27409
|
1 |
(* Title: HOLCF/Algebraic.thy
|
|
2 |
Author: Brian Huffman
|
|
3 |
*)
|
|
4 |
|
|
5 |
header {* Algebraic deflations *}
|
|
6 |
|
|
7 |
theory Algebraic
|
|
8 |
imports Completion Fix Eventual
|
|
9 |
begin
|
|
10 |
|
|
11 |
subsection {* Constructing finite deflations by iteration *}
|
|
12 |
|
|
13 |
lemma finite_deflation_imp_deflation:
|
|
14 |
"finite_deflation d \<Longrightarrow> deflation d"
|
|
15 |
unfolding finite_deflation_def by simp
|
|
16 |
|
|
17 |
lemma le_Suc_induct:
|
|
18 |
assumes le: "i \<le> j"
|
|
19 |
assumes step: "\<And>i. P i (Suc i)"
|
|
20 |
assumes refl: "\<And>i. P i i"
|
|
21 |
assumes trans: "\<And>i j k. \<lbrakk>P i j; P j k\<rbrakk> \<Longrightarrow> P i k"
|
|
22 |
shows "P i j"
|
|
23 |
proof (cases "i = j")
|
|
24 |
assume "i = j"
|
|
25 |
thus "P i j" by (simp add: refl)
|
|
26 |
next
|
|
27 |
assume "i \<noteq> j"
|
|
28 |
with le have "i < j" by simp
|
|
29 |
thus "P i j" using step trans by (rule less_Suc_induct)
|
|
30 |
qed
|
|
31 |
|
|
32 |
text {* A pre-deflation is like a deflation, but not idempotent. *}
|
|
33 |
|
|
34 |
locale pre_deflation =
|
|
35 |
fixes f :: "'a \<rightarrow> 'a::cpo"
|
|
36 |
assumes less: "\<And>x. f\<cdot>x \<sqsubseteq> x"
|
|
37 |
assumes finite_range: "finite (range (\<lambda>x. f\<cdot>x))"
|
|
38 |
begin
|
|
39 |
|
|
40 |
lemma iterate_less: "iterate i\<cdot>f\<cdot>x \<sqsubseteq> x"
|
|
41 |
by (induct i, simp_all add: trans_less [OF less])
|
|
42 |
|
|
43 |
lemma iterate_fixed: "f\<cdot>x = x \<Longrightarrow> iterate i\<cdot>f\<cdot>x = x"
|
|
44 |
by (induct i, simp_all)
|
|
45 |
|
|
46 |
lemma antichain_iterate_app: "i \<le> j \<Longrightarrow> iterate j\<cdot>f\<cdot>x \<sqsubseteq> iterate i\<cdot>f\<cdot>x"
|
|
47 |
apply (erule le_Suc_induct)
|
|
48 |
apply (simp add: less)
|
|
49 |
apply (rule refl_less)
|
|
50 |
apply (erule (1) trans_less)
|
|
51 |
done
|
|
52 |
|
|
53 |
lemma finite_range_iterate_app: "finite (range (\<lambda>i. iterate i\<cdot>f\<cdot>x))"
|
|
54 |
proof (rule finite_subset)
|
|
55 |
show "range (\<lambda>i. iterate i\<cdot>f\<cdot>x) \<subseteq> insert x (range (\<lambda>x. f\<cdot>x))"
|
|
56 |
by (clarify, case_tac i, simp_all)
|
|
57 |
show "finite (insert x (range (\<lambda>x. f\<cdot>x)))"
|
|
58 |
by (simp add: finite_range)
|
|
59 |
qed
|
|
60 |
|
|
61 |
lemma eventually_constant_iterate_app:
|
|
62 |
"eventually_constant (\<lambda>i. iterate i\<cdot>f\<cdot>x)"
|
|
63 |
unfolding eventually_constant_def MOST_nat_le
|
|
64 |
proof -
|
|
65 |
let ?Y = "\<lambda>i. iterate i\<cdot>f\<cdot>x"
|
|
66 |
have "\<exists>j. \<forall>k. ?Y j \<sqsubseteq> ?Y k"
|
|
67 |
apply (rule finite_range_has_max)
|
|
68 |
apply (erule antichain_iterate_app)
|
|
69 |
apply (rule finite_range_iterate_app)
|
|
70 |
done
|
|
71 |
then obtain j where j: "\<And>k. ?Y j \<sqsubseteq> ?Y k" by fast
|
|
72 |
show "\<exists>z m. \<forall>n\<ge>m. ?Y n = z"
|
|
73 |
proof (intro exI allI impI)
|
|
74 |
fix k
|
|
75 |
assume "j \<le> k"
|
|
76 |
hence "?Y k \<sqsubseteq> ?Y j" by (rule antichain_iterate_app)
|
|
77 |
also have "?Y j \<sqsubseteq> ?Y k" by (rule j)
|
|
78 |
finally show "?Y k = ?Y j" .
