author | paulson |
Tue, 11 May 2004 10:47:15 +0200 | |
changeset 14732 | 967db86e853c |
parent 14565 | c6dc17aab88a |
child 15111 | c108189645f8 |
permissions | -rw-r--r-- |
1475 | 1 |
(* Title: HOL/Fun.thy |
923 | 2 |
ID: $Id$ |
1475 | 3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
923 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
2912 | 6 |
Notions about functions. |
923 | 7 |
*) |
8 |
||
13585 | 9 |
theory Fun = Typedef: |
2912 | 10 |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
12258
diff
changeset
|
11 |
instance set :: (type) order |
13585 | 12 |
by (intro_classes, |
13 |
(assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+) |
|
14 |
||
15 |
constdefs |
|
16 |
fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" |
|
17 |
"fun_upd f a b == % x. if x=a then b else f x" |
|
6171 | 18 |
|
9141 | 19 |
nonterminals |
20 |
updbinds updbind |
|
5305 | 21 |
syntax |
13585 | 22 |
"_updbind" :: "['a, 'a] => updbind" ("(2_ :=/ _)") |
23 |
"" :: "updbind => updbinds" ("_") |
|
24 |
"_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _") |
|
25 |
"_Update" :: "['a, updbinds] => 'a" ("_/'((_)')" [1000,0] 900) |
|
5305 | 26 |
|
27 |
translations |
|
28 |
"_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" |
|
29 |
"f(x:=y)" == "fun_upd f x y" |
|
2912 | 30 |
|
9340 | 31 |
(* Hint: to define the sum of two functions (or maps), use sum_case. |
32 |
A nice infix syntax could be defined (in Datatype.thy or below) by |
|
33 |
consts |
|
34 |
fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80) |
|
35 |
translations |
|
13585 | 36 |
"fun_sum" == sum_case |
9340 | 37 |
*) |
12258 | 38 |
|
6171 | 39 |
constdefs |
13910 | 40 |
overwrite :: "('a => 'b) => ('a => 'b) => 'a set => ('a => 'b)" |
41 |
("_/'(_|/_')" [900,0,0]900) |
|
42 |
"f(g|A) == %a. if a : A then g a else f a" |
|
6171 | 43 |
|
13910 | 44 |
id :: "'a => 'a" |
45 |
"id == %x. x" |
|
46 |
||
47 |
comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "o" 55) |
|
48 |
"f o g == %x. f(g(x))" |
|
11123 | 49 |
|
13585 | 50 |
text{*compatibility*} |
51 |
lemmas o_def = comp_def |
|
2912 | 52 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
11609
diff
changeset
|
53 |
syntax (xsymbols) |
13585 | 54 |
comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "\<circ>" 55) |
14565 | 55 |
syntax (HTML output) |
56 |
comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "\<circ>" 55) |
|
13585 | 57 |
|
9352 | 58 |
|
13585 | 59 |
constdefs |
60 |
inj_on :: "['a => 'b, 'a set] => bool" (*injective*) |
|
61 |
"inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y" |
|
6171 | 62 |
|
13585 | 63 |
text{*A common special case: functions injective over the entire domain type.*} |
64 |
syntax inj :: "('a => 'b) => bool" |
|
6171 | 65 |
translations |
66 |
"inj f" == "inj_on f UNIV" |
|
5852 | 67 |
|
7374 | 68 |
constdefs |
13585 | 69 |
surj :: "('a => 'b) => bool" (*surjective*) |
7374 | 70 |
"surj f == ! y. ? x. y=f(x)" |
12258 | 71 |
|
13585 | 72 |
bij :: "('a => 'b) => bool" (*bijective*) |
7374 | 73 |
"bij f == inj f & surj f" |
12258 | 74 |
|
7374 | 75 |
|
13585 | 76 |
|
77 |
text{*As a simplification rule, it replaces all function equalities by |
|
78 |
first-order equalities.*} |
|
79 |
lemma expand_fun_eq: "(f = g) = (! x. f(x)=g(x))" |
|
80 |
apply (rule iffI) |
|
81 |
apply (simp (no_asm_simp)) |
|
82 |
apply (rule ext, simp (no_asm_simp)) |
|
83 |
done |
|
84 |
||
85 |
lemma apply_inverse: |
|
86 |
"[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)" |
|
87 |
by auto |
|
88 |
||
89 |
||
90 |
text{*The Identity Function: @{term id}*} |
|
91 |
