) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1130 | then have "U \<in> fmeasurable lborel" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1131 | by (auto simp: fmeasurable_def) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1132 | with S U \<open>0<e\<close> show "measure lebesgue U \<le> measure lebesgue S + e" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1133 | unfolding S'(3) by (simp add: emeasure_eq_measure2 ennreal_plus[symmetric] del: ennreal_plus) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1134 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1135 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1136 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1137 | lemma lebesgue_openin: | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1138 | "\<lbrakk>openin (subtopology euclidean S) T; S \<in> sets lebesgue\<rbrakk> \<Longrightarrow> T \<in> sets lebesgue" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1139 | by (metis borel_open openin_open sets.Int sets_completionI_sets sets_lborel) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1140 | |
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1141 | lemma lebesgue_closedin: | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1142 | "\<lbrakk>closedin (subtopology euclidean S) T; S \<in> sets lebesgue\<rbrakk> \<Longrightarrow> T \<in> sets lebesgue" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1143 | by (metis borel_closed closedin_closed sets.Int sets_completionI_sets sets_lborel) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1144 | |
| 38656 | 1145 | end |