|
|
79 |
qed
|
|
80 |
qed
|
|
81 |
|
|
82 |
lemma eventually_constant_iterate:
|
|
83 |
"eventually_constant (\<lambda>n. iterate n\<cdot>f)"
|
|
84 |
proof -
|
|
85 |
have "\<forall>y\<in>range (\<lambda>x. f\<cdot>x). eventually_constant (\<lambda>i. iterate i\<cdot>f\<cdot>y)"
|
|
86 |
by (simp add: eventually_constant_iterate_app)
|
|
87 |
hence "\<forall>y\<in>range (\<lambda>x. f\<cdot>x). MOST i. MOST j. iterate j\<cdot>f\<cdot>y = iterate i\<cdot>f\<cdot>y"
|
|
88 |
unfolding eventually_constant_MOST_MOST .
|
|
89 |
hence "MOST i. MOST j. \<forall>y\<in>range (\<lambda>x. f\<cdot>x). iterate j\<cdot>f\<cdot>y = iterate i\<cdot>f\<cdot>y"
|
|
90 |
by (simp only: MOST_finite_Ball_distrib [OF finite_range])
|
|
91 |
hence "MOST i. MOST j. \<forall>x. iterate j\<cdot>f\<cdot>(f\<cdot>x) = iterate i\<cdot>f\<cdot>(f\<cdot>x)"
|
|
92 |
by simp
|
|
93 |
hence "MOST i. MOST j. \<forall>x. iterate (Suc j)\<cdot>f\<cdot>x = iterate (Suc i)\<cdot>f\<cdot>x"
|
|
94 |
by (simp only: iterate_Suc2)
|
|
95 |
hence "MOST i. MOST j. iterate (Suc j)\<cdot>f = iterate (Suc i)\<cdot>f"
|
|
96 |
by (simp only: expand_cfun_eq)
|
|
97 |
hence "eventually_constant (\<lambda>i. iterate (Suc i)\<cdot>f)"
|
|
98 |
unfolding eventually_constant_MOST_MOST .
|
|
99 |
thus "eventually_constant (\<lambda>i. iterate i\<cdot>f)"
|
|
100 |
by (rule eventually_constant_SucD)
|
|
101 |
qed
|
|
102 |
|
|
103 |
abbreviation
|
|
104 |
d :: "'a \<rightarrow> 'a"
|
|
105 |
where
|
|
106 |
"d \<equiv> eventual (\<lambda>n. iterate n\<cdot>f)"
|
|
107 |
|
|
108 |
lemma MOST_d: "MOST n. P (iterate n\<cdot>f) \<Longrightarrow> P d"
|
|
109 |
using eventually_constant_iterate by (rule MOST_eventual)
|
|
110 |
|
|
111 |
lemma f_d: "f\<cdot>(d\<cdot>x) = d\<cdot>x"
|
|
112 |
apply (rule MOST_d)
|
|
113 |
apply (subst iterate_Suc [symmetric])
|
|
114 |
apply (rule eventually_constant_MOST_Suc_eq)
|
|
115 |
apply (rule eventually_constant_iterate_app)
|
|
116 |
done
|
|
117 |
|
|
118 |
lemma d_fixed_iff: "d\<cdot>x = x \<longleftrightarrow> f\<cdot>x = x"
|
|
119 |
proof
|
|
120 |
assume "d\<cdot>x = x"
|
|
121 |
with f_d [where x=x]
|
|
122 |
show "f\<cdot>x = x" by simp
|
|
123 |
next
|
|
124 |
assume f: "f\<cdot>x = x"
|
|
125 |
have "\<forall>n. iterate n\<cdot>f\<cdot>x = x"
|
|
126 |
by (rule allI, rule nat.induct, simp, simp add: f)
|
|
127 |
hence "MOST n. iterate n\<cdot>f\<cdot>x = x"
|
|
128 |
by (rule ALL_MOST)
|
|
129 |
thus "d\<cdot>x = x"
|
|
130 |
by (rule MOST_d)
|
|
131 |
qed
|
|
132 |
|
|
133 |
lemma finite_deflation_d: "finite_deflation d"
|
|
134 |
proof
|
|
135 |
fix x :: 'a
|
|
136 |
have "d \<in> range (\<lambda>n. iterate n\<cdot>f)"
|
|
137 |
using eventually_constant_iterate
|
|
138 |
by (rule eventual_mem_range)
|
|
139 |
then obtain n where n: "d = iterate n\<cdot>f" ..