lemma id_apply [simp]: "id x = x" |
|
92 |
by (simp add: id_def) |
|
93 |
||
94 |
||
95 |
subsection{*The Composition Operator: @{term "f \<circ> g"}*} |
|
96 |
||
97 |
lemma o_apply [simp]: "(f o g) x = f (g x)" |
|
98 |
by (simp add: comp_def) |
|
99 |
||
100 |
lemma o_assoc: "f o (g o h) = f o g o h" |
|
101 |
by (simp add: comp_def) |
|
102 |
||
103 |
lemma id_o [simp]: "id o g = g" |
|
104 |
by (simp add: comp_def) |
|
105 |
||
106 |
lemma o_id [simp]: "f o id = f" |
|
107 |
by (simp add: comp_def) |
|
108 |
||
109 |
lemma image_compose: "(f o g) ` r = f`(g`r)" |
|
110 |
by (simp add: comp_def, blast) |
|
111 |
||
112 |
lemma image_eq_UN: "f`A = (UN x:A. {f x})" |
|
113 |
by blast |
|
114 |
||
115 |
lemma UN_o: "UNION A (g o f) = UNION (f`A) g" |
|
116 |
by (unfold comp_def, blast) |
|
117 |
||
118 |
||
119 |
subsection{*The Injectivity Predicate, @{term inj}*} |
|
120 |
||
121 |
text{*NB: @{term inj} now just translates to @{term inj_on}*} |
|
122 |
||
123 |
||
124 |
text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*} |
|
125 |
lemma datatype_injI: |
|
126 |
"(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)" |
|
127 |
by (simp add: inj_on_def) |
|
128 |
||
13637 | 129 |
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)" |
130 |
by (unfold inj_on_def, blast) |
|
131 |
||
13585 | 132 |
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y" |
133 |
by (simp add: inj_on_def) |
|
134 |
||
135 |
(*Useful with the simplifier*) |
|
136 |
lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)" |
|
137 |
by (force simp add: inj_on_def) |
|
138 |
||
139 |
||
140 |
subsection{*The Predicate @{term inj_on}: Injectivity On A Restricted Domain*} |
|
141 |
||
142 |
lemma inj_onI: |
|
143 |
"(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A" |
|
144 |
by (simp add: inj_on_def) |
|
145 |
||
146 |
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A" |
|
147 |
by (auto dest: arg_cong [of concl: g] simp add: inj_on_def) |
|
148 |
||
149 |
lemma inj_onD: "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y" |
|
150 |
by (unfold inj_on_def, blast) |
|
151 |
||
152 |
lemma inj_on_iff: "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)" |
|
153 |
by (blast dest!: inj_onD) |
|
154 |
||
155 |
lemma comp_inj_on: |
|
156 |
"[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A" |
|
157 |
by (simp add: comp_def inj_on_def) |
|
158 |
||
159 |
lemma inj_on_contraD: "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)" |
|
160 |
by (unfold inj_on_def, blast) |
|
12258 | 161 |
|
13585 | 162 |
lemma inj_singleton: "inj (%s. {s})" |
163 |
by (simp add: inj_on_def) |
|
164 |
||
165 |
lemma subset_inj_on: "[| A<=B; inj_on f B |] ==> inj_on f A" |
|
166 |
by (unfold inj_on_def, blast) |
|
167 |
||
168 |
||
169 |
subsection{*The Predicate @{term surj}: Surjectivity*} |
|
170 |
||
171 |
lemma surjI: "(!! x. g(f x) = x) ==> surj g" |
|
172 |
apply (simp add: surj_def) |
|
173 |
apply (blast intro: sym) |
|
174 |
done |
|
175 |
||
176 |
lemma surj_range: "surj f ==> range f = UNIV" |
|
177 |
by (auto simp add: surj_def) |
|
178 |
||
179 |
lemma surjD: "surj f ==> EX x. y = f x" |
|
180 |
by (simp add: surj_def) |
|
181 |
||
182 |
lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C" |
|
183 |
by (simp add: surj_def, blast) |
|
184 |
||
185 |
lemma comp_surj: "[| surj f; surj g |] ==> surj (g o f)" |
|
186 |
apply (simp add: comp_def surj_def, clarify) |
|
187 |
apply (drule_tac x = y in spec, clarify) |
|
188 |
apply (drule_tac x = x in spec, blast) |
|
189 |
done |
|
190 |
||
191 |
||
192 |
||
193 |
subsection{*The Predicate @{term bij}: Bijectivity*} |
