author | eberlm <eberlm@in.tum.de> |
Thu, 17 Aug 2017 18:19:16 +0200 | |
changeset 66448 | 97ad7a583457 |
parent 66447 | a1f5c5c26fa6 |
child 66660 | bc3584f7ac0c |
permissions | -rw-r--r-- |
65040 | 1 |
section\<open>The Great Picard Theorem and its Applications\<close> |
2 |
||
3 |
text\<open>Ported from HOL Light (cauchy.ml) by L C Paulson, 2017\<close> |
|
4 |
||
5 |
theory Great_Picard |
|
6 |
imports Conformal_Mappings Further_Topology |
|
7 |
||
8 |
begin |
|
9 |
||
10 |
subsection\<open>Schottky's theorem\<close> |
|
11 |
||
12 |
lemma Schottky_lemma0: |
|
13 |
assumes holf: "f holomorphic_on S" and cons: "contractible S" and "a \<in> S" |
|
14 |
and f: "\<And>z. z \<in> S \<Longrightarrow> f z \<noteq> 1 \<and> f z \<noteq> -1" |
|
15 |
obtains g where "g holomorphic_on S" |
|
16 |
"norm(g a) \<le> 1 + norm(f a) / 3" |
|
17 |
"\<And>z. z \<in> S \<Longrightarrow> f z = cos(of_real pi * g z)" |
|
18 |
proof - |
|
19 |
obtain g where holg: "g holomorphic_on S" and g: "norm(g a) \<le> pi + norm(f a)" |
|
20 |
and f_eq_cos: "\<And>z. z \<in> S \<Longrightarrow> f z = cos(g z)" |
|
21 |
using contractible_imp_holomorphic_arccos_bounded [OF assms] |
|
22 |
by blast |
|
23 |
show ?thesis |
|
24 |
proof |
|
25 |
show "(\<lambda>z. g z / pi) holomorphic_on S" |
|
26 |
by (auto intro: holomorphic_intros holg) |
|
27 |
have "3 \<le> pi" |
|
28 |
using pi_approx by force |
|
29 |
have "3 * norm(g a) \<le> 3 * (pi + norm(f a))" |
|
30 |
using g by auto |
|
31 |
also have "... \<le> pi * 3 + pi * cmod (f a)" |
|
32 |
using \<open>3 \<le> pi\<close> by (simp add: mult_right_mono algebra_simps) |
|
33 |
finally show "cmod (g a / complex_of_real pi) \<le> 1 + cmod (f a) / 3" |
|
34 |
by (simp add: field_simps norm_divide) |
|
35 |
show "\<And>z. z \<in> S \<Longrightarrow> f z = cos (complex_of_real pi * (g z / complex_of_real pi))" |
|
36 |
by (simp add: f_eq_cos) |
|
37 |
qed |
|
38 |
qed |
|
39 |
||
40 |
||
41 |
lemma Schottky_lemma1: |
|
42 |
fixes n::nat |
|
43 |
assumes "0 < n" |
|
44 |
shows "0 < n + sqrt(real n ^ 2 - 1)" |
|
45 |
proof - |
|
46 |
have "(n-1)^2 \<le> n^2 - 1" |
|
47 |
using assms by (simp add: algebra_simps power2_eq_square) |
|
48 |
then have "real (n - 1) \<le> sqrt (real (n\<^sup>2 - 1))" |
|
49 |
by (metis Extended_Nonnegative_Real.of_nat_le_iff of_nat_power real_le_rsqrt) |
|
50 |
then have "n-1 \<le> sqrt(real n ^ 2 - 1)" |
|
51 |
by (simp add: Suc_leI assms of_nat_diff) |
|
52 |
then show ?thesis |
|
53 |
using assms by linarith |
|
54 |
qed |
|
55 |
||
56 |
||
57 |
lemma Schottky_lemma2: |
|
58 |
fixes x::real |
|
59 |
assumes "0 \<le> x" |
|
60 |
obtains n where "0 < n" "\<bar>x - ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi\<bar> < 1/2" |
|
61 |
proof - |
|
62 |
obtain n0::nat where "0 < n0" "ln(n0 + sqrt(real n0 ^ 2 - 1)) / pi \<le> x" |
|
63 |
proof |
|
64 |
show "ln(real 1 + sqrt(real 1 ^ 2 - 1))/pi \<le> x" |
|
65 |
by (auto simp: assms) |
|
66 |
qed auto |
|
67 |
moreover |
|
68 |
obtain M::nat where "\<And>n. \<lbrakk>0 < n; ln(n + sqrt(real n ^ 2 - 1)) / pi \<le> x\<rbrakk> \<Longrightarrow> n \<le> M" |
|
69 |
proof |
|
70 |
fix n::nat |
|
71 |
assume "0 < n" "ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi \<le> x" |
|
72 |
then have "ln (n + sqrt ((real n)\<^sup>2 - 1)) \<le> x * pi" |
|
73 |
by (simp add: divide_simps) |
|
74 |
then have *: "exp (ln (n + sqrt ((real n)\<^sup>2 - 1))) \<le> exp (x * pi)" |
|
75 |
by blast |
|
76 |
have 0: "0 \<le> sqrt ((real n)\<^sup>2 - 1)" |
|
77 |
using \<open>0 < n\<close> by auto |
|
78 |
have "n + sqrt ((real n)\<^sup>2 - 1) = exp (ln (n + sqrt ((real n)\<^sup>2 - 1)))" |
|
79 |
by (simp add: Suc_leI \<open>0 < n\<close> add_pos_nonneg real_of_nat_ge_one_iff) |
|
80 |
also have "... \<le> exp (x * pi)" |
|
81 |
using "*" by blast |
|
82 |
finally have "real n \<le> exp (x * pi)" |
|
83 |
using 0 by linarith |
|
84 |
then show "n \<le> nat (ceiling (exp(x * pi)))" |
|
85 |
by linarith |
|
86 |
qed |
|
87 |
ultimately obtain n where |
|
88 |
"0 < n" and le_x: "ln(n + sqrt(real n ^ 2 - 1)) / pi \<le> x" |
|
89 |
and le_n: "\<And>k. \<lbrakk>0 < k; ln(k + sqrt(real k ^ 2 - 1)) / pi \<le> x\<rbrakk> \<Longrightarrow> k \<le> n" |
|
90 |
using bounded_Max_nat [of "\<lambda>n. 0<n \<and> ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi \<le> x"] by metis |
|
91 |
define a where "a \<equiv> ln(n + sqrt(real n ^ 2 - 1)) / pi" |
|
92 |
define b where "b \<equiv> ln (1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / pi" |
|
93 |
have le_xa: "a \<le> x" |
|
94 |
and le_na: "\<And>k. \<lbrakk>0 < k; ln(k + sqrt(real k ^ 2 - 1)) / pi \<le> x\<rbrakk> \<Longrightarrow> k \<le> n" |
|
95 |
using le_x le_n by (auto simp: a_def) |
|
96 |
moreover have "x < b" |
|
97 |
using le_n [of "Suc n"] by (force simp: b_def) |
|
98 |
moreover have "b - a < 1" |
|
99 |
proof - |
|
100 |
have "ln (1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) - ln (real n + sqrt ((real n)\<^sup>2 - 1)) = |
|
101 |
ln ((1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / (real n + sqrt ((real n)\<^sup>2 - 1)))" |
|
102 |
by (simp add: \<open>0 < n\<close> Schottky_lemma1 add_pos_nonneg ln_div [symmetric]) |
|
103 |
also have "... \<le> 3" |
|
104 |
proof (cases "n = 1") |
|
105 |
case True |
|
106 |
have "sqrt 3 \<le> 2" |
|
107 |
by (simp add: real_le_lsqrt) |
|
108 |
then have "(2 + sqrt 3) \<le> 4" |
|
109 |
by simp |
|
110 |
also have "... \<le> exp 3" |
|
111 |
using exp_ge_add_one_self [of "3::real"] by simp |
|
112 |
finally have "ln (2 + sqrt 3) \<le> 3" |
|
113 |
by (metis add_nonneg_nonneg add_pos_nonneg dbl_def dbl_inc_def dbl_inc_simps(3) |
|
114 |
dbl_simps(3) exp_gt_zero ln_exp ln_le_cancel_iff real_sqrt_ge_0_iff zero_le_one zero_less_one) |
|
115 |
then show ?thesis |
|
116 |
by (simp add: True) |
|
117 |
next |
|
118 |
case False with \<open>0 < n\<close> have "1 < n" "2 \<le> n" |
