| author | paulson | 
| Mon, 19 Apr 2004 12:12:01 +0200 | |
| changeset 14629 | 96bcf6d0bf72 | 
| parent 14200 | d8598e24f8fa | 
| child 15032 | 02aed07e01bf | 
| permissions | -rw-r--r-- | 
| 1839 | 1 | (* Title: HOL/Auth/Message | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1996 University of Cambridge | |
| 5 | ||
| 6 | Datatypes of agents and messages; | |
| 1913 | 7 | Inductive relations "parts", "analz" and "synth" | 
| 1839 | 8 | *) | 
| 9 | ||
| 13956 | 10 | header{*Theory of Agents and Messages for Security Protocols*}
 | 
| 11 | ||
| 13926 | 12 | theory Message = Main: | 
| 11189 | 13 | |
| 14 | (*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*) | |
| 13926 | 15 | lemma [simp] : "A \<union> (B \<union> A) = B \<union> A" | 
| 11189 | 16 | by blast | 
| 1839 | 17 | |
| 18 | types | |
| 19 | key = nat | |
| 20 | ||
| 21 | consts | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 22 |   all_symmetric :: bool        --{*true if all keys are symmetric*}
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 23 |   invKey        :: "key=>key"  --{*inverse of a symmetric key*}
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 24 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 25 | specification (invKey) | 
| 14181 | 26 | invKey [simp]: "invKey (invKey K) = K" | 
| 27 | invKey_symmetric: "all_symmetric --> invKey = id" | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 28 | by (rule exI [of _ id], auto) | 
| 1839 | 29 | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 30 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 31 | text{*The inverse of a symmetric key is itself; that of a public key
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 32 | is the private key and vice versa*} | 
| 1839 | 33 | |
| 34 | constdefs | |
| 11230 
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
 paulson parents: 
11192diff
changeset | 35 | symKeys :: "key set" | 
| 
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
 paulson parents: 
11192diff
changeset | 36 |   "symKeys == {K. invKey K = K}"
 | 
| 1839 | 37 | |
| 38 | datatype (*We allow any number of friendly agents*) | |
| 2032 | 39 | agent = Server | Friend nat | Spy | 
| 1839 | 40 | |
| 3668 | 41 | datatype | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 42 |      msg = Agent  agent	    --{*Agent names*}
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 43 |          | Number nat       --{*Ordinary integers, timestamps, ...*}
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 44 |          | Nonce  nat       --{*Unguessable nonces*}
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 45 |          | Key    key       --{*Crypto keys*}
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 46 | 	 | Hash   msg       --{*Hashing*}
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 47 | 	 | MPair  msg msg   --{*Compound messages*}
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 48 | 	 | Crypt  key msg   --{*Encryption, public- or shared-key*}
 | 
| 1839 | 49 | |
| 5234 | 50 | |
| 51 | (*Concrete syntax: messages appear as {|A,B,NA|}, etc...*)
 | |
| 52 | syntax | |
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2484diff
changeset | 53 |   "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2{|_,/ _|})")
 | 
| 1839 | 54 | |
| 9686 | 55 | syntax (xsymbols) | 
| 11189 | 56 |   "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
 | 
| 9686 | 57 | |
| 1839 | 58 | translations | 
| 59 |   "{|x, y, z|}"   == "{|x, {|y, z|}|}"
 | |
| 60 |   "{|x, y|}"      == "MPair x y"
 | |
| 61 | ||
| 62 | ||
| 2484 | 63 | constdefs | 
| 64 | (*Message Y, paired with a MAC computed with the help of X*) | |
| 11189 | 65 |   HPair :: "[msg,msg] => msg"                       ("(4Hash[_] /_)" [0, 1000])
 | 
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2484diff
changeset | 66 |     "Hash[X] Y == {| Hash{|X,Y|}, Y|}"
 | 
| 2484 | 67 | |
| 68 | (*Keys useful to decrypt elements of a message set*) | |
| 11189 | 69 | keysFor :: "msg set => key set" | 
| 11192 | 70 |   "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 | 
| 1839 | 71 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 72 | subsubsection{*Inductive definition of all "parts" of a message.  *}
 | 
| 1839 | 73 | |
| 11189 | 74 | consts parts :: "msg set => msg set" | 
| 1839 | 75 | inductive "parts H" | 
| 11189 | 76 | intros | 
| 11192 | 77 | Inj [intro]: "X \<in> H ==> X \<in> parts H" | 
| 78 |     Fst:         "{|X,Y|}   \<in> parts H ==> X \<in> parts H"
 | |
| 79 |     Snd:         "{|X,Y|}   \<in> parts H ==> Y \<in> parts H"
 | |
| 80 | Body: "Crypt K X \<in> parts H ==> X \<in> parts H" | |
| 11189 | 81 | |
| 82 | ||
| 83 | (*Monotonicity*) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 84 | lemma parts_mono: "G\<subseteq>H ==> parts(G) \<subseteq> parts(H)" | 
| 11189 | 85 | apply auto | 
| 86 | apply (erule parts.induct) | |
| 87 | apply (auto dest: Fst Snd Body) | |
| 88 | done | |
| 1839 | 89 | |
| 90 | ||
| 13926 | 91 | (*Equations hold because constructors are injective; cannot prove for all f*) | 
| 92 | lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)" | |
| 93 | by auto | |
| 94 | ||
| 95 | lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)" | |
| 96 | by auto | |
| 97 | ||
| 98 | lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)" | |
| 99 | by auto | |
| 100 | ||
| 101 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 102 | subsubsection{*Inverse of keys *}
 | 
| 13926 | 103 | |
| 104 | lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')" | |
| 105 | apply safe | |
| 106 | apply (drule_tac f = invKey in arg_cong, simp) | |
| 107 | done | |
| 108 | ||
| 109 | ||
| 110 | subsection{*keysFor operator*}
 | |
| 111 | ||
| 112 | lemma keysFor_empty [simp]: "keysFor {} = {}"