|
194 |
||
195 |
lemma bijI: "[| inj f; surj f |] ==> bij f" |
|
196 |
by (simp add: bij_def) |
|
197 |
||
198 |
lemma bij_is_inj: "bij f ==> inj f" |
|
199 |
by (simp add: bij_def) |
|
200 |
||
201 |
lemma bij_is_surj: "bij f ==> surj f" |
|
202 |
by (simp add: bij_def) |
|
203 |
||
204 |
||
205 |
subsection{*Facts About the Identity Function*} |
|
5852 | 206 |
|
13585 | 207 |
text{*We seem to need both the @{term id} forms and the @{term "\<lambda>x. x"} |
208 |
forms. The latter can arise by rewriting, while @{term id} may be used |
|
209 |
explicitly.*} |
|
210 |
||
211 |
lemma image_ident [simp]: "(%x. x) ` Y = Y" |
|
212 |
by blast |
|
213 |
||
214 |
lemma image_id [simp]: "id ` Y = Y" |
|
215 |
by (simp add: id_def) |
|
216 |
||
217 |
lemma vimage_ident [simp]: "(%x. x) -` Y = Y" |
|
218 |
by blast |
|
219 |
||
220 |
lemma vimage_id [simp]: "id -` A = A" |
|
221 |
by (simp add: id_def) |
|
222 |
||
223 |
lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}" |
|
224 |
by (blast intro: sym) |
|
225 |
||
226 |
lemma image_vimage_subset: "f ` (f -` A) <= A" |
|
227 |
by blast |
|
228 |
||
229 |
lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f" |
|
230 |
by blast |
|
231 |
||
232 |
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A" |
|
233 |
by (simp add: surj_range) |
|
234 |
||
235 |
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A" |
|
236 |
by (simp add: inj_on_def, blast) |
|
237 |
||
238 |
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A" |
|
239 |
apply (unfold surj_def) |
|
240 |
apply (blast intro: sym) |
|
241 |
done |
|
242 |
||
243 |
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A" |
|
244 |
by (unfold inj_on_def, blast) |
|
245 |
||
246 |
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)" |
|
247 |
apply (unfold bij_def) |
|
248 |
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD) |
|
249 |
done |
|
250 |
||
251 |
lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B" |
|
252 |
by blast |
|
253 |
||
254 |
lemma image_diff_subset: "f`A - f`B <= f`(A - B)" |
|
255 |
by blast |
|
5852 | 256 |
|
13585 | 257 |
lemma inj_on_image_Int: |
258 |
"[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B" |
|
259 |
apply (simp add: inj_on_def, blast) |
|
260 |
done |
|
261 |
||
262 |
lemma inj_on_image_set_diff: |
|
263 |
"[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B" |
|
264 |
apply (simp add: inj_on_def, blast) |
|
265 |
done |
|
266 |
||
267 |
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B" |
|
268 |
by (simp add: inj_on_def, blast) |
|
269 |
||
270 |
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B" |
|
271 |
by (simp add: inj_on_def, blast) |
|
272 |
||
273 |
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)" |
|
274 |
by (blast dest: injD) |
|
275 |
||
276 |
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)" |
|
277 |
by (simp add: inj_on_def, blast) |
|
278 |
||
279 |
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)" |
|
280 |
by (blast dest: injD) |
|
281 |
||
282 |
lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))" |
|
283 |
by blast |
|
284 |
||
285 |
(*injectivity's required. Left-to-right inclusion holds even if A is empty*) |
|
286 |
lemma image_INT: |
|
287 |
"[| inj_on f C; ALL x:A. B x <= C; j:A |] |
|
288 |
==> f ` (INTER A B) = (INT x:A. f ` B x)" |
|
289 |
apply (simp add: inj_on_def, blast) |
|
290 |
done |
|
291 |
||
292 |
(*Compare with image_INT: no use of inj_on, and if f is surjective then |
|
293 |
it doesn't matter whether A is empty*) |
|
294 |
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)" |
|