|
119 |
by linarith+ |
|
120 |
then have 1: "1 \<le> real n * real n" |
|
121 |
by (metis less_imp_le_nat one_le_power power2_eq_square real_of_nat_ge_one_iff) |
|
122 |
have *: "4 + (m+2) * 2 \<le> (m+2) * ((m+2) * 3)" for m::nat |
|
123 |
by simp |
|
124 |
have "4 + n * 2 \<le> n * (n * 3)" |
|
125 |
using * [of "n-2"] \<open>2 \<le> n\<close> |
|
126 |
by (metis le_add_diff_inverse2) |
|
127 |
then have **: "4 + real n * 2 \<le> real n * (real n * 3)" |
|
128 |
by (metis (mono_tags, hide_lams) of_nat_le_iff of_nat_add of_nat_mult of_nat_numeral) |
|
129 |
have "sqrt ((1 + real n)\<^sup>2 - 1) \<le> 2 * sqrt ((real n)\<^sup>2 - 1)" |
|
130 |
by (auto simp: real_le_lsqrt power2_eq_square algebra_simps 1 **) |
|
131 |
then |
|
132 |
have "((1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / (real n + sqrt ((real n)\<^sup>2 - 1))) \<le> 2" |
|
133 |
using Schottky_lemma1 \<open>0 < n\<close> by (simp add: divide_simps) |
|
134 |
then have "ln ((1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / (real n + sqrt ((real n)\<^sup>2 - 1))) \<le> ln 2" |
|
135 |
apply (subst ln_le_cancel_iff) |
|
136 |
using Schottky_lemma1 \<open>0 < n\<close> by auto (force simp: divide_simps) |
|
137 |
also have "... \<le> 3" |
|
138 |
using ln_add_one_self_le_self [of 1] by auto |
|
139 |
finally show ?thesis . |
|
140 |
qed |
|
141 |
also have "... < pi" |
|
142 |
using pi_approx by simp |
|
143 |
finally show ?thesis |
|
144 |
by (simp add: a_def b_def divide_simps) |
|
145 |
qed |
|
146 |
ultimately have "\<bar>x - a\<bar> < 1/2 \<or> \<bar>x - b\<bar> < 1/2" |
|
147 |
by (auto simp: abs_if) |
|
148 |
then show thesis |
|
149 |
proof |
|
150 |
assume "\<bar>x - a\<bar> < 1 / 2" |
|
151 |
then show ?thesis |
|
152 |
by (rule_tac n=n in that) (auto simp: a_def \<open>0 < n\<close>) |
|
153 |
next |
|
154 |
assume "\<bar>x - b\<bar> < 1 / 2" |
|
155 |
then show ?thesis |
|
156 |
by (rule_tac n="Suc n" in that) (auto simp: b_def \<open>0 < n\<close>) |
|
157 |
qed |
|
158 |
qed |
|
159 |
||
160 |
||
161 |
lemma Schottky_lemma3: |
|
162 |
fixes z::complex |
|
163 |
assumes "z \<in> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (ln(n + sqrt(real n ^ 2 - 1)) / pi)}) |
|
164 |
\<union> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (-ln(n + sqrt(real n ^ 2 - 1)) / pi)})" |
|
165 |
shows "cos(pi * cos(pi * z)) = 1 \<or> cos(pi * cos(pi * z)) = -1" |
|
166 |
proof - |
|
167 |
have sqrt2 [simp]: "complex_of_real (sqrt x) * complex_of_real (sqrt x) = x" if "x \<ge> 0" for x::real |
|
168 |
by (metis abs_of_nonneg of_real_mult real_sqrt_mult_self that) |
|
169 |
have 1: "\<exists>k. exp (\<i> * (of_int m * complex_of_real pi) - |
|
170 |
(ln (real n + sqrt ((real n)\<^sup>2 - 1)))) + |
|
171 |
inverse |
|
172 |
(exp (\<i> * (of_int m * complex_of_real pi) - |
|
173 |
(ln (real n + sqrt ((real n)\<^sup>2 - 1))))) = of_int k * 2" |
|
174 |
if "n > 0" for m n |
|
175 |
proof - |
|
176 |
have eeq: "e \<noteq> 0 \<Longrightarrow> e + inverse e = n*2 \<longleftrightarrow> inverse e^2 - 2 * n*inverse e + 1 = 0" for n e::complex |
|
177 |
by (auto simp: field_simps power2_eq_square) |
|
178 |
have [simp]: "1 \<le> real n * real n" |
|
179 |
by (metis One_nat_def add.commute nat_less_real_le of_nat_1 of_nat_Suc one_le_power power2_eq_square that) |
|
180 |
show ?thesis |
|
181 |
apply (simp add: eeq) |
|
182 |
using Schottky_lemma1 [OF that] |
|
183 |
apply (auto simp: eeq exp_diff exp_Euler exp_of_real algebra_simps sin_int_times_real cos_int_times_real) |
|
184 |
apply (rule_tac x="int n" in exI) |
|
185 |
apply (auto simp: power2_eq_square algebra_simps) |
|
186 |
apply (rule_tac x="- int n" in exI) |
|
187 |
apply (auto simp: power2_eq_square algebra_simps) |
|
188 |
done |
|
189 |
qed |
|
190 |
have 2: "\<exists>k. exp (\<i> * (of_int m * complex_of_real pi) + |
|
191 |
(ln (real n + sqrt ((real n)\<^sup>2 - 1)))) + |
|
192 |
inverse |
|
193 |
(exp (\<i> * (of_int m * complex_of_real pi) + |
|
194 |
(ln (real n + sqrt ((real n)\<^sup>2 - 1))))) = of_int k * 2" |
|
195 |
if "n > 0" for m n |
|
196 |
proof - |
|
197 |
have eeq: "e \<noteq> 0 \<Longrightarrow> e + inverse e = n*2 \<longleftrightarrow> e^2 - 2 * n*e + 1 = 0" for n e::complex |
|
198 |
by (auto simp: field_simps power2_eq_square) |
|
199 |
have [simp]: "1 \<le> real n * real n" |
|
200 |
by (metis One_nat_def add.commute nat_less_real_le of_nat_1 of_nat_Suc one_le_power power2_eq_square that) |
|
201 |
show ?thesis |
|
202 |
apply (simp add: eeq) |
|
203 |
using Schottky_lemma1 [OF that] |
|
204 |
apply (auto simp: exp_add exp_Euler exp_of_real algebra_simps sin_int_times_real cos_int_times_real) |
|
205 |
apply (rule_tac x="int n" in exI) |
|
206 |
apply (auto simp: power2_eq_square algebra_simps) |
|
207 |
apply (rule_tac x="- int n" in exI) |
|
208 |
apply (auto simp: power2_eq_square algebra_simps) |
|
209 |
done |
|
210 |
qed |
|
211 |
have "\<exists>x. cos (complex_of_real pi * z) = of_int x" |
|
212 |
using assms |
|
213 |
apply safe |
|
65274
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents:
65064
diff
changeset
|
214 |
apply (auto simp: Ints_def cos_exp_eq exp_minus Complex_eq) |
65040 | 215 |
apply (auto simp: algebra_simps dest: 1 2) |
216 |
done |
|
217 |
then have "sin(pi * cos(pi * z)) ^ 2 = 0" |
|
218 |
by (simp add: Complex_Transcendental.sin_eq_0) |
|
219 |
then have "1 - cos(pi * cos(pi * z)) ^ 2 = 0" |
|
220 |
by (simp add: sin_squared_eq) |
|
221 |
then show ?thesis |
|
222 |
using power2_eq_1_iff by auto |
|
223 |
qed |
|
224 |
||
225 |
||
226 |
theorem Schottky: |
|
227 |
assumes holf: "f holomorphic_on cball 0 1" |
|
228 |
and nof0: "norm(f 0) \<le> r" |
|
229 |
and not01: "\<And>z. z \<in> cball 0 1 \<Longrightarrow> \<not>(f z = 0 \<or> f z = 1)" |
|
230 |
and "0 < t" "t < 1" "norm z \<le> t" |
|
231 |
shows "norm(f z) \<le> exp(pi * exp(pi * (2 + 2 * r + 12 * t / (1 - t))))" |