 | |
| 113 | by (unfold keysFor_def, blast) | |
| 114 | ||
| 115 | lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" | |
| 116 | by (unfold keysFor_def, blast) | |
| 117 | ||
| 118 | lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))" | |
| 119 | by (unfold keysFor_def, blast) | |
| 120 | ||
| 121 | (*Monotonicity*) | |
| 122 | lemma keysFor_mono: "G\<subseteq>H ==> keysFor(G) \<subseteq> keysFor(H)" | |
| 123 | by (unfold keysFor_def, blast) | |
| 124 | ||
| 125 | lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" | |
| 126 | by (unfold keysFor_def, auto) | |
| 127 | ||
| 128 | lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H" | |
| 129 | by (unfold keysFor_def, auto) | |
| 130 | ||
| 131 | lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H" | |
| 132 | by (unfold keysFor_def, auto) | |
| 133 | ||
| 134 | lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H" | |
| 135 | by (unfold keysFor_def, auto) | |
| 136 | ||
| 137 | lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H" | |
| 138 | by (unfold keysFor_def, auto) | |
| 139 | ||
| 140 | lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H"
 | |
| 141 | by (unfold keysFor_def, auto) | |
| 142 | ||
| 143 | lemma keysFor_insert_Crypt [simp]: | |
| 144 | "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)" | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 145 | by (unfold keysFor_def, auto) | 
| 13926 | 146 | |
| 147 | lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
 | |
| 148 | by (unfold keysFor_def, auto) | |
| 149 | ||
| 150 | lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H" | |
| 151 | by (unfold keysFor_def, blast) | |
| 152 | ||
| 153 | ||
| 154 | subsection{*Inductive relation "parts"*}
 | |
| 155 | ||
| 156 | lemma MPair_parts: | |
| 157 |      "[| {|X,Y|} \<in> parts H;        
 | |
| 158 | [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P" | |
| 159 | by (blast dest: parts.Fst parts.Snd) | |
| 160 | ||
| 161 | declare MPair_parts [elim!] parts.Body [dest!] | |
| 162 | text{*NB These two rules are UNSAFE in the formal sense, as they discard the
 | |
| 163 | compound message. They work well on THIS FILE. | |
| 164 |   @{text MPair_parts} is left as SAFE because it speeds up proofs.
 | |
| 165 | The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*} | |
| 166 | ||
| 167 | lemma parts_increasing: "H \<subseteq> parts(H)" | |
| 168 | by blast | |
| 169 | ||
| 170 | lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard] | |
| 171 | ||
| 172 | lemma parts_empty [simp]: "parts{} = {}"
 | |
| 173 | apply safe | |
| 174 | apply (erule parts.induct, blast+) | |
| 175 | done | |
| 176 | ||
| 177 | lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
 | |
| 178 | by simp | |
| 179 | ||
| 180 | (*WARNING: loops if H = {Y}, therefore must not be repeated!*)
 | |
| 181 | lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
 | |
| 182 | by (erule parts.induct, blast+) | |
| 183 | ||
| 184 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 185 | subsubsection{*Unions *}
 | 
| 13926 | 186 | |
| 187 | lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)" | |
| 188 | by (intro Un_least parts_mono Un_upper1 Un_upper2) | |
| 189 | ||
| 190 | lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)" | |
| 191 | apply (rule subsetI) | |
| 192 | apply (erule parts.induct, blast+) | |
| 193 | done | |
| 194 | ||
| 195 | lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)" | |
| 196 | by (intro equalityI parts_Un_subset1 parts_Un_subset2) | |
| 197 | ||
| 198 | lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
 | |
| 199 | apply (subst insert_is_Un [of _ H]) | |
| 200 | apply (simp only: parts_Un) | |
| 201 | done | |
| 202 | ||
| 203 | (*TWO inserts to avoid looping. This rewrite is better than nothing. | |
| 204 | Not suitable for Addsimps: its behaviour can be strange.*) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 205 | lemma parts_insert2: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 206 |      "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
 | 
| 13926 | 207 | apply (simp add: Un_assoc) | 
| 208 | apply (simp add: parts_insert [symmetric]) | |
| 209 | done | |
| 210 | ||
| 211 | lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)" | |
| 212 | by (intro UN_least parts_mono UN_upper) | |
| 213 | ||
| 214 | lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))" | |
| 215 | apply (rule subsetI) | |
| 216 | apply (erule parts.induct, blast+) | |
| 217 | done | |
| 218 | ||
| 219 | lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))" | |
| 220 | by (intro equalityI parts_UN_subset1 parts_UN_subset2) | |
| 221 | ||
| 222 | (*Added to simplify arguments to parts, analz and synth. | |
| 223 | NOTE: the UN versions are no longer used!*) | |
| 224 | ||
| 225 | ||
| 226 | text{*This allows @{text blast} to simplify occurrences of 
 | |
| 227 |   @{term "parts(G\<union>H)"} in the assumption.*}
 | |
| 228 | declare parts_Un [THEN equalityD1, THEN subsetD, THEN UnE, elim!] | |
| 229 | ||
| 230 | ||
| 231 | lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" | |
| 232 | by (blast intro: parts_mono [THEN [2] rev_subsetD]) | |
| 233 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 234 | subsubsection{*Idempotence and transitivity *}
 | 
| 13926 | 235 | |
| 236 | lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H" | |
| 237 | by (erule parts.induct, blast+) | |
| 238 | ||
| 239 | lemma parts_idem [simp]: "parts (parts H) = parts H" | |
| 240 | by blast | |
| 241 | ||
| 242 | lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H" | |
| 243 | by (drule parts_mono, blast) | |
| 244 | ||
