| author | wenzelm | 
| Mon, 10 May 2004 19:25:59 +0200 | |
| changeset 14726 | 9657c23cc3e7 | 
| parent 14565 | c6dc17aab88a | 
| child 15111 | c108189645f8 | 
| permissions | -rw-r--r-- | 
| 1475 | 1  | 
(* Title: HOL/Fun.thy  | 
| 923 | 2  | 
ID: $Id$  | 
| 1475 | 3  | 
Author: Tobias Nipkow, Cambridge University Computer Laboratory  | 
| 923 | 4  | 
Copyright 1994 University of Cambridge  | 
5  | 
||
| 2912 | 6  | 
Notions about functions.  | 
| 923 | 7  | 
*)  | 
8  | 
||
| 13585 | 9  | 
theory Fun = Typedef:  | 
| 2912 | 10  | 
|
| 
12338
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12258 
diff
changeset
 | 
11  | 
instance set :: (type) order  | 
| 13585 | 12  | 
by (intro_classes,  | 
13  | 
(assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+)  | 
|
14  | 
||
15  | 
constdefs  | 
|
16  | 
  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
 | 
|
17  | 
"fun_upd f a b == % x. if x=a then b else f x"  | 
|
| 6171 | 18  | 
|
| 9141 | 19  | 
nonterminals  | 
20  | 
updbinds updbind  | 
|
| 5305 | 21  | 
syntax  | 
| 13585 | 22  | 
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
 | 
23  | 
  ""         :: "updbind => updbinds"             ("_")
 | 
|
24  | 
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
 | 
|
25  | 
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
 | 
|
| 5305 | 26  | 
|
27  | 
translations  | 
|
28  | 
"_Update f (_updbinds b bs)" == "_Update (_Update f b) bs"  | 
|
29  | 
"f(x:=y)" == "fun_upd f x y"  | 
|
| 2912 | 30  | 
|
| 9340 | 31  | 
(* Hint: to define the sum of two functions (or maps), use sum_case.  | 
32  | 
A nice infix syntax could be defined (in Datatype.thy or below) by  | 
|
33  | 
consts  | 
|
34  | 
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
 | 
|
35  | 
translations  | 
|
| 13585 | 36  | 
"fun_sum" == sum_case  | 
| 9340 | 37  | 
*)  | 
| 12258 | 38  | 
|
| 6171 | 39  | 
constdefs  | 
| 13910 | 40  | 
 overwrite :: "('a => 'b) => ('a => 'b) => 'a set => ('a => 'b)"
 | 
41  | 
              ("_/'(_|/_')"  [900,0,0]900)
 | 
|
42  | 
"f(g|A) == %a. if a : A then g a else f a"  | 
|
| 6171 | 43  | 
|
| 13910 | 44  | 
id :: "'a => 'a"  | 
45  | 
"id == %x. x"  | 
|
46  | 
||
47  | 
comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "o" 55)  | 
|
48  | 
"f o g == %x. f(g(x))"  | 
|
| 11123 | 49  | 
|
| 13585 | 50  | 
text{*compatibility*}
 | 
51  | 
lemmas o_def = comp_def  | 
|
| 2912 | 52  | 
|
| 
12114
 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 
wenzelm 
parents: 
11609 
diff
changeset
 | 
53  | 
syntax (xsymbols)  | 
| 13585 | 54  | 
comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "\<circ>" 55)  | 
| 14565 | 55  | 
syntax (HTML output)  | 
56  | 
comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "\<circ>" 55)  | 
|
| 13585 | 57  | 
|
| 9352 | 58  | 
|
| 13585 | 59  | 
constdefs  | 
60  | 
inj_on :: "['a => 'b, 'a set] => bool" (*injective*)  | 
|
61  | 
"inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"  | 
|
| 6171 | 62  | 
|
| 13585 | 63  | 
text{*A common special case: functions injective over the entire domain type.*}
 | 
64  | 
syntax inj   :: "('a => 'b) => bool"
 | 
|
| 6171 | 65  | 
translations  | 
66  | 
"inj f" == "inj_on f UNIV"  | 
|
| 5852 | 67  | 
|
| 7374 | 68  | 
constdefs  | 
| 13585 | 69  | 