|
232 |
proof - |
|
233 |
obtain h where holf: "h holomorphic_on cball 0 1" |
|
234 |
and nh0: "norm (h 0) \<le> 1 + norm(2 * f 0 - 1) / 3" |
|
235 |
and h: "\<And>z. z \<in> cball 0 1 \<Longrightarrow> 2 * f z - 1 = cos(of_real pi * h z)" |
|
236 |
proof (rule Schottky_lemma0 [of "\<lambda>z. 2 * f z - 1" "cball 0 1" 0]) |
|
237 |
show "(\<lambda>z. 2 * f z - 1) holomorphic_on cball 0 1" |
|
238 |
by (intro holomorphic_intros holf) |
|
239 |
show "contractible (cball (0::complex) 1)" |
|
240 |
by (auto simp: convex_imp_contractible) |
|
241 |
show "\<And>z. z \<in> cball 0 1 \<Longrightarrow> 2 * f z - 1 \<noteq> 1 \<and> 2 * f z - 1 \<noteq> - 1" |
|
242 |
using not01 by force |
|
243 |
qed auto |
|
244 |
obtain g where holg: "g holomorphic_on cball 0 1" |
|
245 |
and ng0: "norm(g 0) \<le> 1 + norm(h 0) / 3" |
|
246 |
and g: "\<And>z. z \<in> cball 0 1 \<Longrightarrow> h z = cos(of_real pi * g z)" |
|
247 |
proof (rule Schottky_lemma0 [OF holf convex_imp_contractible, of 0]) |
|
248 |
show "\<And>z. z \<in> cball 0 1 \<Longrightarrow> h z \<noteq> 1 \<and> h z \<noteq> - 1" |
|
249 |
using h not01 by fastforce+ |
|
250 |
qed auto |
|
251 |
have g0_2_f0: "norm(g 0) \<le> 2 + norm(f 0)" |
|
252 |
proof - |
|
253 |
have "cmod (2 * f 0 - 1) \<le> cmod (2 * f 0) + 1" |
|
254 |
by (metis norm_one norm_triangle_ineq4) |
|
255 |
also have "... \<le> 2 + cmod (f 0) * 3" |
|
256 |
by simp |
|
257 |
finally have "1 + norm(2 * f 0 - 1) / 3 \<le> (2 + norm(f 0) - 1) * 3" |
|
258 |
apply (simp add: divide_simps) |
|
259 |
using norm_ge_zero [of "2 * f 0 - 1"] |
|
260 |
by linarith |
|
261 |
with nh0 have "norm(h 0) \<le> (2 + norm(f 0) - 1) * 3" |
|
262 |
by linarith |
|
263 |
then have "1 + norm(h 0) / 3 \<le> 2 + norm(f 0)" |
|
264 |
by simp |
|
265 |
with ng0 show ?thesis |
|
266 |
by auto |
|
267 |
qed |
|
268 |
have "z \<in> ball 0 1" |
|
269 |
using assms by auto |
|
270 |
have norm_g_12: "norm(g z - g 0) \<le> (12 * t) / (1 - t)" |
|
271 |
proof - |
|
272 |
obtain g' where g': "\<And>x. x \<in> cball 0 1 \<Longrightarrow> (g has_field_derivative g' x) (at x within cball 0 1)" |
|
273 |
using holg [unfolded holomorphic_on_def field_differentiable_def] by metis |
|
274 |
have int_g': "(g' has_contour_integral g z - g 0) (linepath 0 z)" |
|
275 |
using contour_integral_primitive [OF g' valid_path_linepath, of 0 z] |
|
276 |
using \<open>z \<in> ball 0 1\<close> segment_bound1 by fastforce |
|
277 |
have "cmod (g' w) \<le> 12 / (1 - t)" if "w \<in> closed_segment 0 z" for w |
|
278 |
proof - |
|
279 |
have w: "w \<in> ball 0 1" |
|
280 |
using segment_bound [OF that] \<open>z \<in> ball 0 1\<close> by simp |
|
281 |
have ttt: "\<And>z. z \<in> frontier (cball 0 1) \<Longrightarrow> 1 - t \<le> dist w z" |
|
282 |
using \<open>norm z \<le> t\<close> segment_bound1 [OF \<open>w \<in> closed_segment 0 z\<close>] |
|
283 |
apply (simp add: dist_complex_def) |
|
284 |
by (metis diff_left_mono dist_commute dist_complex_def norm_triangle_ineq2 order_trans) |
|
285 |
have *: "\<lbrakk>\<And>b. (\<exists>w \<in> T \<union> U. w \<in> ball b 1); \<And>x. x \<in> D \<Longrightarrow> g x \<notin> T \<union> U\<rbrakk> \<Longrightarrow> \<nexists>b. ball b 1 \<subseteq> g ` D" for T U D |
|
286 |
by force |
|
287 |
have "\<nexists>b. ball b 1 \<subseteq> g ` cball 0 1" |
|
288 |
proof (rule *) |
|
289 |
show "(\<exists>w \<in> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (ln(n + sqrt(real n ^ 2 - 1)) / pi)}) \<union> |
|
290 |
(\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (-ln(n + sqrt(real n ^ 2 - 1)) / pi)}). w \<in> ball b 1)" for b |
|
291 |
proof - |
|
292 |
obtain m where m: "m \<in> \<int>" "\<bar>Re b - m\<bar> \<le> 1/2" |
|
293 |
by (metis Ints_of_int abs_minus_commute of_int_round_abs_le) |
|
294 |
show ?thesis |
|
295 |
proof (cases "0::real" "Im b" rule: le_cases) |
|
296 |
case le |
|
297 |
then obtain n where "0 < n" and n: "\<bar>Im b - ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi\<bar> < 1/2" |
|
298 |
using Schottky_lemma2 [of "Im b"] by blast |
|
299 |
have "dist b (Complex m (Im b)) \<le> 1/2" |
|
300 |
by (metis cancel_comm_monoid_add_class.diff_cancel cmod_eq_Re complex.sel(1) complex.sel(2) dist_norm m(2) minus_complex.code) |
|
301 |
moreover |
|
302 |
have "dist (Complex m (Im b)) (Complex m (ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi)) < 1/2" |
|
303 |
using n by (simp add: complex_norm cmod_eq_Re complex_diff dist_norm del: Complex_eq) |
|
304 |
ultimately have "dist b (Complex m (ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)) < 1" |
|
305 |
by (simp add: dist_triangle_lt [of b "Complex m (Im b)"] dist_commute) |
|
306 |
with le m \<open>0 < n\<close> show ?thesis |
|
307 |
apply (rule_tac x = "Complex m (ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)" in bexI) |
|
308 |
apply (simp_all del: Complex_eq greaterThan_0) |
|
309 |
by blast |
|
310 |
next |
|
311 |
case ge |
|
312 |
then obtain n where "0 < n" and n: "\<bar>- Im b - ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi\<bar> < 1/2" |
|
313 |
using Schottky_lemma2 [of "- Im b"] by auto |
|
314 |
have "dist b (Complex m (Im b)) \<le> 1/2" |
|
315 |
by (metis cancel_comm_monoid_add_class.diff_cancel cmod_eq_Re complex.sel(1) complex.sel(2) dist_norm m(2) minus_complex.code) |
|
316 |
moreover |
|
317 |
have "dist (Complex m (- ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi)) (Complex m (Im b)) < 1/2" |
|
318 |
using n |
|
319 |
apply (simp add: complex_norm cmod_eq_Re complex_diff dist_norm del: Complex_eq) |
|
320 |
by (metis add.commute add_uminus_conv_diff) |
|
321 |
ultimately have "dist b (Complex m (- ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)) < 1" |
|
322 |
by (simp add: dist_triangle_lt [of b "Complex m (Im b)"] dist_commute) |
|
323 |
with ge m \<open>0 < n\<close> show ?thesis |
