| author | paulson <lp15@cam.ac.uk> | 
| Sun, 03 Apr 2022 14:48:55 +0100 | |
| changeset 75400 | 970b9ab6c439 | 
| parent 67443 | 3abf6a722518 | 
| child 76213 | e44d86131648 | 
| permissions | -rw-r--r-- | 
| 35762 | 1 | (* Title: ZF/ex/Ramsey.thy | 
| 1478 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 0 | 3 | Copyright 1992 University of Cambridge | 
| 4 | ||
| 5 | Ramsey's Theorem (finite exponent 2 version) | |
| 6 | ||
| 7 | Based upon the article | |
| 8 | D Basin and M Kaufmann, | |
| 9 | The Boyer-Moore Prover and Nuprl: An Experimental Comparison. | |
| 10 | In G Huet and G Plotkin, editors, Logical Frameworks. | |
| 12867 | 11 | (CUP, 1991), pages 89-119 | 
| 0 | 12 | |
| 13 | See also | |
| 14 | M Kaufmann, | |
| 15 | An example in NQTHM: Ramsey's Theorem | |
| 16 | Internal Note, Computational Logic, Inc., Austin, Texas 78703 | |
| 17 | Available from the author: kaufmann@cli.com | |
| 12867 | 18 | |
| 19 | This function compute Ramsey numbers according to the proof given below | |
| 20 | (which, does not constrain the base case values at all. | |
| 21 | ||
| 22 | fun ram 0 j = 1 | |
| 23 | | ram i 0 = 1 | |
| 24 | | ram i j = ram (i-1) j + ram i (j-1) | |
| 0 | 25 | *) | 
| 26 | ||
| 65449 
c82e63b11b8b
clarified main ZF.thy / ZFC.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
61798diff
changeset | 27 | theory Ramsey imports ZF begin | 
| 21233 | 28 | |
| 29 | definition | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 30 | Symmetric :: "i=>o" where | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
35762diff
changeset | 31 | "Symmetric(E) == (\<forall>x y. <x,y>:E \<longrightarrow> <y,x>:E)" | 
| 12867 | 32 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 33 | definition | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
65449diff
changeset | 34 | Atleast :: "[i,i]=>o" where \<comment> \<open>not really necessary: ZF defines cardinality\<close> | 
| 12867 | 35 | "Atleast(n,S) == (\<exists>f. f \<in> inj(n,S))" | 
| 36 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 37 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 38 | Clique :: "[i,i,i]=>o" where | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
35762diff
changeset | 39 | "Clique(C,V,E) == (C \<subseteq> V) & (\<forall>x \<in> C. \<forall>y \<in> C. x\<noteq>y \<longrightarrow> <x,y> \<in> E)" | 
| 12867 | 40 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 41 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 42 | Indept :: "[i,i,i]=>o" where | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
35762diff
changeset | 43 | "Indept(I,V,E) == (I \<subseteq> V) & (\<forall>x \<in> I. \<forall>y \<in> I. x\<noteq>y \<longrightarrow> <x,y> \<notin> E)" | 
| 12867 | 44 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 45 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 46 | Ramsey :: "[i,i,i]=>o" where | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
35762diff
changeset | 47 | "Ramsey(n,i,j) == \<forall>V E. Symmetric(E) & Atleast(n,V) \<longrightarrow> | 
| 12867 | 48 | (\<exists>C. Clique(C,V,E) & Atleast(i,C)) | | 
| 49 | (\<exists>I. Indept(I,V,E) & Atleast(j,I))" | |
| 50 | ||
| 51 | (*** Cliques and Independent sets ***) | |
| 52 | ||
| 53 | lemma Clique0 [intro]: "Clique(0,V,E)" | |
| 54 | by (unfold Clique_def, blast) | |
| 55 | ||
| 56 | lemma Clique_superset: "[| Clique(C,V',E); V'<=V |] ==> Clique(C,V,E)" | |