  surj :: "('a => 'b) => bool"                   (*surjective*)
 | 
| 7374 | 70  | 
"surj f == ! y. ? x. y=f(x)"  | 
| 12258 | 71  | 
|
| 13585 | 72  | 
  bij :: "('a => 'b) => bool"                    (*bijective*)
 | 
| 7374 | 73  | 
"bij f == inj f & surj f"  | 
| 12258 | 74  | 
|
| 7374 | 75  | 
|
| 13585 | 76  | 
|
77  | 
text{*As a simplification rule, it replaces all function equalities by
 | 
|
78  | 
first-order equalities.*}  | 
|
79  | 
lemma expand_fun_eq: "(f = g) = (! x. f(x)=g(x))"  | 
|
80  | 
apply (rule iffI)  | 
|
81  | 
apply (simp (no_asm_simp))  | 
|
82  | 
apply (rule ext, simp (no_asm_simp))  | 
|
83  | 
done  | 
|
84  | 
||
85  | 
lemma apply_inverse:  | 
|
86  | 
"[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)"  | 
|
87  | 
by auto  | 
|
88  | 
||
89  | 
||
90  | 
text{*The Identity Function: @{term id}*}
 | 
|
91  | 
lemma id_apply [simp]: "id x = x"  | 
|
92  | 
by (simp add: id_def)  | 
|
93  | 
||
94  | 
||
95  | 
subsection{*The Composition Operator: @{term "f \<circ> g"}*}
 | 
|
96  | 
||
97  | 
lemma o_apply [simp]: "(f o g) x = f (g x)"  | 
|
98  | 
by (simp add: comp_def)  | 
|
99  | 
||
100  | 
lemma o_assoc: "f o (g o h) = f o g o h"  | 
|
101  | 
by (simp add: comp_def)  | 
|
102  | 
||
103  | 
lemma id_o [simp]: "id o g = g"  | 
|
104  | 
by (simp add: comp_def)  | 
|
105  | 
||
106  | 
lemma o_id [simp]: "f o id = f"  | 
|
107  | 
by (simp add: comp_def)  | 
|
108  | 
||
109  | 
lemma image_compose: "(f o g) ` r = f`(g`r)"  | 
|
110  | 
by (simp add: comp_def, blast)  | 
|
111  | 
||
112  | 
lemma image_eq_UN: "f`A = (UN x:A. {f x})"
 | 
|
113  | 
by blast  | 
|
114  | 
||
115  | 
lemma UN_o: "UNION A (g o f) = UNION (f`A) g"  | 
|
116  | 
by (unfold comp_def, blast)  | 
|
117  | 
||
118  | 
||
119  | 
subsection{*The Injectivity Predicate, @{term inj}*}
 | 
|
120  | 
||
121  | 
text{*NB: @{term inj} now just translates to @{term inj_on}*}
 | 
|
122  | 
||
123  | 
||
124  | 
text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*}
 | 
|
125  | 
lemma datatype_injI:  | 
|
126  | 
"(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"  | 
|
127  | 
by (simp add: inj_on_def)  | 
|
128  | 
||
| 13637 | 129  | 
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"  | 
130  | 
by (unfold inj_on_def, blast)  | 
|
131  | 
||
| 13585 | 132  | 
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"  | 
133  | 
by (simp add: inj_on_def)  | 
|
134  | 
||
135  | 
(*Useful with the simplifier*)  | 
|
136  | 
lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)"  | 
|
137  | 
by (force simp add: inj_on_def)  | 
|
138  | 
||
139  | 
||
140  | 
subsection{*The Predicate @{term inj_on}: Injectivity On A Restricted Domain*}
 | 
|
141  | 
||
142  | 
lemma inj_onI:  | 
|
143  | 
"(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A"  | 
|
144  | 
by (simp add: inj_on_def)  | 
|
145  | 
||
146  | 
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"  | 
|
147  | 
by (auto dest: arg_cong [of concl: g] simp add: inj_on_def)  | 
|
148  | 
||
149  | 
lemma inj_onD: "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y"  | 
|
150  | 
by (unfold inj_on_def, blast)  | 
|
151  | 
||
152  | 
lemma inj_on_iff: "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)"  | 
|
153  | 
by (blast dest!: inj_onD)  | 
|
154  | 
||
155  | 
lemma comp_inj_on:  | 
|
156  | 