|
324 |
apply (rule_tac x = "Complex m (- ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)" in bexI) |
|
325 |
apply (simp_all del: Complex_eq greaterThan_0) |
|
326 |
by blast |
|
327 |
qed |
|
328 |
qed |
|
329 |
show "g v \<notin> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (ln(n + sqrt(real n ^ 2 - 1)) / pi)}) \<union> |
|
330 |
(\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (-ln(n + sqrt(real n ^ 2 - 1)) / pi)})" |
|
331 |
if "v \<in> cball 0 1" for v |
|
332 |
using not01 [OF that] |
|
333 |
by (force simp: g [OF that, symmetric] h [OF that, symmetric] dest!: Schottky_lemma3 [of "g v"]) |
|
334 |
qed |
|
335 |
then have 12: "(1 - t) * cmod (deriv g w) / 12 < 1" |
|
336 |
using Bloch_general [OF holg _ ttt, of 1] w by force |
|
337 |
have "g field_differentiable at w within cball 0 1" |
|
338 |
using holg w by (simp add: holomorphic_on_def) |
|
339 |
then have "g field_differentiable at w within ball 0 1" |
|
340 |
using ball_subset_cball field_differentiable_within_subset by blast |
|
341 |
with w have der_gw: "(g has_field_derivative deriv g w) (at w)" |
|
342 |
by (simp add: field_differentiable_within_open [of _ "ball 0 1"] field_differentiable_derivI) |
|
343 |
with DERIV_unique [OF der_gw] g' w have "deriv g w = g' w" |
|
344 |
by (metis Topology_Euclidean_Space.open_ball at_within_open ball_subset_cball has_field_derivative_subset subsetCE) |
|
345 |
then show "cmod (g' w) \<le> 12 / (1 - t)" |
|
346 |
using g' 12 \<open>t < 1\<close> by (simp add: field_simps) |
|
347 |
qed |
|
348 |
then have "cmod (g z - g 0) \<le> 12 / (1 - t) * cmod z" |
|
349 |
using has_contour_integral_bound_linepath [OF int_g', of "12/(1 - t)"] assms |
|
350 |
by simp |
|
351 |
with \<open>cmod z \<le> t\<close> \<open>t < 1\<close> show ?thesis |
|
352 |
by (simp add: divide_simps) |
|
353 |
qed |
|
354 |
have fz: "f z = (1 + cos(of_real pi * h z)) / 2" |
|
355 |
using h \<open>z \<in> ball 0 1\<close> by (auto simp: field_simps) |
|
356 |
have "cmod (f z) \<le> exp (cmod (complex_of_real pi * h z))" |
|
357 |
by (simp add: fz mult.commute norm_cos_plus1_le) |
|
358 |
also have "... \<le> exp (pi * exp (pi * (2 + 2 * r + 12 * t / (1 - t))))" |
|
359 |
proof (simp add: norm_mult) |
|
360 |
have "cmod (g z - g 0) \<le> 12 * t / (1 - t)" |
|
361 |
using norm_g_12 \<open>t < 1\<close> by (simp add: norm_mult) |
|
362 |
then have "cmod (g z) - cmod (g 0) \<le> 12 * t / (1 - t)" |
|
363 |
using norm_triangle_ineq2 order_trans by blast |
|
364 |
then have *: "cmod (g z) \<le> 2 + 2 * r + 12 * t / (1 - t)" |
|
365 |
using g0_2_f0 norm_ge_zero [of "f 0"] nof0 |
|
366 |
by linarith |
|
367 |
have "cmod (h z) \<le> exp (cmod (complex_of_real pi * g z))" |
|
368 |
using \<open>z \<in> ball 0 1\<close> by (simp add: g norm_cos_le) |
|
369 |
also have "... \<le> exp (pi * (2 + 2 * r + 12 * t / (1 - t)))" |
|
370 |
using \<open>t < 1\<close> nof0 * by (simp add: norm_mult) |
|
371 |
finally show "cmod (h z) \<le> exp (pi * (2 + 2 * r + 12 * t / (1 - t)))" . |
|
372 |
qed |
|
373 |
finally show ?thesis . |
|
374 |
qed |
|
375 |
||
376 |
||
377 |
subsection\<open>The Little Picard Theorem\<close> |
|
378 |
||
379 |
lemma Landau_Picard: |
|
380 |
obtains R |
|
381 |
where "\<And>z. 0 < R z" |
|
382 |
"\<And>f. \<lbrakk>f holomorphic_on cball 0 (R(f 0)); |
|
383 |
\<And>z. norm z \<le> R(f 0) \<Longrightarrow> f z \<noteq> 0 \<and> f z \<noteq> 1\<rbrakk> \<Longrightarrow> norm(deriv f 0) < 1" |
|
384 |
proof - |
|
385 |
define R where "R \<equiv> \<lambda>z. 3 * exp(pi * exp(pi*(2 + 2 * cmod z + 12)))" |
|
386 |
show ?thesis |
|
387 |
proof |
|
388 |
show Rpos: "\<And>z. 0 < R z" |
|
389 |
by (auto simp: R_def) |
|
390 |
show "norm(deriv f 0) < 1" |
|
391 |
if holf: "f holomorphic_on cball 0 (R(f 0))" |
|
392 |
and Rf: "\<And>z. norm z \<le> R(f 0) \<Longrightarrow> f z \<noteq> 0 \<and> f z \<noteq> 1" for f |
|
393 |
proof - |
|
394 |
let ?r = "R(f 0)" |
|
395 |
define g where "g \<equiv> f \<circ> (\<lambda>z. of_real ?r * z)" |
|
396 |
have "0 < ?r" |
|
397 |
using Rpos by blast |
|
398 |
have holg: "g holomorphic_on cball 0 1" |
|
399 |
unfolding g_def |
|
400 |
apply (intro holomorphic_intros holomorphic_on_compose holomorphic_on_subset [OF holf]) |
|
401 |
using Rpos by (auto simp: less_imp_le norm_mult) |
|
402 |
have *: "norm(g z) \<le> exp(pi * exp(pi * (2 + 2 * norm (f 0) + 12 * t / (1 - t))))" |
|
403 |
if "0 < t" "t < 1" "norm z \<le> t" for t z |
|
404 |
proof (rule Schottky [OF holg]) |
|
405 |
show "cmod (g 0) \<le> cmod (f 0)" |
|
406 |
by (simp add: g_def) |
|
407 |
show "\<And>z. z \<in> cball 0 1 \<Longrightarrow> \<not> (g z = 0 \<or> g z = 1)" |
|
408 |
using Rpos by (simp add: g_def less_imp_le norm_mult Rf) |
|
409 |
qed (auto simp: that) |
|
410 |
have C1: "g holomorphic_on ball 0 (1 / 2)" |
|
411 |
by (rule holomorphic_on_subset [OF holg]) auto |
|
412 |
have C2: "continuous_on (cball 0 (1 / 2)) g" |
|
413 |
by (meson cball_divide_subset_numeral holg holomorphic_on_imp_continuous_on holomorphic_on_subset) |
|
414 |
have C3: "cmod (g z) \<le> R (f 0) / 3" if "cmod (0 - z) = 1/2" for z |
|
415 |
proof - |
|
416 |
have "norm(g z) \<le> exp(pi * exp(pi * (2 + 2 * norm (f 0) + 12)))" |
|
417 |
using * [of "1/2"] that by simp |
|
418 |
also have "... = ?r / 3" |
|
419 |
by (simp add: R_def) |
|
420 |
finally show ?thesis . |
|
421 |
qed |
|
422 |
then have cmod_g'_le: "cmod (deriv g 0) * 3 \<le> R (f 0) * 2" |
|
423 |
using Cauchy_inequality [OF C1 C2 _ C3, of 1] by simp |
|
424 |
have holf': "f holomorphic_on ball 0 (R(f 0))" |
|
425 |
by (rule holomorphic_on_subset [OF holf]) auto |
|
426 |
then have fd0: "f field_differentiable at 0" |
|
427 |
by (rule holomorphic_on_imp_differentiable_at [OF _ open_ball]) |
|
428 |
(auto simp: Rpos [of "f 0"]) |
|
429 |
have g_eq: "deriv g 0 = of_real ?r * deriv f 0" |
|
430 |