| 57 | by (unfold Clique_def, blast) | |
| 58 | ||
| 59 | lemma Indept0 [intro]: "Indept(0,V,E)" | |
| 60 | by (unfold Indept_def, blast) | |
| 0 | 61 | |
| 12867 | 62 | lemma Indept_superset: "[| Indept(I,V',E); V'<=V |] ==> Indept(I,V,E)" | 
| 63 | by (unfold Indept_def, blast) | |
| 64 | ||
| 65 | (*** Atleast ***) | |
| 66 | ||
| 67 | lemma Atleast0 [intro]: "Atleast(0,A)" | |
| 68 | by (unfold Atleast_def inj_def Pi_def function_def, blast) | |
| 69 | ||
| 70 | lemma Atleast_succD: | |
| 71 |     "Atleast(succ(m),A) ==> \<exists>x \<in> A. Atleast(m, A-{x})"
 | |
| 72 | apply (unfold Atleast_def) | |
| 73 | apply (blast dest: inj_is_fun [THEN apply_type] inj_succ_restrict) | |
| 74 | done | |
| 0 | 75 | |
| 12867 | 76 | lemma Atleast_superset: | 
| 77 | "[| Atleast(n,A); A \<subseteq> B |] ==> Atleast(n,B)" | |
| 78 | by (unfold Atleast_def, blast intro: inj_weaken_type) | |
| 79 | ||
| 80 | lemma Atleast_succI: | |
| 81 | "[| Atleast(m,B); b\<notin> B |] ==> Atleast(succ(m), cons(b,B))" | |
| 82 | apply (unfold Atleast_def succ_def) | |
| 83 | apply (blast intro: inj_extend elim: mem_irrefl) | |
| 84 | done | |
| 85 | ||
| 86 | lemma Atleast_Diff_succI: | |
| 87 |      "[| Atleast(m, B-{x});  x \<in> B |] ==> Atleast(succ(m), B)"
 | |
| 88 | by (blast intro: Atleast_succI [THEN Atleast_superset]) | |
| 89 | ||
| 90 | (*** Main Cardinality Lemma ***) | |
| 0 | 91 | |
| 12867 | 92 | (*The #-succ(0) strengthens the original theorem statement, but precisely | 
| 93 | the same proof could be used!!*) | |
| 94 | lemma pigeon2 [rule_format]: | |
| 95 | "m \<in> nat ==> | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
35762diff
changeset | 96 | \<forall>n \<in> nat. \<forall>A B. Atleast((m#+n) #- succ(0), A \<union> B) \<longrightarrow> | 
| 12867 | 97 | Atleast(m,A) | Atleast(n,B)" | 
| 98 | apply (induct_tac "m") | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 99 | apply (blast intro!: Atleast0, simp) | 
| 12867 | 100 | apply (rule ballI) | 
| 101 | apply (rename_tac m' n) (*simplifier does NOT preserve bound names!*) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 102 | apply (induct_tac "n", auto) | 
| 12867 | 103 | apply (erule Atleast_succD [THEN bexE]) | 
| 104 | apply (rename_tac n' A B z) | |
| 105 | apply (erule UnE) | |
| 106 | (**case z \<in> B. Instantiate the '\<forall>A B' induction hypothesis. **) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 107 | apply (drule_tac [2] x1 = A and x = "B-{z}" in spec [THEN spec])
 | 
| 12867 | 108 | apply (erule_tac [2] mp [THEN disjE]) | 
| 109 | (*cases Atleast(succ(m1),A) and Atleast(succ(k),B)*) | |
| 110 | apply (erule_tac [3] asm_rl notE Atleast_Diff_succI)+ | |
| 111 | (*proving the condition*) | |
| 112 | prefer 2 apply (blast intro: Atleast_superset) | |
| 113 | (**case z \<in> A. Instantiate the '\<forall>n \<in> nat. \<forall>A B' induction hypothesis. **) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 114 | apply (drule_tac x2="succ(n')" and x1="A-{z}" and x=B
 | 
| 12867 | 115 | in bspec [THEN spec, THEN spec]) | 
| 116 | apply (erule nat_succI) | |
| 117 | apply (erule mp [THEN disjE]) | |
| 118 | (*cases Atleast(succ(m1),A) and Atleast(succ(k),B)*) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 119 | apply (erule_tac [2] asm_rl Atleast_Diff_succI notE)+ | 
| 12867 | 120 | (*proving the condition*) | 
| 121 | apply simp | |