295 |
apply (simp add: bij_def) |
|
296 |
apply (simp add: inj_on_def surj_def, blast) |
|
297 |
done |
|
298 |
||
299 |
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)" |
|
300 |
by (auto simp add: surj_def) |
|
301 |
||
302 |
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)" |
|
303 |
by (auto simp add: inj_on_def) |
|
5852 | 304 |
|
13585 | 305 |
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)" |
306 |
apply (simp add: bij_def) |
|
307 |
apply (rule equalityI) |
|
308 |
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset) |
|
309 |
done |
|
310 |
||
311 |
||
312 |
subsection{*Function Updating*} |
|
313 |
||
314 |
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)" |
|
315 |
apply (simp add: fun_upd_def, safe) |
|
316 |
apply (erule subst) |
|
317 |
apply (rule_tac [2] ext, auto) |
|
318 |
done |
|
319 |
||
320 |
(* f x = y ==> f(x:=y) = f *) |
|
321 |
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard] |
|
322 |
||
323 |
(* f(x := f x) = f *) |
|
324 |
declare refl [THEN fun_upd_idem, iff] |
|
325 |
||
326 |
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)" |
|
327 |
apply (simp (no_asm) add: fun_upd_def) |
|
328 |
done |
|
329 |
||
330 |
(* fun_upd_apply supersedes these two, but they are useful |
|
331 |
if fun_upd_apply is intentionally removed from the simpset *) |
|
332 |
lemma fun_upd_same: "(f(x:=y)) x = y" |
|
333 |
by simp |
|
334 |
||
335 |
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z" |
|
336 |
by simp |
|
337 |
||
338 |
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)" |
|
339 |
by (simp add: expand_fun_eq) |
|
340 |
||
341 |
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)" |
|
342 |
by (rule ext, auto) |
|
343 |
||
13910 | 344 |
subsection{* overwrite *} |
345 |
||
346 |
lemma overwrite_emptyset[simp]: "f(g|{}) = f" |
|
347 |
by(simp add:overwrite_def) |
|
348 |
||
349 |
lemma overwrite_apply_notin[simp]: "a ~: A ==> (f(g|A)) a = f a" |
|
350 |
by(simp add:overwrite_def) |
|
351 |
||
352 |
lemma overwrite_apply_in[simp]: "a : A ==> (f(g|A)) a = g a" |
|
353 |
by(simp add:overwrite_def) |
|
354 |
||
13585 | 355 |
text{*The ML section includes some compatibility bindings and a simproc |
356 |
for function updates, in addition to the usual ML-bindings of theorems.*} |
|
357 |
ML |
|
358 |
{* |
|
359 |
val id_def = thm "id_def"; |
|
360 |
val inj_on_def = thm "inj_on_def"; |
|
361 |
val surj_def = thm "surj_def"; |
|
362 |
val bij_def = thm "bij_def"; |
|
363 |
val fun_upd_def = thm "fun_upd_def"; |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11123
diff
changeset
|
364 |
|
13585 | 365 |
val o_def = thm "comp_def"; |
366 |
val injI = thm "inj_onI"; |
|
367 |
val inj_inverseI = thm "inj_on_inverseI"; |
|
368 |
val set_cs = claset() delrules [equalityI]; |
|
369 |
||
370 |
val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))]; |
|
371 |
||
372 |
(* simplifies terms of the form f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *) |
|
373 |
local |
|
374 |
fun gen_fun_upd None T _ _ = None |
|
375 |
| gen_fun_upd (Some f) T x y = Some (Const ("Fun.fun_upd",T) $ f $ x $ y) |
|
376 |
fun dest_fun_T1 (Type (_, T :: Ts)) = T |
|
377 |
fun find_double (t as Const ("Fun.fun_upd",T) $ f $ x $ y) = |
|
378 |
let |
|
379 |
fun find (Const ("Fun.fun_upd",T) $ g $ v $ w) = |
|
380 |
if v aconv x then Some g else gen_fun_upd (find g) T v w |
|
381 |
| find t = None |
|
382 |
in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end |
|
383 |
||
384 |
val ss = simpset () |
|
385 |
val fun_upd_prover = K (rtac eq_reflection 1 THEN rtac ext 1 THEN simp_tac ss 1) |
|
