src/HOL/PreList.thy
author paulson
Tue, 11 May 2004 10:47:15 +0200
changeset 14732 967db86e853c
parent 14577 dbb95b825244
child 15131 c69542757a4d
permissions -rw-r--r--
auto update
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10519
ade64af4c57c hide many names from Datatype_Universe.
nipkow
parents: 10261
diff changeset
     1
(*  Title:      HOL/PreList.thy
8563
2746bc9a7ef2 comments
nipkow
parents: 8490
diff changeset
     2
    ID:         $Id$
10733
59f82484e000 hide type node item;
wenzelm
parents: 10680
diff changeset
     3
    Author:     Tobias Nipkow and Markus Wenzel
8563
2746bc9a7ef2 comments
nipkow
parents: 8490
diff changeset
     4
    Copyright   2000 TU Muenchen
2746bc9a7ef2 comments
nipkow
parents: 8490
diff changeset
     5
*)
8490
6e0f23304061 added HOL/PreLIst.thy;
wenzelm
parents:
diff changeset
     6
14125
paulson
parents: 13878
diff changeset
     7
header{*A Basis for Building the Theory of Lists*}
12020
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11955
diff changeset
     8
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14125
diff changeset
     9
theory PreList =
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14125
diff changeset
    10
    Wellfounded_Relations + Presburger + Recdef + Relation_Power + Parity:
12397
6766aa05e4eb less_induct, wf_induct_rule;
wenzelm
parents: 12304
diff changeset
    11
14577
dbb95b825244 tuned document;
wenzelm
parents: 14430
diff changeset
    12
text {*
dbb95b825244 tuned document;
wenzelm
parents: 14430
diff changeset
    13
  Is defined separately to serve as a basis for theory ToyList in the
dbb95b825244 tuned document;
wenzelm
parents: 14430
diff changeset
    14
  documentation. *}
dbb95b825244 tuned document;
wenzelm
parents: 14430
diff changeset
    15
12397
6766aa05e4eb less_induct, wf_induct_rule;
wenzelm
parents: 12304
diff changeset
    16
lemmas wf_induct_rule = wf_induct [rule_format, case_names less, induct set: wf]
14577
dbb95b825244 tuned document;
wenzelm
parents: 14430
diff changeset
    17
  -- {* belongs to theory @{text Wellfounded_Recursion} *}
9066
b1e874e38dab theorems [cases type: bool] = case_split;
wenzelm
parents: 8862
diff changeset
    18
8490
6e0f23304061 added HOL/PreLIst.thy;
wenzelm
parents:
diff changeset
    19
end