apply (rule DERIV_imp_deriv) |
|
431 |
apply (simp add: g_def) |
|
432 |
by (metis DERIV_chain DERIV_cmult_Id fd0 field_differentiable_derivI mult.commute mult_zero_right) |
|
433 |
show ?thesis |
|
434 |
using cmod_g'_le Rpos [of "f 0"] by (simp add: g_eq norm_mult) |
|
435 |
qed |
|
436 |
qed |
|
437 |
qed |
|
438 |
||
439 |
lemma little_Picard_01: |
|
440 |
assumes holf: "f holomorphic_on UNIV" and f01: "\<And>z. f z \<noteq> 0 \<and> f z \<noteq> 1" |
|
441 |
obtains c where "f = (\<lambda>x. c)" |
|
442 |
proof - |
|
443 |
obtain R |
|
444 |
where Rpos: "\<And>z. 0 < R z" |
|
445 |
and R: "\<And>h. \<lbrakk>h holomorphic_on cball 0 (R(h 0)); |
|
446 |
\<And>z. norm z \<le> R(h 0) \<Longrightarrow> h z \<noteq> 0 \<and> h z \<noteq> 1\<rbrakk> \<Longrightarrow> norm(deriv h 0) < 1" |
|
447 |
using Landau_Picard by metis |
|
448 |
have contf: "continuous_on UNIV f" |
|
449 |
by (simp add: holf holomorphic_on_imp_continuous_on) |
|
450 |
show ?thesis |
|
451 |
proof (cases "\<forall>x. deriv f x = 0") |
|
452 |
case True |
|
453 |
obtain c where "\<And>x. f(x) = c" |
|
454 |
apply (rule DERIV_zero_connected_constant [OF connected_UNIV open_UNIV finite.emptyI contf]) |
|
455 |
apply (metis True DiffE holf holomorphic_derivI open_UNIV, auto) |
|
456 |
done |
|
457 |
then show ?thesis |
|
458 |
using that by auto |
|
459 |
next |
|
460 |
case False |
|
461 |
then obtain w where w: "deriv f w \<noteq> 0" by auto |
|
462 |
define fw where "fw \<equiv> (f \<circ> (\<lambda>z. w + z / deriv f w))" |
|
463 |
have norm_let1: "norm(deriv fw 0) < 1" |
|
464 |
proof (rule R) |
|
465 |
show "fw holomorphic_on cball 0 (R (fw 0))" |
|
466 |
unfolding fw_def |
|
467 |
by (intro holomorphic_intros holomorphic_on_compose w holomorphic_on_subset [OF holf] subset_UNIV) |
|
468 |
show "fw z \<noteq> 0 \<and> fw z \<noteq> 1" if "cmod z \<le> R (fw 0)" for z |
|
469 |
using f01 by (simp add: fw_def) |
|
470 |
qed |
|
471 |
have "(fw has_field_derivative deriv f w * inverse (deriv f w)) (at 0)" |
|
472 |
apply (simp add: fw_def) |
|
473 |
apply (rule DERIV_chain) |
|
474 |
using holf holomorphic_derivI apply force |
|
475 |
apply (intro derivative_eq_intros w) |
|
476 |
apply (auto simp: field_simps) |
|
477 |
done |
|
478 |
then show ?thesis |
|
479 |
using norm_let1 w by (simp add: DERIV_imp_deriv) |
|
480 |
qed |
|
481 |
qed |
|
482 |
||
483 |
||
484 |
theorem little_Picard: |
|
485 |
assumes holf: "f holomorphic_on UNIV" |
|
486 |
and "a \<noteq> b" "range f \<inter> {a,b} = {}" |
|
487 |
obtains c where "f = (\<lambda>x. c)" |
|
488 |
proof - |
|
489 |
let ?g = "\<lambda>x. 1/(b - a)*(f x - b) + 1" |
|
490 |
obtain c where "?g = (\<lambda>x. c)" |
|
491 |
proof (rule little_Picard_01) |
|
492 |
show "?g holomorphic_on UNIV" |
|
493 |
by (intro holomorphic_intros holf) |
|
494 |
show "\<And>z. ?g z \<noteq> 0 \<and> ?g z \<noteq> 1" |
|
495 |
using assms by (auto simp: field_simps) |
|
496 |
qed auto |
|
497 |
then have "?g x = c" for x |
|
498 |
by meson |
|
499 |
then have "f x = c * (b-a) + a" for x |
|
500 |
using assms by (auto simp: field_simps) |
|
501 |
then show ?thesis |
|
502 |
using that by blast |
|
503 |
qed |
|
504 |
||
505 |
||
506 |
text\<open>A couple of little applications of Little Picard\<close> |
|
507 |
||
508 |
lemma holomorphic_periodic_fixpoint: |
|
509 |
assumes holf: "f holomorphic_on UNIV" |
|
510 |
and "p \<noteq> 0" and per: "\<And>z. f(z + p) = f z" |
|
511 |
obtains x where "f x = x" |
|
512 |
proof - |
|
513 |
have False if non: "\<And>x. f x \<noteq> x" |
|
514 |
proof - |
|
515 |
obtain c where "(\<lambda>z. f z - z) = (\<lambda>z. c)" |
|
516 |
proof (rule little_Picard) |
|
517 |
show "(\<lambda>z. f z - z) holomorphic_on UNIV" |
|
518 |
by (simp add: holf holomorphic_on_diff) |
|
519 |
show "range (\<lambda>z. f z - z) \<inter> {p,0} = {}" |
|
520 |
using assms non by auto (metis add.commute diff_eq_eq) |
|
521 |
qed (auto simp: assms) |
|
522 |
with per show False |
|
523 |
by (metis add.commute add_cancel_left_left \<open>p \<noteq> 0\<close> diff_add_cancel) |
|
524 |
qed |
|
525 |
then show ?thesis |
|
526 |
using that by blast |
|
527 |
qed |
|
528 |
||
529 |
||
530 |
lemma holomorphic_involution_point: |
|
531 |
assumes holfU: "f holomorphic_on UNIV" and non: "\<And>a. f \<noteq> (\<lambda>x. a + x)" |
|
532 |
obtains x where "f(f x) = x" |
|
533 |
proof - |
|
534 |
{ assume non_ff [simp]: "\<And>x. f(f x) \<noteq> x" |
|
535 |
then have non_fp [simp]: "f z \<noteq> z" for z |
|
536 |
by metis |
|
537 |
have holf: "f holomorphic_on X" for X |
|
538 |
using assms holomorphic_on_subset by blast |
|
539 |
obtain c where c: "(\<lambda>x. (f(f x) - x)/(f x - x)) = (\<lambda>x. c)" |
|
540 |
proof (rule little_Picard_01) |
|
541 |
show "(\<lambda>x. (f(f x) - x)/(f x - x)) holomorphic_on UNIV" |
|
542 |
apply (intro holomorphic_intros holf holomorphic_on_compose [unfolded o_def, OF holf]) |
|
543 |
using non_fp by auto |
|
544 |
qed auto |
|
545 |
then obtain "c \<noteq> 0" "c \<noteq> 1" |
|
546 |
by (metis (no_types, hide_lams) non_ff diff_zero divide_eq_0_iff right_inverse_eq) |
|
547 |
have eq: "f(f x) - c * f x = x*(1 - c)" for x |
|
548 |
using fun_cong [OF c, of x] by (simp add: field_simps) |
|
549 |
have df_times_dff: "deriv f z * (deriv f (f z) - c) = 1 * (1 - c)" for z |
|
550 |
proof (rule DERIV_unique) |
|
551 |
show "((\<lambda>x. f (f x) - c * f x) has_field_derivative |
|
552 |
deriv f z * (deriv f (f z) - c)) (at z)" |
|
553 |
apply (intro derivative_eq_intros) |
|
554 |
apply (rule DERIV_chain [unfolded o_def, of f]) |
|
555 |
apply (auto simp: algebra_simps intro!: holomorphic_derivI [OF holfU]) |
|
556 |
done |
|
557 |
show "((\<lambda>x. f (f x) - c * f x) has_field_derivative 1 * (1 - c)) (at z)" |
|
558 |
by (simp add: eq mult_commute_abs) |
|
559 |
qed |
|
560 |
{ fix z::complex |
|
561 |