| 245 | (*Cut*) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 246 | lemma parts_cut: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 247 | "[| Y\<in> parts (insert X G); X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 248 | by (erule parts_trans, auto) | 
| 13926 | 249 | |
| 250 | lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H" | |
| 251 | by (force dest!: parts_cut intro: parts_insertI) | |
| 252 | ||
| 253 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 254 | subsubsection{*Rewrite rules for pulling out atomic messages *}
 | 
| 13926 | 255 | |
| 256 | lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset] | |
| 257 | ||
| 258 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 259 | lemma parts_insert_Agent [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 260 | "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)" | 
| 13926 | 261 | apply (rule parts_insert_eq_I) | 
| 262 | apply (erule parts.induct, auto) | |
| 263 | done | |
| 264 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 265 | lemma parts_insert_Nonce [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 266 | "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)" | 
| 13926 | 267 | apply (rule parts_insert_eq_I) | 
| 268 | apply (erule parts.induct, auto) | |
| 269 | done | |
| 270 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 271 | lemma parts_insert_Number [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 272 | "parts (insert (Number N) H) = insert (Number N) (parts H)" | 
| 13926 | 273 | apply (rule parts_insert_eq_I) | 
| 274 | apply (erule parts.induct, auto) | |
| 275 | done | |
| 276 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 277 | lemma parts_insert_Key [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 278 | "parts (insert (Key K) H) = insert (Key K) (parts H)" | 
| 13926 | 279 | apply (rule parts_insert_eq_I) | 
| 280 | apply (erule parts.induct, auto) | |
| 281 | done | |
| 282 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 283 | lemma parts_insert_Hash [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 284 | "parts (insert (Hash X) H) = insert (Hash X) (parts H)" | 
| 13926 | 285 | apply (rule parts_insert_eq_I) | 
| 286 | apply (erule parts.induct, auto) | |
| 287 | done | |
| 288 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 289 | lemma parts_insert_Crypt [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 290 | "parts (insert (Crypt K X) H) = | 
| 13926 | 291 | insert (Crypt K X) (parts (insert X H))" | 
| 292 | apply (rule equalityI) | |
| 293 | apply (rule subsetI) | |
| 294 | apply (erule parts.induct, auto) | |
| 295 | apply (erule parts.induct) | |
| 296 | apply (blast intro: parts.Body)+ | |
| 297 | done | |
| 298 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 299 | lemma parts_insert_MPair [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 300 |      "parts (insert {|X,Y|} H) =  
 | 
| 13926 | 301 |           insert {|X,Y|} (parts (insert X (insert Y H)))"
 | 
| 302 | apply (rule equalityI) | |
| 303 | apply (rule subsetI) | |
| 304 | apply (erule parts.induct, auto) | |
| 305 | apply (erule parts.induct) | |
| 306 | apply (blast intro: parts.Fst parts.Snd)+ | |
| 307 | done | |
| 308 | ||
| 309 | lemma parts_image_Key [simp]: "parts (Key`N) = Key`N" | |
| 310 | apply auto | |
| 311 | apply (erule parts.induct, auto) | |
| 312 | done | |
| 313 | ||
| 314 | ||
| 315 | (*In any message, there is an upper bound N on its greatest nonce.*) | |
| 316 | lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
 | |
| 317 | apply (induct_tac "msg") | |
| 318 | apply (simp_all (no_asm_simp) add: exI parts_insert2) | |
| 319 | (*MPair case: blast_tac works out the necessary sum itself!*) | |
| 320 | prefer 2 apply (blast elim!: add_leE) | |
| 321 | (*Nonce case*) | |
| 322 | apply (rule_tac x = "N + Suc nat" in exI) | |
| 323 | apply (auto elim!: add_leE) | |
| 324 | done | |
| 325 | ||
| 326 | ||
| 327 | subsection{*Inductive relation "analz"*}
 | |
| 328 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 329 | text{*Inductive definition of "analz" -- what can be broken down from a set of
 | 
| 1839 | 330 | messages, including keys. A form of downward closure. Pairs can | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 331 | be taken apart; messages decrypted with known keys. *} | 
| 1839 | 332 | |
| 11189 | 333 | consts analz :: "msg set => msg set" | 
| 1913 | 334 | inductive "analz H" | 
| 11189 | 335 | intros | 
| 11192 | 336 | Inj [intro,simp] : "X \<in> H ==> X \<in> analz H" | 
| 337 |     Fst:     "{|X,Y|} \<in> analz H ==> X \<in> analz H"
 | |
| 338 |     Snd:     "{|X,Y|} \<in> analz H ==> Y \<in> analz H"
 | |
| 11189 | 339 | Decrypt [dest]: | 
| 11192 | 340 | "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H" | 
| 1839 | 341 | |
| 342 | ||
| 11189 | 343 | (*Monotonicity; Lemma 1 of Lowe's paper*) | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 344 | lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)" | 
| 11189 | 345 | apply auto | 
| 346 | apply (erule analz.induct) | |
| 347 | apply (auto dest: Fst Snd) | |
| 348 | done | |
| 349 | ||
| 13926 | 350 | text{*Making it safe speeds up proofs*}
 | 
| 351 | lemma MPair_analz [elim!]: | |
| 352 |      "[| {|X,Y|} \<in> analz H;        
 | |
| 353 | [| X \<in> analz H; Y \<in> analz H |] ==> P | |
| 354 | |] ==> P" | |
| 355 | by (blast dest: analz.Fst analz.Snd) | |
| 356 | ||
| 357 | lemma analz_increasing: "H \<subseteq> analz(H)" | |
| 358 | by blast | |
| 359 | ||
| 360 | lemma analz_subset_parts: "analz H \<subseteq> parts H" | |
| 361 | apply (rule subsetI) | |
| 362 | apply (erule analz.induct, blast+) | |
| 363 | done | |
| 364 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 365 | lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard] | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 366 | |
