| 
3981
 | 
     1  | 
(*  Title:      HOL/Map.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Tobias Nipkow
  | 
| 
 | 
     4  | 
    Copyright   1997 TU Muenchen
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Map lemmas
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
goalw thy [empty_def] "empty k = None";
  | 
| 
 | 
    10  | 
by(Simp_tac 1);
  | 
| 
 | 
    11  | 
qed "empty_def2";
  | 
| 
 | 
    12  | 
Addsimps [empty_def2];
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
goalw thy [update_def] "(m[a|->b])x = (if x=a then Some b else m x)";
  | 
| 
 | 
    15  | 
by(Simp_tac 1);
  | 
| 
 | 
    16  | 
qed "update_def2";
  | 
| 
 | 
    17  | 
Addsimps [update_def2];
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
section "++";
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
goalw thy [override_def] "m ++ empty = m";
  | 
| 
 | 
    22  | 
by(Simp_tac 1);
  | 
| 
 | 
    23  | 
qed "override_empty";
  | 
| 
 | 
    24  | 
Addsimps [override_empty];
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
goalw thy [override_def] "empty ++ m = m";
  | 
| 
 | 
    27  | 
by(Simp_tac 1);
  | 
| 
 | 
    28  | 
br ext 1;
  | 
| 
4071
 | 
    29  | 
by(split_tac [split_option_case] 1);
  | 
| 
3981
 | 
    30  | 
by(Simp_tac 1);
  | 
| 
 | 
    31  | 
qed "empty_override";
  | 
| 
 | 
    32  | 
Addsimps [empty_override];
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
goalw thy [override_def]
  | 
| 
 | 
    35  | 
 "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)";
  | 
| 
4089
 | 
    36  | 
by(simp_tac (simpset() addsplits [split_option_case]) 1);
  | 
| 
3981
 | 
    37  | 
qed_spec_mp "override_Some_iff";
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
bind_thm("override_SomeD", standard(override_Some_iff RS iffD1));
 | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
goalw thy [override_def]
  | 
| 
 | 
    42  | 
 "((m ++ n) k = None) = (n k = None & m k = None)";
  | 
| 
4089
 | 
    43  | 
by(simp_tac (simpset() addsplits [split_option_case]) 1);
  | 
| 
3981
 | 
    44  | 
qed "override_None";
  | 
| 
 | 
    45  | 
AddIffs [override_None];
  | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
goalw thy [override_def] "map_of(xs@ys) = map_of ys ++ map_of xs";
  | 
| 
 | 
    48  | 
by(induct_tac "xs" 1);
  | 
| 
 | 
    49  | 
by(Simp_tac 1);
  | 
| 
 | 
    50  | 
br ext 1;
  | 
| 
4089
 | 
    51  | 
by(asm_simp_tac (simpset() addsplits [expand_if,split_option_case]) 1);
  | 
| 
3981
 | 
    52  | 
qed "map_of_append";
  | 
| 
 | 
    53  | 
Addsimps [map_of_append];
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
section "dom";
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
goalw thy [dom_def] "dom empty = {}";
 | 
| 
 | 
    58  | 
by(Simp_tac 1);
  | 
| 
 | 
    59  | 
qed "dom_empty";
  | 
| 
 | 
    60  | 
Addsimps [dom_empty];
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
goalw thy [dom_def] "dom(m[a|->b]) = insert a (dom m)";
  | 
| 
4089
 | 
    63  | 
by(simp_tac (simpset() addsplits [expand_if]) 1);
  | 
| 
3981
 | 
    64  | 
by(Blast_tac 1);
  | 
| 
 | 
    65  | 
qed "dom_update";
  | 
| 
 | 
    66  | 
Addsimps [dom_update];
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
goalw thy [dom_def] "dom(m++n) = dom n Un dom m";
  | 
| 
 | 
    69  | 
by(Blast_tac 1);
  | 
| 
 | 
    70  | 
qed "dom_override";
  | 
| 
 | 
    71  | 
Addsimps [dom_override];
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
section "ran";
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
goalw thy [ran_def] "ran empty = {}";
 | 
| 
 | 
    76  | 
by(Simp_tac 1);
  | 
| 
 | 
    77  | 
qed "ran_empty";
  | 
| 
 | 
    78  | 
Addsimps [ran_empty];
  |