| 122 | apply (blast intro: Atleast_superset) | |
| 123 | done | |
| 0 | 124 | |
| 12867 | 125 | |
| 126 | (**** Ramsey's Theorem ****) | |
| 127 | ||
| 128 | (** Base cases of induction; they now admit ANY Ramsey number **) | |
| 129 | ||
| 130 | lemma Ramsey0j: "Ramsey(n,0,j)" | |
| 131 | by (unfold Ramsey_def, blast) | |
| 132 | ||
| 133 | lemma Ramseyi0: "Ramsey(n,i,0)" | |
| 134 | by (unfold Ramsey_def, blast) | |
| 135 | ||
| 136 | (** Lemmas for induction step **) | |
| 0 | 137 | |
| 12867 | 138 | (*The use of succ(m) here, rather than #-succ(0), simplifies the proof of | 
| 139 | Ramsey_step_lemma.*) | |
| 140 | lemma Atleast_partition: "[| Atleast(m #+ n, A); m \<in> nat; n \<in> nat |] | |
| 141 |       ==> Atleast(succ(m), {x \<in> A. ~P(x)}) | Atleast(n, {x \<in> A. P(x)})"
 | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 142 | apply (rule nat_succI [THEN pigeon2], assumption+) | 
| 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 143 | apply (rule Atleast_superset, auto) | 
| 12867 | 144 | done | 
| 145 | ||
| 146 | (*For the Atleast part, proves ~(a \<in> I) from the second premise!*) | |
| 147 | lemma Indept_succ: | |
| 148 |     "[| Indept(I, {z \<in> V-{a}. <a,z> \<notin> E}, E);  Symmetric(E);  a \<in> V;   
 | |
| 149 | Atleast(j,I) |] ==> | |
| 150 | Indept(cons(a,I), V, E) & Atleast(succ(j), cons(a,I))" | |
| 151 | apply (unfold Symmetric_def Indept_def) | |
| 152 | apply (blast intro!: Atleast_succI) | |
| 153 | done | |
| 154 | ||
| 155 | ||
| 156 | lemma Clique_succ: | |
| 157 |     "[| Clique(C, {z \<in> V-{a}. <a,z>:E}, E);  Symmetric(E);  a \<in> V;   
 | |
| 158 | Atleast(j,C) |] ==> | |
| 159 | Clique(cons(a,C), V, E) & Atleast(succ(j), cons(a,C))" | |
| 160 | apply (unfold Symmetric_def Clique_def) | |
| 161 | apply (blast intro!: Atleast_succI) | |
| 162 | done | |
| 163 | ||
| 164 | (** Induction step **) | |
| 0 | 165 | |
| 12867 | 166 | (*Published proofs gloss over the need for Ramsey numbers to be POSITIVE.*) | 
| 167 | lemma Ramsey_step_lemma: | |
| 168 | "[| Ramsey(succ(m), succ(i), j); Ramsey(n, i, succ(j)); | |
| 169 | m \<in> nat; n \<in> nat |] ==> Ramsey(succ(m#+n), succ(i), succ(j))" | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 170 | apply (unfold Ramsey_def, clarify) | 
| 12867 | 171 | apply (erule Atleast_succD [THEN bexE]) | 
| 172 | apply (erule_tac P1 = "%z.<x,z>:E" in Atleast_partition [THEN disjE], | |
| 173 | assumption+) | |
| 174 | (*case m*) | |
| 175 | apply (fast dest!: Indept_succ elim: Clique_superset) | |
| 176 | (*case n*) | |
| 177 | apply (fast dest!: Clique_succ elim: Indept_superset) | |
| 178 | done | |
| 179 | ||
| 180 | ||
| 181 | (** The actual proof **) | |
| 182 | ||
| 183 | (*Again, the induction requires Ramsey numbers to be positive.*) | |
| 184 | lemma ramsey_lemma: "i \<in> nat ==> \<forall>j \<in> nat. \<exists>n \<in> nat. Ramsey(succ(n), i, j)" | |
| 185 | apply (induct_tac "i") | |
| 186 | apply (blast intro!: Ramsey0j) | |
| 187 | apply (rule ballI) | |
| 188 | apply (induct_tac "j") | |
| 189 | apply (blast intro!: Ramseyi0) | |
| 190 | apply (blast intro!: add_type Ramsey_step_lemma) | |
| 191 | done | |
| 192 | ||
| 193 | (*Final statement in a tidy form, without succ(...) *) | |
| 194 | lemma ramsey: "[| i \<in> nat; j \<in> nat |] ==> \<exists>n \<in> nat. Ramsey(n,i,j)" | |
| 195 | by (blast dest: ramsey_lemma) | |
| 0 | 196 | |
| 197 | end |