obtain k where k: "deriv f \<circ> f = (\<lambda>x. k)" |
|
562 |
proof (rule little_Picard) |
|
563 |
show "(deriv f \<circ> f) holomorphic_on UNIV" |
|
564 |
by (meson holfU holomorphic_deriv holomorphic_on_compose holomorphic_on_subset open_UNIV subset_UNIV) |
|
565 |
obtain "deriv f (f x) \<noteq> 0" "deriv f (f x) \<noteq> c" for x |
|
566 |
using df_times_dff \<open>c \<noteq> 1\<close> eq_iff_diff_eq_0 |
|
567 |
by (metis lambda_one mult_zero_left mult_zero_right) |
|
568 |
then show "range (deriv f \<circ> f) \<inter> {0,c} = {}" |
|
569 |
by force |
|
570 |
qed (use \<open>c \<noteq> 0\<close> in auto) |
|
571 |
have "\<not> f constant_on UNIV" |
|
572 |
by (meson UNIV_I non_ff constant_on_def) |
|
573 |
with holf open_mapping_thm have "open(range f)" |
|
574 |
by blast |
|
575 |
obtain l where l: "\<And>x. f x - k * x = l" |
|
576 |
proof (rule DERIV_zero_connected_constant [of UNIV "{}" "\<lambda>x. f x - k * x"], simp_all) |
|
577 |
have "deriv f w - k = 0" for w |
|
578 |
proof (rule analytic_continuation [OF _ open_UNIV connected_UNIV subset_UNIV, of "\<lambda>z. deriv f z - k" "f z" "range f" w]) |
|
579 |
show "(\<lambda>z. deriv f z - k) holomorphic_on UNIV" |
|
580 |
by (intro holomorphic_intros holf open_UNIV) |
|
581 |
show "f z islimpt range f" |
|
582 |
by (metis (no_types, lifting) IntI UNIV_I \<open>open (range f)\<close> image_eqI inf.absorb_iff2 inf_aci(1) islimpt_UNIV islimpt_eq_acc_point open_Int top_greatest) |
|
583 |
show "\<And>z. z \<in> range f \<Longrightarrow> deriv f z - k = 0" |
|
584 |
by (metis comp_def diff_self image_iff k) |
|
585 |
qed auto |
|
586 |
moreover |
|
587 |
have "((\<lambda>x. f x - k * x) has_field_derivative deriv f x - k) (at x)" for x |
|
588 |
by (metis DERIV_cmult_Id Deriv.field_differentiable_diff UNIV_I field_differentiable_derivI holf holomorphic_on_def) |
|
589 |
ultimately |
|
590 |
show "\<forall>x. ((\<lambda>x. f x - k * x) has_field_derivative 0) (at x)" |
|
591 |
by auto |
|
592 |
show "continuous_on UNIV (\<lambda>x. f x - k * x)" |
|
593 |
by (simp add: continuous_on_diff holf holomorphic_on_imp_continuous_on) |
|
594 |
qed (auto simp: connected_UNIV) |
|
595 |
have False |
|
596 |
proof (cases "k=1") |
|
597 |
case True |
|
598 |
then have "\<exists>x. k * x + l \<noteq> a + x" for a |
|
599 |
using l non [of a] ext [of f "op + a"] |
|
600 |
by (metis add.commute diff_eq_eq) |
|
601 |
with True show ?thesis by auto |
|
602 |
next |
|
603 |
case False |
|
604 |
have "\<And>x. (1 - k) * x \<noteq> f 0" |
|
605 |
using l [of 0] apply (simp add: algebra_simps) |
|
606 |
by (metis diff_add_cancel l mult.commute non_fp) |
|
607 |
then show False |
|
608 |
by (metis False eq_iff_diff_eq_0 mult.commute nonzero_mult_div_cancel_right times_divide_eq_right) |
|
609 |
qed |
|
610 |
} |
|
611 |
} |
|
612 |
then show thesis |
|
613 |
using that by blast |
|
614 |
qed |
|
615 |
||
616 |
||
65823 | 617 |
subsection\<open>The Arzelà --Ascoli theorem\<close> |
65040 | 618 |
|
619 |
lemma subsequence_diagonalization_lemma: |
|
620 |
fixes P :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool" |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
621 |
assumes sub: "\<And>i r. \<exists>k. strict_mono (k :: nat \<Rightarrow> nat) \<and> P i (r \<circ> k)" |
65040 | 622 |
and P_P: "\<And>i r::nat \<Rightarrow> 'a. \<And>k1 k2 N. |
623 |
\<lbrakk>P i (r \<circ> k1); \<And>j. N \<le> j \<Longrightarrow> \<exists>j'. j \<le> j' \<and> k2 j = k1 j'\<rbrakk> \<Longrightarrow> P i (r \<circ> k2)" |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
624 |
obtains k where "strict_mono (k :: nat \<Rightarrow> nat)" "\<And>i. P i (r \<circ> k)" |
65040 | 625 |
proof - |
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
626 |
obtain kk where "\<And>i r. strict_mono (kk i r :: nat \<Rightarrow> nat) \<and> P i (r \<circ> (kk i r))" |
65040 | 627 |
using sub by metis |
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
628 |
then have sub_kk: "\<And>i r. strict_mono (kk i r)" and P_kk: "\<And>i r. P i (r \<circ> (kk i r))" |
65040 | 629 |
by auto |
630 |
define rr where "rr \<equiv> rec_nat (kk 0 r) (\<lambda>n x. x \<circ> kk (Suc n) (r \<circ> x))" |
|
631 |
then have [simp]: "rr 0 = kk 0 r" "\<And>n. rr(Suc n) = rr n \<circ> kk (Suc n) (r \<circ> rr n)" |
|
632 |
by auto |
|
633 |
show thesis |
|
634 |
proof |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
635 |
have sub_rr: "strict_mono (rr i)" for i |
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
636 |
using sub_kk by (induction i) (auto simp: strict_mono_def o_def) |
65040 | 637 |
have P_rr: "P i (r \<circ> rr i)" for i |
638 |
using P_kk by (induction i) (auto simp: o_def) |
|
639 |
have "i \<le> i+d \<Longrightarrow> rr i n \<le> rr (i+d) n" for d i n |
|
640 |
proof (induction d) |
|
641 |
case 0 then show ?case |
|
642 |
by simp |
|
643 |
next |
|
644 |
case (Suc d) then show ?case |
|
645 |
apply simp |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
646 |
using seq_suble [OF sub_kk] order_trans strict_mono_less_eq [OF sub_rr] by blast |
65040 | 647 |
qed |
648 |
then have "\<And>i j n. i \<le> j \<Longrightarrow> rr i n \<le> rr j n" |
|
649 |
by (metis le_iff_add) |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
650 |
show "strict_mono (\<lambda>n. rr n n)" |
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
651 |
apply (simp add: strict_mono_Suc_iff) |
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
652 |
by (meson lessI less_le_trans seq_suble strict_monoD sub_kk sub_rr) |
65040 | 653 |
have "\<exists>j. i \<le> j \<and> rr (n+d) i = rr n j" for d n i |
654 |
apply (induction d arbitrary: i, auto) |
|
655 |
by (meson order_trans seq_suble sub_kk) |
|
656 |
then have "\<And>m n i. n \<le> m \<Longrightarrow> \<exists>j. i \<le> j \<and> rr m i = rr n j" |
|
657 |
by (metis le_iff_add) |
|
658 |