"[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A"  | 
|
157  | 
by (simp add: comp_def inj_on_def)  | 
|
158  | 
||
159  | 
lemma inj_on_contraD: "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)"  | 
|
160  | 
by (unfold inj_on_def, blast)  | 
|
| 12258 | 161  | 
|
| 13585 | 162  | 
lemma inj_singleton: "inj (%s. {s})"
 | 
163  | 
by (simp add: inj_on_def)  | 
|
164  | 
||
165  | 
lemma subset_inj_on: "[| A<=B; inj_on f B |] ==> inj_on f A"  | 
|
166  | 
by (unfold inj_on_def, blast)  | 
|
167  | 
||
168  | 
||
169  | 
subsection{*The Predicate @{term surj}: Surjectivity*}
 | 
|
170  | 
||
171  | 
lemma surjI: "(!! x. g(f x) = x) ==> surj g"  | 
|
172  | 
apply (simp add: surj_def)  | 
|
173  | 
apply (blast intro: sym)  | 
|
174  | 
done  | 
|
175  | 
||
176  | 
lemma surj_range: "surj f ==> range f = UNIV"  | 
|
177  | 
by (auto simp add: surj_def)  | 
|
178  | 
||
179  | 
lemma surjD: "surj f ==> EX x. y = f x"  | 
|
180  | 
by (simp add: surj_def)  | 
|
181  | 
||
182  | 
lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C"  | 
|
183  | 
by (simp add: surj_def, blast)  | 
|
184  | 
||
185  | 
lemma comp_surj: "[| surj f; surj g |] ==> surj (g o f)"  | 
|
186  | 
apply (simp add: comp_def surj_def, clarify)  | 
|
187  | 
apply (drule_tac x = y in spec, clarify)  | 
|
188  | 
apply (drule_tac x = x in spec, blast)  | 
|
189  | 
done  | 
|
190  | 
||
191  | 
||
192  | 
||
193  | 
subsection{*The Predicate @{term bij}: Bijectivity*}
 | 
|
194  | 
||
195  | 
lemma bijI: "[| inj f; surj f |] ==> bij f"  | 
|
196  | 
by (simp add: bij_def)  | 
|
197  | 
||
198  | 
lemma bij_is_inj: "bij f ==> inj f"  | 
|
199  | 
by (simp add: bij_def)  | 
|
200  | 
||
201  | 
lemma bij_is_surj: "bij f ==> surj f"  | 
|
202  | 
by (simp add: bij_def)  | 
|
203  | 
||
204  | 
||
205  | 
subsection{*Facts About the Identity Function*}
 | 
|
| 5852 | 206  | 
|
| 13585 | 207  | 
text{*We seem to need both the @{term id} forms and the @{term "\<lambda>x. x"}
 | 
208  | 
forms. The latter can arise by rewriting, while @{term id} may be used
 | 
|
209  | 
explicitly.*}  | 
|
210  | 
||
211  | 
lemma image_ident [simp]: "(%x. x) ` Y = Y"  | 
|
212  | 
by blast  | 
|
213  | 
||
214  | 
lemma image_id [simp]: "id ` Y = Y"  | 
|
215  | 
by (simp add: id_def)  | 
|
216  | 
||
217  | 
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"  | 
|
218  | 
by blast  | 
|
219  | 
||
220  | 
lemma vimage_id [simp]: "id -` A = A"  | 
|
221  | 
by (simp add: id_def)  | 
|
222  | 
||
223  | 
lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}"
 | 
|
224  | 
by (blast intro: sym)  | 
|
225  | 
||
226  | 
lemma image_vimage_subset: "f ` (f -` A) <= A"  | 
|
227  | 
by blast  | 
|
228  | 
||
229  | 
lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f"  | 
|
230  | 
by blast  | 
|
231  | 
||
232  | 
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"  | 
|
233  | 
by (simp add: surj_range)  | 
|
234  | 
||
235  | 
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"  | 
|
236  | 
by (simp add: inj_on_def, blast)  | 
|
237  | 
||
238  | 
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"  | 
|
239  | 
apply (unfold surj_def)  | 
|
240  | 
apply (blast intro: sym)  | 
|
241  | 
done  | 
|
242  | 
||
243  | 
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"  | 
|
244  | 