|
|
140 |
have "iterate n\<cdot>f\<cdot>(d\<cdot>x) = d\<cdot>x"
|
|
141 |
using f_d by (rule iterate_fixed)
|
|
142 |
thus "d\<cdot>(d\<cdot>x) = d\<cdot>x"
|
|
143 |
by (simp add: n)
|
|
144 |
next
|
|
145 |
fix x :: 'a
|
|
146 |
show "d\<cdot>x \<sqsubseteq> x"
|
|
147 |
by (rule MOST_d, simp add: iterate_less)
|
|
148 |
next
|
|
149 |
from finite_range
|
|
150 |
have "finite {x. f\<cdot>x = x}"
|
|
151 |
by (rule finite_range_imp_finite_fixes)
|
|
152 |
thus "finite {x. d\<cdot>x = x}"
|
|
153 |
by (simp add: d_fixed_iff)
|
|
154 |
qed
|
|
155 |
|
|
156 |
end
|
|
157 |
|
|
158 |
lemma pre_deflation_d_f:
|
28611
|
159 |
assumes "finite_deflation d"
|
27409
|
160 |
assumes f: "\<And>x. f\<cdot>x \<sqsubseteq> x"
|
|
161 |
shows "pre_deflation (d oo f)"
|
|
162 |
proof
|
29237
|
163 |
interpret d: finite_deflation d by fact
|
27409
|
164 |
fix x
|
|
165 |
show "\<And>x. (d oo f)\<cdot>x \<sqsubseteq> x"
|
|
166 |
by (simp, rule trans_less [OF d.less f])
|
|
167 |
show "finite (range (\<lambda>x. (d oo f)\<cdot>x))"
|
|
168 |
by (rule finite_subset [OF _ d.finite_range], auto)
|
|
169 |
qed
|
|
170 |
|
|
171 |
lemma eventual_iterate_oo_fixed_iff:
|
28611
|
172 |
assumes "finite_deflation d"
|
27409
|
173 |
assumes f: "\<And>x. f\<cdot>x \<sqsubseteq> x"
|
|
174 |
shows "eventual (\<lambda>n. iterate n\<cdot>(d oo f))\<cdot>x = x \<longleftrightarrow> d\<cdot>x = x \<and> f\<cdot>x = x"
|
|
175 |
proof -
|
29237
|
176 |
interpret d: finite_deflation d by fact
|
27409
|
177 |
let ?e = "d oo f"
|
29237
|
178 |
interpret e: pre_deflation "d oo f"
|
27409
|
179 |
using `finite_deflation d` f
|
|
180 |
by (rule pre_deflation_d_f)
|
|
181 |
let ?g = "eventual (\<lambda>n. iterate n\<cdot>?e)"
|
|
182 |
show ?thesis
|
|
183 |
apply (subst e.d_fixed_iff)
|
|
184 |
apply simp
|
|
185 |
apply safe
|
|
186 |
apply (erule subst)
|
|
187 |
apply (rule d.idem)
|
|
188 |
apply (rule antisym_less)
|
|
189 |
apply (rule f)
|
|
190 |
apply (erule subst, rule d.less)
|
|
191 |
apply simp
|
|
192 |
done
|
|
193 |
qed
|
|
194 |
|
|
195 |
subsection {* Type constructor for finite deflations *}
|
|
196 |
|
|
197 |
defaultsort profinite
|
|
198 |
|
|
199 |
typedef (open) 'a fin_defl = "{d::'a \<rightarrow> 'a. finite_deflation d}"
|
|
200 |
by (fast intro: finite_deflation_approx)
|
|
201 |
|
|
202 |
instantiation fin_defl :: (profinite) sq_ord
|
|
203 |
begin
|
|
204 |
|
|
205 |
definition
|
|
206 |
sq_le_fin_defl_def:
|
|
207 |
"op \<sqsubseteq> \<equiv> \<lambda>x y. Rep_fin_defl x \<sqsubseteq> Rep_fin_defl y"
|
|
208 |
|
|
209 |
instance ..