then show "P i (r \<circ> (\<lambda>n. rr n n))" for i |
|
659 |
by (meson P_rr P_P) |
|
660 |
qed |
|
661 |
qed |
|
662 |
||
663 |
lemma function_convergent_subsequence: |
|
664 |
fixes f :: "[nat,'a] \<Rightarrow> 'b::{real_normed_vector,heine_borel}" |
|
665 |
assumes "countable S" and M: "\<And>n::nat. \<And>x. x \<in> S \<Longrightarrow> norm(f n x) \<le> M" |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
666 |
obtains k where "strict_mono (k::nat\<Rightarrow>nat)" "\<And>x. x \<in> S \<Longrightarrow> \<exists>l. (\<lambda>n. f (k n) x) \<longlonglongrightarrow> l" |
65040 | 667 |
proof (cases "S = {}") |
668 |
case True |
|
669 |
then show ?thesis |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
670 |
using strict_mono_id that by fastforce |
65040 | 671 |
next |
672 |
case False |
|
673 |
with \<open>countable S\<close> obtain \<sigma> :: "nat \<Rightarrow> 'a" where \<sigma>: "S = range \<sigma>" |
|
674 |
using uncountable_def by blast |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
675 |
obtain k where "strict_mono k" and k: "\<And>i. \<exists>l. (\<lambda>n. (f \<circ> k) n (\<sigma> i)) \<longlonglongrightarrow> l" |
65040 | 676 |
proof (rule subsequence_diagonalization_lemma |
677 |
[of "\<lambda>i r. \<exists>l. ((\<lambda>n. (f \<circ> r) n (\<sigma> i)) \<longlongrightarrow> l) sequentially" id]) |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
678 |
show "\<exists>k::nat\<Rightarrow>nat. strict_mono k \<and> (\<exists>l. (\<lambda>n. (f \<circ> (r \<circ> k)) n (\<sigma> i)) \<longlonglongrightarrow> l)" for i r |
65040 | 679 |
proof - |
680 |
have "f (r n) (\<sigma> i) \<in> cball 0 M" for n |
|
681 |
by (simp add: \<sigma> M) |
|
682 |
then show ?thesis |
|
683 |
using compact_def [of "cball (0::'b) M"] apply simp |
|
684 |
apply (drule_tac x="(\<lambda>n. f (r n) (\<sigma> i))" in spec) |
|
685 |
apply (force simp: o_def) |
|
686 |
done |
|
687 |
qed |
|
688 |
show "\<And>i r k1 k2 N. |
|
689 |
\<lbrakk>\<exists>l. (\<lambda>n. (f \<circ> (r \<circ> k1)) n (\<sigma> i)) \<longlonglongrightarrow> l; \<And>j. N \<le> j \<Longrightarrow> \<exists>j'\<ge>j. k2 j = k1 j'\<rbrakk> |
|
690 |
\<Longrightarrow> \<exists>l. (\<lambda>n. (f \<circ> (r \<circ> k2)) n (\<sigma> i)) \<longlonglongrightarrow> l" |
|
691 |
apply (simp add: lim_sequentially) |
|
692 |
apply (erule ex_forward all_forward imp_forward)+ |
|
693 |
apply auto |
|
694 |
by (metis (no_types, hide_lams) le_cases order_trans) |
|
695 |
qed auto |
|
696 |
with \<sigma> that show ?thesis |
|
697 |
by force |
|
698 |
qed |
|
699 |
||
700 |
||
701 |
theorem Arzela_Ascoli: |
|
702 |
fixes \<F> :: "[nat,'a::euclidean_space] \<Rightarrow> 'b::{real_normed_vector,heine_borel}" |
|
703 |
assumes "compact S" |
|
704 |
and M: "\<And>n x. x \<in> S \<Longrightarrow> norm(\<F> n x) \<le> M" |
|
705 |
and equicont: |
|
706 |
"\<And>x e. \<lbrakk>x \<in> S; 0 < e\<rbrakk> |
|
707 |
\<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>n y. y \<in> S \<and> norm(x - y) < d \<longrightarrow> norm(\<F> n x - \<F> n y) < e)" |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
708 |
obtains g k where "continuous_on S g" "strict_mono (k :: nat \<Rightarrow> nat)" |
65040 | 709 |
"\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<and> x \<in> S \<longrightarrow> norm(\<F>(k n) x - g x) < e" |
710 |
proof - |
|
711 |
have UEQ: "\<And>e. 0 < e \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>n. \<forall>x \<in> S. \<forall>x' \<in> S. dist x' x < d \<longrightarrow> dist (\<F> n x') (\<F> n x) < e)" |
|
712 |
apply (rule compact_uniformly_equicontinuous [OF \<open>compact S\<close>, of "range \<F>"]) |
|
713 |
using equicont by (force simp: dist_commute dist_norm)+ |
|
714 |
have "continuous_on S g" |
|
715 |
if "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<and> x \<in> S \<longrightarrow> norm(\<F>(r n) x - g x) < e" |
|
716 |
for g:: "'a \<Rightarrow> 'b" and r :: "nat \<Rightarrow> nat" |
|
717 |
proof (rule uniform_limit_theorem [of _ "\<F> \<circ> r"]) |
|
718 |
show "\<forall>\<^sub>F n in sequentially. continuous_on S ((\<F> \<circ> r) n)" |
|
719 |
apply (simp add: eventually_sequentially) |
|
720 |
apply (rule_tac x=0 in exI) |
|
721 |
using UEQ apply (force simp: continuous_on_iff) |
|
722 |
done |
|
723 |
show "uniform_limit S (\<F> \<circ> r) g sequentially" |
|
724 |
apply (simp add: uniform_limit_iff eventually_sequentially) |
|
725 |
by (metis dist_norm that) |
|
726 |
qed auto |
|
727 |
moreover |
|
728 |
obtain R where "countable R" "R \<subseteq> S" and SR: "S \<subseteq> closure R" |
|
729 |
by (metis separable that) |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
730 |
obtain k where "strict_mono k" and k: "\<And>x. x \<in> R \<Longrightarrow> \<exists>l. (\<lambda>n. \<F> (k n) x) \<longlonglongrightarrow> l" |
65040 | 731 |
apply (rule function_convergent_subsequence [OF \<open>countable R\<close> M]) |
732 |
using \<open>R \<subseteq> S\<close> apply force+ |
|
733 |
done |
|
734 |
then have Cauchy: "Cauchy ((\<lambda>n. \<F> (k n) x))" if "x \<in> R" for x |
|
735 |
using convergent_eq_Cauchy that by blast |
|
736 |
have "\<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> x \<in> S \<longrightarrow> dist ((\<F> \<circ> k) m x) ((\<F> \<circ> k) n x) < e" |
|
737 |
if "0 < e" for e |
|
738 |
proof - |
|
739 |
obtain d where "0 < d" |
|
740 |
and d: "\<And>n. \<forall>x \<in> S. \<forall>x' \<in> S. dist x' x < d \<longrightarrow> dist (\<F> n x') (\<F> n x) < e/3" |
|
741 |
by (metis UEQ \<open>0 < e\<close> divide_pos_pos zero_less_numeral) |
|
742 |
obtain T where "T \<subseteq> R" and "finite T" and T: "S \<subseteq> (\<Union>c\<in>T. ball c d)" |
|
743 |
proof (rule compactE_image [OF \<open>compact S\<close>, of R "(\<lambda>x. ball x d)"]) |
|
744 |
have "closure R \<subseteq> (\<Union>c\<in>R. ball c d)" |
|