| 13926 | 367 | lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard] | 
| 368 | ||
| 369 | ||
| 370 | lemma parts_analz [simp]: "parts (analz H) = parts H" | |
| 371 | apply (rule equalityI) | |
| 372 | apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp) | |
| 373 | apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD]) | |
| 374 | done | |
| 375 | ||
| 376 | lemma analz_parts [simp]: "analz (parts H) = parts H" | |
| 377 | apply auto | |
| 378 | apply (erule analz.induct, auto) | |
| 379 | done | |
| 380 | ||
| 381 | lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard] | |
| 382 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 383 | subsubsection{*General equational properties *}
 | 
| 13926 | 384 | |
| 385 | lemma analz_empty [simp]: "analz{} = {}"
 | |
| 386 | apply safe | |
| 387 | apply (erule analz.induct, blast+) | |
| 388 | done | |
| 389 | ||
| 390 | (*Converse fails: we can analz more from the union than from the | |
| 391 | separate parts, as a key in one might decrypt a message in the other*) | |
| 392 | lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" | |
| 393 | by (intro Un_least analz_mono Un_upper1 Un_upper2) | |
| 394 | ||
| 395 | lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" | |
| 396 | by (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 397 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 398 | subsubsection{*Rewrite rules for pulling out atomic messages *}
 | 
| 13926 | 399 | |
| 400 | lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] | |
| 401 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 402 | lemma analz_insert_Agent [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 403 | "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" | 
| 13926 | 404 | apply (rule analz_insert_eq_I) | 
| 405 | apply (erule analz.induct, auto) | |
| 406 | done | |
| 407 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 408 | lemma analz_insert_Nonce [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 409 | "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)" | 
| 13926 | 410 | apply (rule analz_insert_eq_I) | 
| 411 | apply (erule analz.induct, auto) | |
| 412 | done | |
| 413 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 414 | lemma analz_insert_Number [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 415 | "analz (insert (Number N) H) = insert (Number N) (analz H)" | 
| 13926 | 416 | apply (rule analz_insert_eq_I) | 
| 417 | apply (erule analz.induct, auto) | |
| 418 | done | |
| 419 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 420 | lemma analz_insert_Hash [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 421 | "analz (insert (Hash X) H) = insert (Hash X) (analz H)" | 
| 13926 | 422 | apply (rule analz_insert_eq_I) | 
| 423 | apply (erule analz.induct, auto) | |
| 424 | done | |
| 425 | ||
| 426 | (*Can only pull out Keys if they are not needed to decrypt the rest*) | |
| 427 | lemma analz_insert_Key [simp]: | |
| 428 | "K \<notin> keysFor (analz H) ==> | |
| 429 | analz (insert (Key K) H) = insert (Key K) (analz H)" | |
| 430 | apply (unfold keysFor_def) | |
| 431 | apply (rule analz_insert_eq_I) | |
| 432 | apply (erule analz.induct, auto) | |
| 433 | done | |
| 434 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 435 | lemma analz_insert_MPair [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 436 |      "analz (insert {|X,Y|} H) =  
 | 
| 13926 | 437 |           insert {|X,Y|} (analz (insert X (insert Y H)))"
 | 
| 438 | apply (rule equalityI) | |
| 439 | apply (rule subsetI) | |
| 440 | apply (erule analz.induct, auto) | |
| 441 | apply (erule analz.induct) | |
| 442 | apply (blast intro: analz.Fst analz.Snd)+ | |
| 443 | done | |
| 444 | ||
| 445 | (*Can pull out enCrypted message if the Key is not known*) | |
| 446 | lemma analz_insert_Crypt: | |
| 447 | "Key (invKey K) \<notin> analz H | |
| 448 | ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" | |
| 449 | apply (rule analz_insert_eq_I) | |
| 450 | apply (erule analz.induct, auto) | |
| 451 | ||
| 452 | done | |
| 453 | ||
| 454 | lemma lemma1: "Key (invKey K) \<in> analz H ==> | |
| 455 | analz (insert (Crypt K X) H) \<subseteq> | |
| 456 | insert (Crypt K X) (analz (insert X H))" | |
| 457 | apply (rule subsetI) | |
| 458 | apply (erule_tac xa = x in analz.induct, auto) | |
| 459 | done | |
| 460 | ||
| 461 | lemma lemma2: "Key (invKey K) \<in> analz H ==> | |
| 462 | insert (Crypt K X) (analz (insert X H)) \<subseteq> | |
| 463 | analz (insert (Crypt K X) H)" | |
| 464 | apply auto | |
| 465 | apply (erule_tac xa = x in analz.induct, auto) | |
| 466 | apply (blast intro: analz_insertI analz.Decrypt) | |
| 467 | done | |
| 468 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 469 | lemma analz_insert_Decrypt: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 470 | "Key (invKey K) \<in> analz H ==> | 
| 13926 | 471 | analz (insert (Crypt K X) H) = | 
| 472 | insert (Crypt K X) (analz (insert X H))" | |
| 473 | by (intro equalityI lemma1 lemma2) | |
| 474 | ||
| 475 | (*Case analysis: either the message is secure, or it is not! | |
| 476 | Effective, but can cause subgoals to blow up! | |
| 477 | Use with split_if; apparently split_tac does not cope with patterns | |
| 478 | such as "analz (insert (Crypt K X) H)" *) | |
| 479 | lemma analz_Crypt_if [simp]: | |
| 480 | "analz (insert (Crypt K X) H) = | |
| 481 | (if (Key (invKey K) \<in> analz H) | |
| 482 | then insert (Crypt K X) (analz (insert X H)) | |
| 483 | else insert (Crypt K X) (analz H))" | |
| 484 | by (simp add: analz_insert_Crypt analz_insert_Decrypt) | |
| 485 | ||
| 486 | ||
| 487 | (*This rule supposes "for the sake of argument" that we have the key.*) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 488 | lemma analz_insert_Crypt_subset: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 489 | "analz (insert (Crypt K X) H) \<subseteq> | 