|
|
210 |
end
|
|
211 |
|
|
212 |
instance fin_defl :: (profinite) po
|
|
213 |
by (rule typedef_po [OF type_definition_fin_defl sq_le_fin_defl_def])
|
|
214 |
|
|
215 |
lemma finite_deflation_Rep_fin_defl: "finite_deflation (Rep_fin_defl d)"
|
|
216 |
using Rep_fin_defl by simp
|
|
217 |
|
29237
|
218 |
interpretation Rep_fin_defl!: finite_deflation "Rep_fin_defl d"
|
27409
|
219 |
by (rule finite_deflation_Rep_fin_defl)
|
|
220 |
|
|
221 |
lemma fin_defl_lessI:
|
|
222 |
"(\<And>x. Rep_fin_defl a\<cdot>x = x \<Longrightarrow> Rep_fin_defl b\<cdot>x = x) \<Longrightarrow> a \<sqsubseteq> b"
|
|
223 |
unfolding sq_le_fin_defl_def
|
|
224 |
by (rule Rep_fin_defl.lessI)
|
|
225 |
|
|
226 |
lemma fin_defl_lessD:
|
|
227 |
"\<lbrakk>a \<sqsubseteq> b; Rep_fin_defl a\<cdot>x = x\<rbrakk> \<Longrightarrow> Rep_fin_defl b\<cdot>x = x"
|
|
228 |
unfolding sq_le_fin_defl_def
|
|
229 |
by (rule Rep_fin_defl.lessD)
|
|
230 |
|
|
231 |
lemma fin_defl_eqI:
|
|
232 |
"(\<And>x. Rep_fin_defl a\<cdot>x = x \<longleftrightarrow> Rep_fin_defl b\<cdot>x = x) \<Longrightarrow> a = b"
|
|
233 |
apply (rule antisym_less)
|
|
234 |
apply (rule fin_defl_lessI, simp)
|
|
235 |
apply (rule fin_defl_lessI, simp)
|
|
236 |
done
|
|
237 |
|
|
238 |
lemma Abs_fin_defl_mono:
|
|
239 |
"\<lbrakk>finite_deflation a; finite_deflation b; a \<sqsubseteq> b\<rbrakk>
|
|
240 |
\<Longrightarrow> Abs_fin_defl a \<sqsubseteq> Abs_fin_defl b"
|
|
241 |
unfolding sq_le_fin_defl_def
|
|
242 |
by (simp add: Abs_fin_defl_inverse)
|
|
243 |
|
|
244 |
|
|
245 |
subsection {* Take function for finite deflations *}
|
|
246 |
|
|
247 |
definition
|
|
248 |
fd_take :: "nat \<Rightarrow> 'a fin_defl \<Rightarrow> 'a fin_defl"
|
|
249 |
where
|
|
250 |
"fd_take i d = Abs_fin_defl (eventual (\<lambda>n. iterate n\<cdot>(approx i oo Rep_fin_defl d)))"
|
|
251 |
|
|
252 |
lemma Rep_fin_defl_fd_take:
|
|
253 |
"Rep_fin_defl (fd_take i d) =
|
|
254 |
eventual (\<lambda>n. iterate n\<cdot>(approx i oo Rep_fin_defl d))"
|
|
255 |
unfolding fd_take_def
|
|
256 |
apply (rule Abs_fin_defl_inverse [unfolded mem_Collect_eq])
|
|
257 |
apply (rule pre_deflation.finite_deflation_d)
|
|
258 |
apply (rule pre_deflation_d_f)
|
|
259 |
apply (rule finite_deflation_approx)
|
|
260 |
apply (rule Rep_fin_defl.less)
|
|
261 |
done
|
|
262 |
|
|
263 |
lemma fd_take_fixed_iff:
|
|
264 |
"Rep_fin_defl (fd_take i d)\<cdot>x = x \<longleftrightarrow>
|
|
265 |
approx i\<cdot>x = x \<and> Rep_fin_defl d\<cdot>x = x"
|
|
266 |
unfolding Rep_fin_defl_fd_take
|
|
267 |
by (rule eventual_iterate_oo_fixed_iff
|
|
268 |
[OF finite_deflation_approx Rep_fin_defl.less])
|
|
269 |
|
|
270 |
lemma fd_take_less: "fd_take n d \<sqsubseteq> d"
|
|
271 |
apply (rule fin_defl_lessI)
|
|
272 |
apply (simp add: fd_take_fixed_iff)
|
|
273 |
done
|
|
274 |
|
|
275 |
lemma fd_take_idem: "fd_take n (fd_take n d) = fd_take n d"
