author | paulson |
Tue, 11 May 2004 10:47:15 +0200 | |
changeset 14732 | 967db86e853c |
parent 11451 | 8abfb4f7bd02 |
child 15341 | 254f6f00b60e |
permissions | -rw-r--r-- |
10213 | 1 |
(* Title: HOL/Wellfounded_Recursion.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow |
|
4 |
Copyright 1992 University of Cambridge |
|
5 |
||
6 |
Well-founded Recursion |
|
7 |
*) |
|
8 |
||
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11328
diff
changeset
|
9 |
Wellfounded_Recursion = Transitive_Closure + |
10213 | 10 |
|
11328 | 11 |
consts |
12 |
wfrec_rel :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => ('a * 'b) set" |
|
13 |
||
14 |
inductive "wfrec_rel R F" |
|
15 |
intrs |
|
16 |
wfrecI "ALL z. (z, x) : R --> (z, g z) : wfrec_rel R F ==> |
|
17 |
(x, F g x) : wfrec_rel R F" |
|
18 |
||
10213 | 19 |
constdefs |
20 |
wf :: "('a * 'a)set => bool" |
|
21 |
"wf(r) == (!P. (!x. (!y. (y,x):r --> P(y)) --> P(x)) --> (!x. P(x)))" |
|
22 |
||
23 |
acyclic :: "('a*'a)set => bool" |
|
24 |
"acyclic r == !x. (x,x) ~: r^+" |
|
25 |
||
26 |
cut :: "('a => 'b) => ('a * 'a)set => 'a => 'a => 'b" |
|
27 |
"cut f r x == (%y. if (y,x):r then f y else arbitrary)" |
|
28 |
||
11328 | 29 |
adm_wf :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => bool" |
30 |
"adm_wf R F == ALL f g x. |
|
31 |
(ALL z. (z, x) : R --> f z = g z) --> F f x = F g x" |
|
10213 | 32 |
|
11328 | 33 |
wfrec :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => 'a => 'b" |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11328
diff
changeset
|
34 |
"wfrec R F == %x. THE y. (x, y) : wfrec_rel R (%f x. F (cut f R x) x)" |
10213 | 35 |
|
11137 | 36 |
axclass |
37 |
wellorder < linorder |
|
38 |
wf "wf {(x,y::'a::ord). x<y}" |
|
39 |
||
10213 | 40 |
end |