| 13926 | 490 | insert (Crypt K X) (analz (insert X H))" | 
| 491 | apply (rule subsetI) | |
| 492 | apply (erule analz.induct, auto) | |
| 493 | done | |
| 494 | ||
| 495 | ||
| 496 | lemma analz_image_Key [simp]: "analz (Key`N) = Key`N" | |
| 497 | apply auto | |
| 498 | apply (erule analz.induct, auto) | |
| 499 | done | |
| 500 | ||
| 501 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 502 | subsubsection{*Idempotence and transitivity *}
 | 
| 13926 | 503 | |
| 504 | lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H" | |
| 505 | by (erule analz.induct, blast+) | |
| 506 | ||
| 507 | lemma analz_idem [simp]: "analz (analz H) = analz H" | |
| 508 | by blast | |
| 509 | ||
| 510 | lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H" | |
| 511 | by (drule analz_mono, blast) | |
| 512 | ||
| 513 | (*Cut; Lemma 2 of Lowe*) | |
| 514 | lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H" | |
| 515 | by (erule analz_trans, blast) | |
| 516 | ||
| 517 | (*Cut can be proved easily by induction on | |
| 518 | "Y: analz (insert X H) ==> X: analz H --> Y: analz H" | |
| 519 | *) | |
| 520 | ||
| 521 | (*This rewrite rule helps in the simplification of messages that involve | |
| 522 | the forwarding of unknown components (X). Without it, removing occurrences | |
| 523 | of X can be very complicated. *) | |
| 524 | lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H" | |
| 525 | by (blast intro: analz_cut analz_insertI) | |
| 526 | ||
| 527 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 528 | text{*A congruence rule for "analz" *}
 | 
| 13926 | 529 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 530 | lemma analz_subset_cong: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 531 | "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' | 
| 13926 | 532 | |] ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" | 
| 533 | apply clarify | |
| 534 | apply (erule analz.induct) | |
| 535 | apply (best intro: analz_mono [THEN subsetD])+ | |
| 536 | done | |
| 537 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 538 | lemma analz_cong: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 539 | "[| analz G = analz G'; analz H = analz H' | 
| 13926 | 540 | |] ==> analz (G \<union> H) = analz (G' \<union> H')" | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 541 | by (intro equalityI analz_subset_cong, simp_all) | 
| 13926 | 542 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 543 | lemma analz_insert_cong: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 544 | "analz H = analz H' ==> analz(insert X H) = analz(insert X H')" | 
| 13926 | 545 | by (force simp only: insert_def intro!: analz_cong) | 
| 546 | ||
| 547 | (*If there are no pairs or encryptions then analz does nothing*) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 548 | lemma analz_trivial: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 549 |      "[| \<forall>X Y. {|X,Y|} \<notin> H;  \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
 | 
| 13926 | 550 | apply safe | 
| 551 | apply (erule analz.induct, blast+) | |
| 552 | done | |
| 553 | ||
| 554 | (*These two are obsolete (with a single Spy) but cost little to prove...*) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 555 | lemma analz_UN_analz_lemma: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 556 | "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)" | 
| 13926 | 557 | apply (erule analz.induct) | 
| 558 | apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ | |
| 559 | done | |
| 560 | ||
| 561 | lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)" | |
| 562 | by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) | |
| 563 | ||
| 564 | ||
| 565 | subsection{*Inductive relation "synth"*}
 | |
| 566 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 567 | text{*Inductive definition of "synth" -- what can be built up from a set of
 | 
| 1839 | 568 | messages. A form of upward closure. Pairs can be built, messages | 
| 3668 | 569 | encrypted with known keys. Agent names are public domain. | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 570 | Numbers can be guessed, but Nonces cannot be. *} | 
| 1839 | 571 | |
| 11189 | 572 | consts synth :: "msg set => msg set" | 
| 1913 | 573 | inductive "synth H" | 
| 11189 | 574 | intros | 
| 11192 | 575 | Inj [intro]: "X \<in> H ==> X \<in> synth H" | 
| 576 | Agent [intro]: "Agent agt \<in> synth H" | |
| 577 | Number [intro]: "Number n \<in> synth H" | |
| 578 | Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H" | |
| 579 |     MPair  [intro]:   "[|X \<in> synth H;  Y \<in> synth H|] ==> {|X,Y|} \<in> synth H"
 | |
| 580 | Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H" | |
| 11189 | 581 | |
| 582 | (*Monotonicity*) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 583 | lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)" | 
| 11189 | 584 | apply auto | 
| 585 | apply (erule synth.induct) | |
| 586 | apply (auto dest: Fst Snd Body) | |
| 587 | done | |
| 588 | ||
| 589 | (*NO Agent_synth, as any Agent name can be synthesized. Ditto for Number*) | |
| 11192 | 590 | inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H" | 
| 591 | inductive_cases Key_synth [elim!]: "Key K \<in> synth H" | |
| 592 | inductive_cases Hash_synth [elim!]: "Hash X \<in> synth H" | |
| 593 | inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H"
 | |
| 594 | inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H" | |
| 11189 | 595 | |
| 13926 | 596 | |
| 597 | lemma synth_increasing: "H \<subseteq> synth(H)" | |
| 598 | by blast | |
| 599 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 600 | subsubsection{*Unions *}