by (unfold inj_on_def, blast)  | 
|
245  | 
||
246  | 
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"  | 
|
247  | 
apply (unfold bij_def)  | 
|
248  | 
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)  | 
|
249  | 
done  | 
|
250  | 
||
251  | 
lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B"  | 
|
252  | 
by blast  | 
|
253  | 
||
254  | 
lemma image_diff_subset: "f`A - f`B <= f`(A - B)"  | 
|
255  | 
by blast  | 
|
| 5852 | 256  | 
|
| 13585 | 257  | 
lemma inj_on_image_Int:  | 
258  | 
"[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B"  | 
|
259  | 
apply (simp add: inj_on_def, blast)  | 
|
260  | 
done  | 
|
261  | 
||
262  | 
lemma inj_on_image_set_diff:  | 
|
263  | 
"[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B"  | 
|
264  | 
apply (simp add: inj_on_def, blast)  | 
|
265  | 
done  | 
|
266  | 
||
267  | 
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"  | 
|
268  | 
by (simp add: inj_on_def, blast)  | 
|
269  | 
||
270  | 
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"  | 
|
271  | 
by (simp add: inj_on_def, blast)  | 
|
272  | 
||
273  | 
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"  | 
|
274  | 
by (blast dest: injD)  | 
|
275  | 
||
276  | 
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"  | 
|
277  | 
by (simp add: inj_on_def, blast)  | 
|
278  | 
||
279  | 
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"  | 
|
280  | 
by (blast dest: injD)  | 
|
281  | 
||
282  | 
lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))"  | 
|
283  | 
by blast  | 
|
284  | 
||
285  | 
(*injectivity's required. Left-to-right inclusion holds even if A is empty*)  | 
|
286  | 
lemma image_INT:  | 
|
287  | 
"[| inj_on f C; ALL x:A. B x <= C; j:A |]  | 
|
288  | 
==> f ` (INTER A B) = (INT x:A. f ` B x)"  | 
|
289  | 
apply (simp add: inj_on_def, blast)  | 
|
290  | 
done  | 
|
291  | 
||
292  | 
(*Compare with image_INT: no use of inj_on, and if f is surjective then  | 
|
293  | 
it doesn't matter whether A is empty*)  | 
|
294  | 
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"  | 
|
295  | 
apply (simp add: bij_def)  | 
|
296  | 
apply (simp add: inj_on_def surj_def, blast)  | 
|
297  | 
done  | 
|
298  | 
||
299  | 
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"  | 
|
300  | 
by (auto simp add: surj_def)  | 
|
301  | 
||
302  | 
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"  | 
|
303  | 
by (auto simp add: inj_on_def)  | 
|
| 5852 | 304  | 
|
| 13585 | 305  | 
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"  | 
306  | 
apply (simp add: bij_def)  | 
|
307  | 
apply (rule equalityI)  | 
|
308  | 
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)  | 
|
309  | 
done  | 
|
310  | 
||
311  | 
||
312  | 
subsection{*Function Updating*}
 | 
|
313  | 
||
314  | 
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"  | 
|
315  | 
apply (simp add: fun_upd_def, safe)  | 
|
316  | 
apply (erule subst)  | 
|
317  | 
apply (rule_tac [2] ext, auto)  | 
|
318  | 
done  | 
|
319  | 
||
320  | 
(* f x = y ==> f(x:=y) = f *)  | 
|
321  | 
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]  | 
|
322  | 
||
323  | 
(* f(x := f x) = f *)  | 
|
324  | 
declare refl [THEN fun_upd_idem, iff]  | 
|
325  | 
||
326  | 
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"  | 