|
|
276 |
apply (rule fin_defl_eqI)
|
|
277 |
apply (simp add: fd_take_fixed_iff)
|
|
278 |
done
|
|
279 |
|
|
280 |
lemma fd_take_mono: "a \<sqsubseteq> b \<Longrightarrow> fd_take n a \<sqsubseteq> fd_take n b"
|
|
281 |
apply (rule fin_defl_lessI)
|
|
282 |
apply (simp add: fd_take_fixed_iff)
|
|
283 |
apply (simp add: fin_defl_lessD)
|
|
284 |
done
|
|
285 |
|
|
286 |
lemma approx_fixed_le_lemma: "\<lbrakk>i \<le> j; approx i\<cdot>x = x\<rbrakk> \<Longrightarrow> approx j\<cdot>x = x"
|
|
287 |
by (erule subst, simp add: min_def)
|
|
288 |
|
|
289 |
lemma fd_take_chain: "m \<le> n \<Longrightarrow> fd_take m a \<sqsubseteq> fd_take n a"
|
|
290 |
apply (rule fin_defl_lessI)
|
|
291 |
apply (simp add: fd_take_fixed_iff)
|
|
292 |
apply (simp add: approx_fixed_le_lemma)
|
|
293 |
done
|
|
294 |
|
|
295 |
lemma finite_range_fd_take: "finite (range (fd_take n))"
|
|
296 |
apply (rule finite_imageD [where f="\<lambda>a. {x. Rep_fin_defl a\<cdot>x = x}"])
|
|
297 |
apply (rule finite_subset [where B="Pow {x. approx n\<cdot>x = x}"])
|
|
298 |
apply (clarify, simp add: fd_take_fixed_iff)
|
|
299 |
apply (simp add: finite_fixes_approx)
|
|
300 |
apply (rule inj_onI, clarify)
|
|
301 |
apply (simp add: expand_set_eq fin_defl_eqI)
|
|
302 |
done
|
|
303 |
|
|
304 |
lemma fd_take_covers: "\<exists>n. fd_take n a = a"
|
|
305 |
apply (rule_tac x=
|
|
306 |
"Max ((\<lambda>x. LEAST n. approx n\<cdot>x = x) ` {x. Rep_fin_defl a\<cdot>x = x})" in exI)
|
|
307 |
apply (rule antisym_less)
|
|
308 |
apply (rule fd_take_less)
|
|
309 |
apply (rule fin_defl_lessI)
|
|
310 |
apply (simp add: fd_take_fixed_iff)
|
|
311 |
apply (rule approx_fixed_le_lemma)
|
|
312 |
apply (rule Max_ge)
|
|
313 |
apply (rule finite_imageI)
|
|
314 |
apply (rule Rep_fin_defl.finite_fixes)
|
|
315 |
apply (rule imageI)
|
|
316 |
apply (erule CollectI)
|
|
317 |
apply (rule LeastI_ex)
|
|
318 |
apply (rule profinite_compact_eq_approx)
|
|
319 |
apply (erule subst)
|
|
320 |
apply (rule Rep_fin_defl.compact)
|
|
321 |
done
|
|
322 |
|
29237
|
323 |
interpretation fin_defl!: basis_take sq_le fd_take
|
27409
|
324 |
apply default
|
|
325 |
apply (rule fd_take_less)
|
|
326 |
apply (rule fd_take_idem)
|
|
327 |
apply (erule fd_take_mono)
|
|
328 |
apply (rule fd_take_chain, simp)
|
|
329 |
apply (rule finite_range_fd_take)
|
|
330 |
apply (rule fd_take_covers)
|
|
331 |
done
|
|
332 |
|
|
333 |
subsection {* Defining algebraic deflations by ideal completion *}
|
|
334 |
|
|
335 |
typedef (open) 'a alg_defl =
|
|
336 |
"{S::'a fin_defl set. sq_le.ideal S}"
|
|
337 |
by (fast intro: sq_le.ideal_principal)
|
|
338 |
|
|
339 |
instantiation alg_defl :: (profinite) sq_ord
|
|
340 |
begin
|
|
341 |
|
|
342 |
definition
|
|
343 |
"x \<sqsubseteq> y \<longleftrightarrow> Rep_alg_defl x \<subseteq> Rep_alg_defl y"
|
|
344 |
|
|
345 |
instance ..