 | 
| 13926 | 601 | |
| 602 | (*Converse fails: we can synth more from the union than from the | |
| 603 | separate parts, building a compound message using elements of each.*) | |
| 604 | lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" | |
| 605 | by (intro Un_least synth_mono Un_upper1 Un_upper2) | |
| 606 | ||
| 607 | lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" | |
| 608 | by (blast intro: synth_mono [THEN [2] rev_subsetD]) | |
| 609 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 610 | subsubsection{*Idempotence and transitivity *}
 | 
| 13926 | 611 | |
| 612 | lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H" | |
| 613 | by (erule synth.induct, blast+) | |
| 614 | ||
| 615 | lemma synth_idem: "synth (synth H) = synth H" | |
| 616 | by blast | |
| 617 | ||
| 618 | lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H" | |
| 619 | by (drule synth_mono, blast) | |
| 620 | ||
| 621 | (*Cut; Lemma 2 of Lowe*) | |
| 622 | lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H" | |
| 623 | by (erule synth_trans, blast) | |
| 624 | ||
| 625 | lemma Agent_synth [simp]: "Agent A \<in> synth H" | |
| 626 | by blast | |
| 627 | ||
| 628 | lemma Number_synth [simp]: "Number n \<in> synth H" | |
| 629 | by blast | |
| 630 | ||
| 631 | lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)" | |
| 632 | by blast | |
| 633 | ||
| 634 | lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)" | |
| 635 | by blast | |
| 636 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 637 | lemma Crypt_synth_eq [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 638 | "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)" | 
| 13926 | 639 | by blast | 
| 640 | ||
| 641 | ||
| 642 | lemma keysFor_synth [simp]: | |
| 643 |     "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 644 | by (unfold keysFor_def, blast) | 
| 13926 | 645 | |
| 646 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 647 | subsubsection{*Combinations of parts, analz and synth *}
 | 
| 13926 | 648 | |
| 649 | lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H" | |
| 650 | apply (rule equalityI) | |
| 651 | apply (rule subsetI) | |
| 652 | apply (erule parts.induct) | |
| 653 | apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] | |
| 654 | parts.Fst parts.Snd parts.Body)+ | |
| 655 | done | |
| 656 | ||
| 657 | lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)" | |
| 658 | apply (intro equalityI analz_subset_cong)+ | |
| 659 | apply simp_all | |
| 660 | done | |
| 661 | ||
| 662 | lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G" | |
| 663 | apply (rule equalityI) | |
| 664 | apply (rule subsetI) | |
| 665 | apply (erule analz.induct) | |
| 666 | prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 667 | apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+ | |
| 668 | done | |
| 669 | ||
| 670 | lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H" | |
| 671 | apply (cut_tac H = "{}" in analz_synth_Un)
 | |
| 672 | apply (simp (no_asm_use)) | |
| 673 | done | |
| 674 | ||
| 675 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 676 | subsubsection{*For reasoning about the Fake rule in traces *}
 | 
| 13926 | 677 | |
| 678 | lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H" | |
| 679 | by (rule subset_trans [OF parts_mono parts_Un_subset2], blast) | |
| 680 | ||
| 681 | (*More specifically for Fake. Very occasionally we could do with a version | |
| 682 |   of the form  parts{X} \<subseteq> synth (analz H) \<union> parts H *)
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 683 | lemma Fake_parts_insert: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 684 | "X \<in> synth (analz H) ==> | 
| 13926 | 685 | parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" | 
| 686 | apply (drule parts_insert_subset_Un) | |
| 687 | apply (simp (no_asm_use)) | |
| 688 | apply blast | |
| 689 | done | |
| 690 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 691 | lemma Fake_parts_insert_in_Un: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 692 | "[|Z \<in> parts (insert X H); X: synth (analz H)|] | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 693 | ==> Z \<in> synth (analz H) \<union> parts H"; | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 694 | by (blast dest: Fake_parts_insert [THEN subsetD, dest]) | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 695 | |
| 13926 | 696 | (*H is sometimes (Key ` KK \<union> spies evs), so can't put G=H*) | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 697 | lemma Fake_analz_insert: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 698 | "X\<in> synth (analz G) ==> | 
| 13926 | 699 | analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)" | 
| 700 | apply (rule subsetI) | |
| 701 | apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ") | |
| 702 | prefer 2 apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD]) | |
| 703 | apply (simp (no_asm_use)) | |
| 704 | apply blast | |
| 705 | done | |
| 706 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 707 | lemma analz_conj_parts [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 708 | "(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)" | 
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 709 | by (blast intro: analz_subset_parts [THEN subsetD]) | 
| 13926 | 710 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 711 | lemma analz_disj_parts [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 712 | "(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)" | 
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 713 | by (blast intro: analz_subset_parts [THEN subsetD]) | 
| 13926 | 714 | |
| 715 | (*Without this equation, other rules for synth and analz would yield | |