|
327  | 
apply (simp (no_asm) add: fun_upd_def)  | 
|
328  | 
done  | 
|
329  | 
||
330  | 
(* fun_upd_apply supersedes these two, but they are useful  | 
|
331  | 
if fun_upd_apply is intentionally removed from the simpset *)  | 
|
332  | 
lemma fun_upd_same: "(f(x:=y)) x = y"  | 
|
333  | 
by simp  | 
|
334  | 
||
335  | 
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"  | 
|
336  | 
by simp  | 
|
337  | 
||
338  | 
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"  | 
|
339  | 
by (simp add: expand_fun_eq)  | 
|
340  | 
||
341  | 
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"  | 
|
342  | 
by (rule ext, auto)  | 
|
343  | 
||
| 13910 | 344  | 
subsection{* overwrite *}
 | 
345  | 
||
346  | 
lemma overwrite_emptyset[simp]: "f(g|{}) = f"
 | 
|
347  | 
by(simp add:overwrite_def)  | 
|
348  | 
||
349  | 
lemma overwrite_apply_notin[simp]: "a ~: A ==> (f(g|A)) a = f a"  | 
|
350  | 
by(simp add:overwrite_def)  | 
|
351  | 
||
352  | 
lemma overwrite_apply_in[simp]: "a : A ==> (f(g|A)) a = g a"  | 
|
353  | 
by(simp add:overwrite_def)  | 
|
354  | 
||
| 13585 | 355  | 
text{*The ML section includes some compatibility bindings and a simproc
 | 
356  | 
for function updates, in addition to the usual ML-bindings of theorems.*}  | 
|
357  | 
ML  | 
|
358  | 
{*
 | 
|
359  | 
val id_def = thm "id_def";  | 
|
360  | 
val inj_on_def = thm "inj_on_def";  | 
|
361  | 
val surj_def = thm "surj_def";  | 
|
362  | 
val bij_def = thm "bij_def";  | 
|
363  | 
val fun_upd_def = thm "fun_upd_def";  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents: 
11123 
diff
changeset
 | 
364  | 
|
| 13585 | 365  | 
val o_def = thm "comp_def";  | 
366  | 
val injI = thm "inj_onI";  | 
|
367  | 
val inj_inverseI = thm "inj_on_inverseI";  | 
|
368  | 
val set_cs = claset() delrules [equalityI];  | 
|
369  | 
||
370  | 
val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))];
 | 
|
371  | 
||
372  | 
(* simplifies terms of the form f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *)  | 
|
373  | 
local  | 
|
374  | 
fun gen_fun_upd None T _ _ = None  | 
|
375  | 
    | gen_fun_upd (Some f) T x y = Some (Const ("Fun.fun_upd",T) $ f $ x $ y)
 | 
|
376  | 
fun dest_fun_T1 (Type (_, T :: Ts)) = T  | 
|
377  | 
  fun find_double (t as Const ("Fun.fun_upd",T) $ f $ x $ y) =
 | 
|
378  | 
let  | 
|
379  | 
      fun find (Const ("Fun.fun_upd",T) $ g $ v $ w) =
 | 
|
380  | 
if v aconv x then Some g else gen_fun_upd (find g) T v w  | 
|
381  | 
| find t = None  | 
|
382  | 
in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end  | 
|
383  | 
||
384  | 
val ss = simpset ()  | 
|
385  | 
val fun_upd_prover = K (rtac eq_reflection 1 THEN rtac ext 1 THEN simp_tac ss 1)  | 
|
386  | 
in  | 
|
387  | 
val fun_upd2_simproc =  | 
|
388  | 
Simplifier.simproc (Theory.sign_of (the_context ()))  | 
|
389  | 
"fun_upd2" ["f(v := w, x := y)"]  | 
|
390  | 
(fn sg => fn _ => fn t =>  | 
|
391  | 
case find_double t of (T, None) => None  | 
|
392  | 
| (T, Some rhs) => Some (Tactic.prove sg [] [] (Term.equals T $ t $ rhs) fun_upd_prover))  | 
|
393  | 
end;  | 
|
394  | 
Addsimprocs[fun_upd2_simproc];  | 
|
| 5852 | 395  | 
|
| 13585 | 396  | 
val expand_fun_eq = thm "expand_fun_eq";  | 
397  | 
val apply_inverse = thm "apply_inverse";  | 
|
398  | 
val id_apply = thm "id_apply";  | 