386 |
in |
|
387 |
val fun_upd2_simproc = |
|
388 |
Simplifier.simproc (Theory.sign_of (the_context ())) |
|
389 |
"fun_upd2" ["f(v := w, x := y)"] |
|
390 |
(fn sg => fn _ => fn t => |
|
391 |
case find_double t of (T, None) => None |
|
392 |
| (T, Some rhs) => Some (Tactic.prove sg [] [] (Term.equals T $ t $ rhs) fun_upd_prover)) |
|
393 |
end; |
|
394 |
Addsimprocs[fun_upd2_simproc]; |
|
5852 | 395 |
|
13585 | 396 |
val expand_fun_eq = thm "expand_fun_eq"; |
397 |
val apply_inverse = thm "apply_inverse"; |
|
398 |
val id_apply = thm "id_apply"; |
|
399 |
val o_apply = thm "o_apply"; |
|
400 |
val o_assoc = thm "o_assoc"; |
|
401 |
val id_o = thm "id_o"; |
|
402 |
val o_id = thm "o_id"; |
|
403 |
val image_compose = thm "image_compose"; |
|
404 |
val image_eq_UN = thm "image_eq_UN"; |
|
405 |
val UN_o = thm "UN_o"; |
|
406 |
val datatype_injI = thm "datatype_injI"; |
|
407 |
val injD = thm "injD"; |
|
408 |
val inj_eq = thm "inj_eq"; |
|
409 |
val inj_onI = thm "inj_onI"; |
|
410 |
val inj_on_inverseI = thm "inj_on_inverseI"; |
|
411 |
val inj_onD = thm "inj_onD"; |
|
412 |
val inj_on_iff = thm "inj_on_iff"; |
|
413 |
val comp_inj_on = thm "comp_inj_on"; |
|
414 |
val inj_on_contraD = thm "inj_on_contraD"; |
|
415 |
val inj_singleton = thm "inj_singleton"; |
|
416 |
val subset_inj_on = thm "subset_inj_on"; |
|
417 |
val surjI = thm "surjI"; |
|
418 |
val surj_range = thm "surj_range"; |
|
419 |
val surjD = thm "surjD"; |
|
420 |
val surjE = thm "surjE"; |
|
421 |
val comp_surj = thm "comp_surj"; |
|
422 |
val bijI = thm "bijI"; |
|
423 |
val bij_is_inj = thm "bij_is_inj"; |
|
424 |
val bij_is_surj = thm "bij_is_surj"; |
|
425 |
val image_ident = thm "image_ident"; |
|
426 |
val image_id = thm "image_id"; |
|
427 |
val vimage_ident = thm "vimage_ident"; |
|
428 |
val vimage_id = thm "vimage_id"; |
|
429 |
val vimage_image_eq = thm "vimage_image_eq"; |
|
430 |
val image_vimage_subset = thm "image_vimage_subset"; |
|
431 |
val image_vimage_eq = thm "image_vimage_eq"; |
|
432 |
val surj_image_vimage_eq = thm "surj_image_vimage_eq"; |
|
433 |
val inj_vimage_image_eq = thm "inj_vimage_image_eq"; |
|
434 |
val vimage_subsetD = thm "vimage_subsetD"; |
|
435 |
val vimage_subsetI = thm "vimage_subsetI"; |
|
436 |
val vimage_subset_eq = thm "vimage_subset_eq"; |
|
437 |
val image_Int_subset = thm "image_Int_subset"; |
|
438 |
val image_diff_subset = thm "image_diff_subset"; |
|
439 |
val inj_on_image_Int = thm "inj_on_image_Int"; |
|
440 |
val inj_on_image_set_diff = thm "inj_on_image_set_diff"; |
|
441 |
val image_Int = thm "image_Int"; |
|
442 |
val image_set_diff = thm "image_set_diff"; |
|
443 |
val inj_image_mem_iff = thm "inj_image_mem_iff"; |
|
444 |
val inj_image_subset_iff = thm "inj_image_subset_iff"; |
|
445 |
val inj_image_eq_iff = thm "inj_image_eq_iff"; |
|
446 |
val image_UN = thm "image_UN"; |
|
447 |
val image_INT = thm "image_INT"; |
|
448 |
val bij_image_INT = thm "bij_image_INT"; |
|
449 |
val surj_Compl_image_subset = thm "surj_Compl_image_subset"; |
|
450 |
val inj_image_Compl_subset = thm "inj_image_Compl_subset"; |
|
451 |
val bij_image_Compl_eq = thm "bij_image_Compl_eq"; |
|
452 |
val fun_upd_idem_iff = thm "fun_upd_idem_iff"; |
|
453 |
val fun_upd_idem = thm "fun_upd_idem"; |
|
454 |
val fun_upd_apply = thm "fun_upd_apply"; |
|
455 |
val fun_upd_same = thm "fun_upd_same"; |
|
456 |
val fun_upd_other = thm "fun_upd_other"; |
|
457 |
val fun_upd_upd = thm "fun_upd_upd"; |
|
458 |
val fun_upd_twist = thm "fun_upd_twist"; |
|
13637 | 459 |
val range_ex1_eq = thm "range_ex1_eq"; |
13585 | 460 |
*} |
5852 | 461 |
|
2912 | 462 |
end |