|
|
346 |
end
|
|
347 |
|
|
348 |
instance alg_defl :: (profinite) po
|
|
349 |
by (rule sq_le.typedef_ideal_po
|
|
350 |
[OF type_definition_alg_defl sq_le_alg_defl_def])
|
|
351 |
|
|
352 |
instance alg_defl :: (profinite) cpo
|
|
353 |
by (rule sq_le.typedef_ideal_cpo
|
|
354 |
[OF type_definition_alg_defl sq_le_alg_defl_def])
|
|
355 |
|
|
356 |
lemma Rep_alg_defl_lub:
|
|
357 |
"chain Y \<Longrightarrow> Rep_alg_defl (\<Squnion>i. Y i) = (\<Union>i. Rep_alg_defl (Y i))"
|
|
358 |
by (rule sq_le.typedef_ideal_rep_contlub
|
|
359 |
[OF type_definition_alg_defl sq_le_alg_defl_def])
|
|
360 |
|
|
361 |
lemma ideal_Rep_alg_defl: "sq_le.ideal (Rep_alg_defl xs)"
|
|
362 |
by (rule Rep_alg_defl [unfolded mem_Collect_eq])
|
|
363 |
|
|
364 |
definition
|
|
365 |
alg_defl_principal :: "'a fin_defl \<Rightarrow> 'a alg_defl" where
|
|
366 |
"alg_defl_principal t = Abs_alg_defl {u. u \<sqsubseteq> t}"
|
|
367 |
|
|
368 |
lemma Rep_alg_defl_principal:
|
|
369 |
"Rep_alg_defl (alg_defl_principal t) = {u. u \<sqsubseteq> t}"
|
|
370 |
unfolding alg_defl_principal_def
|
|
371 |
by (simp add: Abs_alg_defl_inverse sq_le.ideal_principal)
|
|
372 |
|
29237
|
373 |
interpretation alg_defl!:
|
|
374 |
ideal_completion sq_le fd_take alg_defl_principal Rep_alg_defl
|
27409
|
375 |
apply default
|
|
376 |
apply (rule ideal_Rep_alg_defl)
|
|
377 |
apply (erule Rep_alg_defl_lub)
|
|
378 |
apply (rule Rep_alg_defl_principal)
|
|
379 |
apply (simp only: sq_le_alg_defl_def)
|
|
380 |
done
|
|
381 |
|
|
382 |
text {* Algebraic deflations are pointed *}
|
|
383 |
|
|
384 |
lemma finite_deflation_UU: "finite_deflation \<bottom>"
|
|
385 |
by default simp_all
|
|
386 |
|
|
387 |
lemma alg_defl_minimal:
|
|
388 |
"alg_defl_principal (Abs_fin_defl \<bottom>) \<sqsubseteq> x"
|
|
389 |
apply (induct x rule: alg_defl.principal_induct, simp)
|
|
390 |
apply (rule alg_defl.principal_mono)
|
|
391 |
apply (induct_tac a)
|
|
392 |
apply (rule Abs_fin_defl_mono)
|
|
393 |
apply (rule finite_deflation_UU)
|
|
394 |
apply simp
|
|
395 |
apply (rule minimal)
|
|
396 |
done
|
|
397 |
|
|
398 |
instance alg_defl :: (bifinite) pcpo
|
|
399 |
by intro_classes (fast intro: alg_defl_minimal)
|
|
400 |
|
|
401 |
lemma inst_alg_defl_pcpo: "\<bottom> = alg_defl_principal (Abs_fin_defl \<bottom>)"
|
|
402 |
by (rule alg_defl_minimal [THEN UU_I, symmetric])
|
|
403 |
|
|
404 |
text {* Algebraic deflations are profinite *}
|
|
405 |
|
|
406 |
instantiation alg_defl :: (profinite) profinite
|
|
407 |
begin
|
|
408 |
|
|
409 |
definition
|
|
410 |
approx_alg_defl_def: "approx = alg_defl.completion_approx"