|
399  | 
val o_apply = thm "o_apply";  | 
|
400  | 
val o_assoc = thm "o_assoc";  | 
|
401  | 
val id_o = thm "id_o";  | 
|
402  | 
val o_id = thm "o_id";  | 
|
403  | 
val image_compose = thm "image_compose";  | 
|
404  | 
val image_eq_UN = thm "image_eq_UN";  | 
|
405  | 
val UN_o = thm "UN_o";  | 
|
406  | 
val datatype_injI = thm "datatype_injI";  | 
|
407  | 
val injD = thm "injD";  | 
|
408  | 
val inj_eq = thm "inj_eq";  | 
|
409  | 
val inj_onI = thm "inj_onI";  | 
|
410  | 
val inj_on_inverseI = thm "inj_on_inverseI";  | 
|
411  | 
val inj_onD = thm "inj_onD";  | 
|
412  | 
val inj_on_iff = thm "inj_on_iff";  | 
|
413  | 
val comp_inj_on = thm "comp_inj_on";  | 
|
414  | 
val inj_on_contraD = thm "inj_on_contraD";  | 
|
415  | 
val inj_singleton = thm "inj_singleton";  | 
|
416  | 
val subset_inj_on = thm "subset_inj_on";  | 
|
417  | 
val surjI = thm "surjI";  | 
|
418  | 
val surj_range = thm "surj_range";  | 
|
419  | 
val surjD = thm "surjD";  | 
|
420  | 
val surjE = thm "surjE";  | 
|
421  | 
val comp_surj = thm "comp_surj";  | 
|
422  | 
val bijI = thm "bijI";  | 
|
423  | 
val bij_is_inj = thm "bij_is_inj";  | 
|
424  | 
val bij_is_surj = thm "bij_is_surj";  | 
|
425  | 
val image_ident = thm "image_ident";  | 
|
426  | 
val image_id = thm "image_id";  | 
|
427  | 
val vimage_ident = thm "vimage_ident";  | 
|
428  | 
val vimage_id = thm "vimage_id";  | 
|
429  | 
val vimage_image_eq = thm "vimage_image_eq";  | 
|
430  | 
val image_vimage_subset = thm "image_vimage_subset";  | 
|
431  | 
val image_vimage_eq = thm "image_vimage_eq";  | 
|
432  | 
val surj_image_vimage_eq = thm "surj_image_vimage_eq";  | 
|
433  | 
val inj_vimage_image_eq = thm "inj_vimage_image_eq";  | 
|
434  | 
val vimage_subsetD = thm "vimage_subsetD";  | 
|
435  | 
val vimage_subsetI = thm "vimage_subsetI";  | 
|
436  | 
val vimage_subset_eq = thm "vimage_subset_eq";  | 
|
437  | 
val image_Int_subset = thm "image_Int_subset";  | 
|
438  | 
val image_diff_subset = thm "image_diff_subset";  | 
|
439  | 
val inj_on_image_Int = thm "inj_on_image_Int";  | 
|
440  | 
val inj_on_image_set_diff = thm "inj_on_image_set_diff";  | 
|
441  | 
val image_Int = thm "image_Int";  | 
|
442  | 
val image_set_diff = thm "image_set_diff";  | 
|
443  | 
val inj_image_mem_iff = thm "inj_image_mem_iff";  | 
|
444  | 
val inj_image_subset_iff = thm "inj_image_subset_iff";  | 
|
445  | 
val inj_image_eq_iff = thm "inj_image_eq_iff";  | 
|
446  | 
val image_UN = thm "image_UN";  | 
|
447  | 
val image_INT = thm "image_INT";  | 
|
448  | 
val bij_image_INT = thm "bij_image_INT";  | 
|
449  | 
val surj_Compl_image_subset = thm "surj_Compl_image_subset";  | 
|
450  | 
val inj_image_Compl_subset = thm "inj_image_Compl_subset";  | 
|
451  | 
val bij_image_Compl_eq = thm "bij_image_Compl_eq";  | 
|
452  | 
val fun_upd_idem_iff = thm "fun_upd_idem_iff";  | 
|
453  | 
val fun_upd_idem = thm "fun_upd_idem";  | 
|
454  | 
val fun_upd_apply = thm "fun_upd_apply";  | 
|
455  | 
val fun_upd_same = thm "fun_upd_same";  | 
|
456  | 
val fun_upd_other = thm "fun_upd_other";  | 
|
457  | 
val fun_upd_upd = thm "fun_upd_upd";  | 
|
458  | 
val fun_upd_twist = thm "fun_upd_twist";  | 
|
| 13637 | 459  | 
val range_ex1_eq = thm "range_ex1_eq";  | 
| 13585 | 460  | 
*}  | 
| 5852 | 461  | 
|
| 2912 | 462  | 
end  |