| 716 | redundant cases*) | |
| 717 | lemma MPair_synth_analz [iff]: | |
| 718 |      "({|X,Y|} \<in> synth (analz H)) =  
 | |
| 719 | (X \<in> synth (analz H) & Y \<in> synth (analz H))" | |
| 720 | by blast | |
| 721 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 722 | lemma Crypt_synth_analz: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 723 | "[| Key K \<in> analz H; Key (invKey K) \<in> analz H |] | 
| 13926 | 724 | ==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))" | 
| 725 | by blast | |
| 726 | ||
| 727 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 728 | lemma Hash_synth_analz [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 729 | "X \<notin> synth (analz H) | 
| 13926 | 730 |       ==> (Hash{|X,Y|} \<in> synth (analz H)) = (Hash{|X,Y|} \<in> analz H)"
 | 
| 731 | by blast | |
| 732 | ||
| 733 | ||
| 734 | subsection{*HPair: a combination of Hash and MPair*}
 | |
| 735 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 736 | subsubsection{*Freeness *}
 | 
| 13926 | 737 | |
| 738 | lemma Agent_neq_HPair: "Agent A ~= Hash[X] Y" | |
| 739 | by (unfold HPair_def, simp) | |
| 740 | ||
| 741 | lemma Nonce_neq_HPair: "Nonce N ~= Hash[X] Y" | |
| 742 | by (unfold HPair_def, simp) | |
| 743 | ||
| 744 | lemma Number_neq_HPair: "Number N ~= Hash[X] Y" | |
| 745 | by (unfold HPair_def, simp) | |
| 746 | ||
| 747 | lemma Key_neq_HPair: "Key K ~= Hash[X] Y" | |
| 748 | by (unfold HPair_def, simp) | |
| 749 | ||
| 750 | lemma Hash_neq_HPair: "Hash Z ~= Hash[X] Y" | |
| 751 | by (unfold HPair_def, simp) | |
| 752 | ||
| 753 | lemma Crypt_neq_HPair: "Crypt K X' ~= Hash[X] Y" | |
| 754 | by (unfold HPair_def, simp) | |
| 755 | ||
| 756 | lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair | |
| 757 | Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair | |
| 758 | ||
| 759 | declare HPair_neqs [iff] | |
| 760 | declare HPair_neqs [symmetric, iff] | |
| 761 | ||
| 762 | lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)" | |
| 763 | by (simp add: HPair_def) | |
| 764 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 765 | lemma MPair_eq_HPair [iff]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 766 |      "({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)"
 | 
| 13926 | 767 | by (simp add: HPair_def) | 
| 768 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 769 | lemma HPair_eq_MPair [iff]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 770 |      "(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)"
 | 
| 13926 | 771 | by (auto simp add: HPair_def) | 
| 772 | ||
| 773 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 774 | subsubsection{*Specialized laws, proved in terms of those for Hash and MPair *}
 | 
| 13926 | 775 | |
| 776 | lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H" | |
| 777 | by (simp add: HPair_def) | |
| 778 | ||
| 779 | lemma parts_insert_HPair [simp]: | |
| 780 | "parts (insert (Hash[X] Y) H) = | |
| 781 |      insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))"
 | |
| 782 | by (simp add: HPair_def) | |
| 783 | ||
| 784 | lemma analz_insert_HPair [simp]: | |
| 785 | "analz (insert (Hash[X] Y) H) = | |
| 786 |      insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))"
 | |
| 787 | by (simp add: HPair_def) | |
| 788 | ||
| 789 | lemma HPair_synth_analz [simp]: | |
| 790 | "X \<notin> synth (analz H) | |
| 791 | ==> (Hash[X] Y \<in> synth (analz H)) = | |
| 792 |         (Hash {|X, Y|} \<in> analz H & Y \<in> synth (analz H))"
 | |
| 793 | by (simp add: HPair_def) | |
| 794 | ||
| 795 | ||
| 796 | (*We do NOT want Crypt... messages broken up in protocols!!*) | |
| 797 | declare parts.Body [rule del] | |
| 798 | ||
| 799 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 800 | text{*Rewrites to push in Key and Crypt messages, so that other messages can
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 801 |     be pulled out using the @{text analz_insert} rules*}
 | 
| 13926 | 802 | ML | 
| 803 | {*
 | |
| 804 | fun insComm x y = inst "x" x (inst "y" y insert_commute); | |
| 805 | ||
| 806 | bind_thms ("pushKeys",
 | |
| 807 | map (insComm "Key ?K") | |
| 808 | ["Agent ?C", "Nonce ?N", "Number ?N", | |
| 809 | "Hash ?X", "MPair ?X ?Y", "Crypt ?X ?K'"]); | |
| 810 | ||
| 811 | bind_thms ("pushCrypts",
 | |
| 812 | map (insComm "Crypt ?X ?K") | |
| 813 | ["Agent ?C", "Nonce ?N", "Number ?N", | |
| 814 | "Hash ?X'", "MPair ?X' ?Y"]); | |
| 815 | *} | |
| 816 | ||
| 817 | text{*Cannot be added with @{text "[simp]"} -- messages should not always be
 | |
| 818 | re-ordered. *} | |
| 819 | lemmas pushes = pushKeys pushCrypts | |
| 820 | ||
| 821 | ||
| 822 | subsection{*Tactics useful for many protocol proofs*}
 | |
| 823 | ML | |
| 824 | {*
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 825 | val invKey = thm "invKey" | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 826 | val keysFor_def = thm "keysFor_def" | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 827 | val HPair_def = thm "HPair_def" | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 828 | val symKeys_def = thm "symKeys_def" | 
| 13926 | 829 | val parts_mono = thm "parts_mono"; | 
| 830 | val analz_mono = thm "analz_mono"; | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 831 | val synth_mono = thm "synth_mono"; | 
| 13926 | 832 | val analz_increasing = thm "analz_increasing"; | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 833 | |
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 834 | val analz_insertI = thm "analz_insertI"; | 
| 13926 | 835 | val analz_subset_parts = thm "analz_subset_parts"; | 
| 836 | val Fake_parts_insert = thm "Fake_parts_insert"; | |
| 837 | val Fake_analz_insert = thm "Fake_analz_insert"; | |
| 838 | val pushes = thms "pushes"; | |
| 839 | ||