|
|
411 |
|
|
412 |
instance
|
|
413 |
apply (intro_classes, unfold approx_alg_defl_def)
|
|
414 |
apply (rule alg_defl.chain_completion_approx)
|
|
415 |
apply (rule alg_defl.lub_completion_approx)
|
|
416 |
apply (rule alg_defl.completion_approx_idem)
|
|
417 |
apply (rule alg_defl.finite_fixes_completion_approx)
|
|
418 |
done
|
|
419 |
|
|
420 |
end
|
|
421 |
|
|
422 |
instance alg_defl :: (bifinite) bifinite ..
|
|
423 |
|
|
424 |
lemma approx_alg_defl_principal [simp]:
|
|
425 |
"approx n\<cdot>(alg_defl_principal t) = alg_defl_principal (fd_take n t)"
|
|
426 |
unfolding approx_alg_defl_def
|
|
427 |
by (rule alg_defl.completion_approx_principal)
|
|
428 |
|
|
429 |
lemma approx_eq_alg_defl_principal:
|
|
430 |
"\<exists>t\<in>Rep_alg_defl xs. approx n\<cdot>xs = alg_defl_principal (fd_take n t)"
|
|
431 |
unfolding approx_alg_defl_def
|
|
432 |
by (rule alg_defl.completion_approx_eq_principal)
|
|
433 |
|
|
434 |
|
|
435 |
subsection {* Applying algebraic deflations *}
|
|
436 |
|
|
437 |
definition
|
|
438 |
cast :: "'a alg_defl \<rightarrow> 'a \<rightarrow> 'a"
|
|
439 |
where
|
|
440 |
"cast = alg_defl.basis_fun Rep_fin_defl"
|
|
441 |
|
|
442 |
lemma cast_alg_defl_principal:
|
|
443 |
"cast\<cdot>(alg_defl_principal a) = Rep_fin_defl a"
|
|
444 |
unfolding cast_def
|
|
445 |
apply (rule alg_defl.basis_fun_principal)
|
|
446 |
apply (simp only: sq_le_fin_defl_def)
|
|
447 |
done
|
|
448 |
|
|
449 |
lemma deflation_cast: "deflation (cast\<cdot>d)"
|
|
450 |
apply (induct d rule: alg_defl.principal_induct)
|
|
451 |
apply (rule adm_subst [OF _ adm_deflation], simp)
|
|
452 |
apply (simp add: cast_alg_defl_principal)
|
|
453 |
apply (rule finite_deflation_imp_deflation)
|
|
454 |
apply (rule finite_deflation_Rep_fin_defl)
|
|
455 |
done
|
|
456 |
|
|
457 |
lemma finite_deflation_cast:
|
|
458 |
"compact d \<Longrightarrow> finite_deflation (cast\<cdot>d)"
|
|
459 |
apply (drule alg_defl.compact_imp_principal, clarify)
|
|
460 |
apply (simp add: cast_alg_defl_principal)
|
|
461 |
apply (rule finite_deflation_Rep_fin_defl)
|
|
462 |
done
|
|
463 |
|
29237
|
464 |
interpretation cast!: deflation "cast\<cdot>d"
|
27409
|
465 |
by (rule deflation_cast)
|
|
466 |
|
|
467 |
lemma "cast\<cdot>(\<Squnion>i. alg_defl_principal (Abs_fin_defl (approx i)))\<cdot>x = x"
|
|
468 |
apply (subst contlub_cfun_arg)
|
|
469 |
apply (rule chainI)
|
|
470 |
apply (rule alg_defl.principal_mono)
|
|
471 |
apply (rule Abs_fin_defl_mono)
|
|
472 |
apply (rule finite_deflation_approx)
|
|
473 |
apply (rule finite_deflation_approx)
|
|
474 |
apply (rule chainE)
|
|
475 |
apply (rule chain_approx)
|
|
476 |
apply (simp add: cast_alg_defl_principal Abs_fin_defl_inverse finite_deflation_approx)
|
|
477 |
done
|
|
478 |
|
|
479 |
text {* This lemma says that if we have an ep-pair from
|
|
480 |
a bifinite domain into a universal domain, then e oo p
|
|
481 |
is an algebraic deflation. *}
|
|
482 |
|
|
483 |
lemma
|
28611
|
484 |
assumes "ep_pair e p"
|
27409
|
485 |
constrains e :: "'a::profinite \<rightarrow> 'b::profinite"
|
|
486 |
shows "\<exists>d. cast\<cdot>d = e oo p"
|
|
487 |
proof
|
29237
|
488 |
interpret ep_pair e p by fact
|
27409
|
489 |
let ?a = "\<lambda>i. e oo approx i oo p"
|
|
490 |
have a: "\<And>i. finite_deflation (?a i)"
|
|
491 |
apply (rule finite_deflation_e_d_p)
|
|
492 |
apply (rule finite_deflation_approx)
|
|
493 |
done
|
|
494 |
let ?d = "\<Squnion>i. alg_defl_principal (Abs_fin_defl (?a i))"
|
|
495 |
show "cast\<cdot>?d = e oo p"
|
|
496 |
apply (subst contlub_cfun_arg)
|
|
497 |
apply (rule chainI)
|
|
498 |
apply (rule alg_defl.principal_mono)
|
|
499 |
apply (rule Abs_fin_defl_mono [OF a a])
|
|
500 |
apply (rule chainE, simp)
|
|
501 |
apply (subst cast_alg_defl_principal)
|
|
502 |
apply (simp add: Abs_fin_defl_inverse a)
|
|
503 |
apply (simp add: expand_cfun_eq lub_distribs)
|
|
504 |
done
|
|
505 |
qed
|
|
506 |
|
|
507 |
text {* This lemma says that if we have an ep-pair
|
|
508 |
from a cpo into a bifinite domain, and e oo p is
|
|
509 |
an algebraic deflation, then the cpo is bifinite. *}
|
|
510 |
|
|
511 |
lemma
|
28611
|
512 |
assumes "ep_pair e p"
|
27409
|
513 |
constrains e :: "'a::cpo \<rightarrow> 'b::profinite"
|
|
514 |
assumes d: "\<And>x. cast\<cdot>d\<cdot>x = e\<cdot>(p\<cdot>x)"
|
|
515 |
obtains a :: "nat \<Rightarrow> 'a \<rightarrow> 'a" where
|
|
516 |
"\<And>i. finite_deflation (a i)"
|
|
517 |
"(\<Squnion>i. a i) = ID"
|
|
518 |
proof
|
29237
|
519 |
interpret ep_pair e p by fact
|
27409
|
520 |
let ?a = "\<lambda>i. p oo cast\<cdot>(approx i\<cdot>d) oo e"
|
|
521 |
show "\<And>i. finite_deflation (?a i)"
|
|
522 |
apply (rule finite_deflation_p_d_e)
|
|
523 |
apply (rule finite_deflation_cast)
|
|
524 |
apply (rule compact_approx)
|
|
525 |
apply (rule sq_ord_less_eq_trans [OF _ d])
|
|
526 |
apply (rule monofun_cfun_fun)
|
|
527 |
apply (rule monofun_cfun_arg)
|
|
528 |
apply (rule approx_less)
|
|
529 |
done
|
|
530 |
show "(\<Squnion>i. ?a i) = ID"
|
|
531 |
apply (rule ext_cfun, simp)
|
|
532 |
apply (simp add: lub_distribs)
|
|
533 |
apply (simp add: d)
|
|
534 |
done
|
|
535 |
qed
|
|
536 |
|
|
537 |
end
|