| 840 | ||
| 841 | (*Prove base case (subgoal i) and simplify others. A typical base case | |
| 842 | concerns Crypt K X \<notin> Key`shrK`bad and cannot be proved by rewriting | |
| 843 | alone.*) | |
| 844 | fun prove_simple_subgoals_tac i = | |
| 845 | force_tac (claset(), simpset() addsimps [image_eq_UN]) i THEN | |
| 846 | ALLGOALS Asm_simp_tac | |
| 847 | ||
| 848 | (*Analysis of Fake cases. Also works for messages that forward unknown parts, | |
| 849 | but this application is no longer necessary if analz_insert_eq is used. | |
| 850 | Abstraction over i is ESSENTIAL: it delays the dereferencing of claset | |
| 851 | DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) | |
| 852 | ||
| 853 | (*Apply rules to break down assumptions of the form | |
| 854 | Y \<in> parts(insert X H) and Y \<in> analz(insert X H) | |
| 855 | *) | |
| 856 | val Fake_insert_tac = | |
| 857 | dresolve_tac [impOfSubs Fake_analz_insert, | |
| 858 | impOfSubs Fake_parts_insert] THEN' | |
| 859 | eresolve_tac [asm_rl, thm"synth.Inj"]; | |
| 860 | ||
| 861 | fun Fake_insert_simp_tac ss i = | |
| 862 | REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i; | |
| 863 | ||
| 864 | fun atomic_spy_analz_tac (cs,ss) = SELECT_GOAL | |
| 865 | (Fake_insert_simp_tac ss 1 | |
| 866 | THEN | |
| 867 | IF_UNSOLVED (Blast.depth_tac | |
| 868 | (cs addIs [analz_insertI, | |
| 869 | impOfSubs analz_subset_parts]) 4 1)) | |
| 870 | ||
| 871 | (*The explicit claset and simpset arguments help it work with Isar*) | |
| 872 | fun gen_spy_analz_tac (cs,ss) i = | |
| 873 | DETERM | |
| 874 | (SELECT_GOAL | |
| 875 | (EVERY | |
| 876 | [ (*push in occurrences of X...*) | |
| 877 | (REPEAT o CHANGED) | |
| 878 |            (res_inst_tac [("x1","X")] (insert_commute RS ssubst) 1),
 | |
| 879 | (*...allowing further simplifications*) | |
| 880 | simp_tac ss 1, | |
| 881 | REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])), | |
| 882 | DEPTH_SOLVE (atomic_spy_analz_tac (cs,ss) 1)]) i) | |
| 883 | ||
| 884 | fun spy_analz_tac i = gen_spy_analz_tac (claset(), simpset()) i | |
| 885 | *} | |
| 886 | ||
| 887 | (*By default only o_apply is built-in. But in the presence of eta-expansion | |
| 888 | this means that some terms displayed as (f o g) will be rewritten, and others | |
| 889 | will not!*) | |
| 890 | declare o_def [simp] | |
| 891 | ||
| 11189 | 892 | |
| 13922 | 893 | lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A" | 
| 894 | by auto | |
| 895 | ||
| 896 | lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A" | |
| 897 | by auto | |
| 898 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 899 | lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))" | 
| 13922 | 900 | by (simp add: synth_mono analz_mono) | 
| 901 | ||
| 902 | lemma Fake_analz_eq [simp]: | |
| 903 | "X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)" | |
| 904 | apply (drule Fake_analz_insert[of _ _ "H"]) | |
| 905 | apply (simp add: synth_increasing[THEN Un_absorb2]) | |
| 906 | apply (drule synth_mono) | |
| 907 | apply (simp add: synth_idem) | |
| 908 | apply (blast intro: synth_analz_mono [THEN [2] rev_subsetD]) | |
| 909 | done | |
| 910 | ||
| 911 | text{*Two generalizations of @{text analz_insert_eq}*}
 | |
| 912 | lemma gen_analz_insert_eq [rule_format]: | |
| 913 | "X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G"; | |
| 914 | by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD]) | |
| 915 | ||
| 916 | lemma synth_analz_insert_eq [rule_format]: | |
| 917 | "X \<in> synth (analz H) | |
| 918 | ==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)"; | |
| 919 | apply (erule synth.induct) | |
| 920 | apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) | |
| 921 | done | |
| 922 | ||
| 923 | lemma Fake_parts_sing: | |
| 13926 | 924 |      "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H";
 | 
| 13922 | 925 | apply (rule subset_trans) | 
| 926 | apply (erule_tac [2] Fake_parts_insert) | |
| 927 | apply (simp add: parts_mono) | |
| 928 | done | |
| 929 | ||
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 930 | lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD] | 
| 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 931 | |
| 11189 | 932 | method_setup spy_analz = {*
 | 
| 11270 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 933 | Method.ctxt_args (fn ctxt => | 
| 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 934 | Method.METHOD (fn facts => | 
| 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 935 | gen_spy_analz_tac (Classical.get_local_claset ctxt, | 
| 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 936 | Simplifier.get_local_simpset ctxt) 1)) *} | 
| 11189 | 937 | "for proving the Fake case when analz is involved" | 
| 1839 | 938 | |
| 11264 | 939 | method_setup atomic_spy_analz = {*
 | 
| 11270 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 940 | Method.ctxt_args (fn ctxt => | 
| 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 941 | Method.METHOD (fn facts => | 
| 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 942 | atomic_spy_analz_tac (Classical.get_local_claset ctxt, | 
| 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 943 | Simplifier.get_local_simpset ctxt) 1)) *} | 
| 11264 | 944 | "for debugging spy_analz" | 
| 945 | ||
| 946 | method_setup Fake_insert_simp = {*
 | |
| 11270 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 947 | Method.ctxt_args (fn ctxt => | 
| 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 948 | Method.METHOD (fn facts => | 
| 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 paulson parents: 
11264diff
changeset | 949 | Fake_insert_simp_tac (Simplifier.get_local_simpset ctxt) 1)) *} | 
| 11264 | 950 | "for debugging spy_analz" | 
| 951 | ||
| 13926 | 952 | |
| 1839 | 953 | end |