745 |
apply clarsimp |
|
746 |
using \<open>0 < d\<close> closure_approachable by blast |
|
747 |
with SR show "S \<subseteq> (\<Union>c\<in>R. ball c d)" |
|
748 |
by auto |
|
749 |
qed auto |
|
750 |
have "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (\<F> (k m) x) (\<F> (k n) x) < e/3" if "x \<in> R" for x |
|
751 |
using Cauchy \<open>0 < e\<close> that unfolding Cauchy_def |
|
752 |
by (metis less_divide_eq_numeral1(1) mult_zero_left) |
|
753 |
then obtain MF where MF: "\<And>x m n. \<lbrakk>x \<in> R; m \<ge> MF x; n \<ge> MF x\<rbrakk> \<Longrightarrow> norm (\<F> (k m) x - \<F> (k n) x) < e/3" |
|
754 |
using dist_norm by metis |
|
755 |
have "dist ((\<F> \<circ> k) m x) ((\<F> \<circ> k) n x) < e" |
|
756 |
if m: "Max (MF ` T) \<le> m" and n: "Max (MF ` T) \<le> n" "x \<in> S" for m n x |
|
757 |
proof - |
|
758 |
obtain t where "t \<in> T" and t: "x \<in> ball t d" |
|
759 |
using \<open>x \<in> S\<close> T by auto |
|
760 |
have "norm(\<F> (k m) t - \<F> (k m) x) < e / 3" |
|
761 |
by (metis \<open>R \<subseteq> S\<close> \<open>T \<subseteq> R\<close> \<open>t \<in> T\<close> d dist_norm mem_ball subset_iff t \<open>x \<in> S\<close>) |
|
762 |
moreover |
|
763 |
have "norm(\<F> (k n) t - \<F> (k n) x) < e / 3" |
|
764 |
by (metis \<open>R \<subseteq> S\<close> \<open>T \<subseteq> R\<close> \<open>t \<in> T\<close> subsetD d dist_norm mem_ball t \<open>x \<in> S\<close>) |
|
765 |
moreover |
|
766 |
have "norm(\<F> (k m) t - \<F> (k n) t) < e / 3" |
|
767 |
proof (rule MF) |
|
768 |
show "t \<in> R" |
|
769 |
using \<open>T \<subseteq> R\<close> \<open>t \<in> T\<close> by blast |
|
770 |
show "MF t \<le> m" "MF t \<le> n" |
|
771 |
by (meson Max_ge \<open>finite T\<close> \<open>t \<in> T\<close> finite_imageI imageI le_trans m n)+ |
|
772 |
qed |
|
773 |
ultimately |
|
774 |
show ?thesis |
|
775 |
unfolding dist_norm [symmetric] o_def |
|
776 |
by (metis dist_triangle_third dist_commute) |
|
777 |
qed |
|
778 |
then show ?thesis |
|
779 |
by force |
|
780 |
qed |
|
781 |
then have "\<exists>g. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> S. norm(\<F>(k n) x - g x) < e" |
|
782 |
using uniformly_convergent_eq_cauchy [of "\<lambda>x. x \<in> S" "\<F> \<circ> k"] |
|
783 |
apply (simp add: o_def dist_norm) |
|
784 |
by meson |
|
785 |
ultimately show thesis |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
786 |
by (metis that \<open>strict_mono k\<close>) |
65040 | 787 |
qed |
788 |
||
789 |
||
790 |
||
791 |
subsubsection\<open>Montel's theorem\<close> |
|
792 |
||
793 |
text\<open>a sequence of holomorphic functions uniformly bounded |
|
794 |
on compact subsets of an open set S has a subsequence that converges to a |
|
795 |
holomorphic function, and converges \emph{uniformly} on compact subsets of S.\<close> |
|
796 |
||
797 |
||
798 |
theorem Montel: |
|
799 |
fixes \<F> :: "[nat,complex] \<Rightarrow> complex" |
|
800 |
assumes "open S" |
|
801 |
and \<H>: "\<And>h. h \<in> \<H> \<Longrightarrow> h holomorphic_on S" |
|
802 |
and bounded: "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>B. \<forall>h \<in> \<H>. \<forall> z \<in> K. norm(h z) \<le> B" |
|
803 |
and rng_f: "range \<F> \<subseteq> \<H>" |
|
804 |
obtains g r |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
805 |
where "g holomorphic_on S" "strict_mono (r :: nat \<Rightarrow> nat)" |
65040 | 806 |
"\<And>x. x \<in> S \<Longrightarrow> ((\<lambda>n. \<F> (r n) x) \<longlongrightarrow> g x) sequentially" |
807 |
"\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> \<Longrightarrow> uniform_limit K (\<F> \<circ> r) g sequentially" |
|
808 |
proof - |
|
809 |
obtain K where comK: "\<And>n. compact(K n)" and KS: "\<And>n::nat. K n \<subseteq> S" |
|
810 |
and subK: "\<And>X. \<lbrakk>compact X; X \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. X \<subseteq> K n" |
|
811 |
using open_Union_compact_subsets [OF \<open>open S\<close>] by metis |
|
812 |
then have "\<And>i. \<exists>B. \<forall>h \<in> \<H>. \<forall> z \<in> K i. norm(h z) \<le> B" |
|
813 |
by (simp add: bounded) |
|
814 |
then obtain B where B: "\<And>i h z. \<lbrakk>h \<in> \<H>; z \<in> K i\<rbrakk> \<Longrightarrow> norm(h z) \<le> B i" |
|
815 |
by metis |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
816 |
have *: "\<exists>r g. strict_mono (r::nat\<Rightarrow>nat) \<and> (\<forall>e > 0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> K i. norm((\<F> \<circ> r) n x - g x) < e)" |
65040 | 817 |
if "\<And>n. \<F> n \<in> \<H>" for \<F> i |
818 |
proof - |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
819 |
obtain g k where "continuous_on (K i) g" "strict_mono (k::nat\<Rightarrow>nat)" |
65040 | 820 |
"\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> K i. norm(\<F>(k n) x - g x) < e" |
821 |
proof (rule Arzela_Ascoli [of "K i" "\<F>" "B i"]) |
|
822 |
show "\<exists>d>0. \<forall>n y. y \<in> K i \<and> cmod (z - y) < d \<longrightarrow> cmod (\<F> n z - \<F> n y) < e" |
|
823 |
if z: "z \<in> K i" and "0 < e" for z e |
|
824 |
proof - |
|
825 |
obtain r where "0 < r" and r: "cball z r \<subseteq> S" |
|
826 |
using z KS [of i] \<open>open S\<close> by (force simp: open_contains_cball) |
|
827 |
have "cball z (2 / 3 * r) \<subseteq> cball z r" |
|
828 |
using \<open>0 < r\<close> by (simp add: cball_subset_cball_iff) |
|
829 |
then have z23S: "cball z (2 / 3 * r) \<subseteq> S" |
|
830 |
using r by blast |
|
831 |
obtain M where "0 < M" and M: "\<And>n w. dist z w \<le> 2/3 * r \<Longrightarrow> norm(\<F> n w) \<le> M" |
|
832 |
proof - |
|
833 |
obtain N where N: "\<forall>n\<ge>N. cball z (2/3 * r) \<subseteq> K n" |
|
834 |
using subK compact_cball [of z "(2 / 3 * r)"] z23S by force |
|
835 |
have "cmod (\<F> n w) \<le> \<bar>B N\<bar> + 1" if "dist z w \<le> 2 / 3 * r" for n w |
|
836 |
proof - |
|
837 |
have "w \<in> K N" |
|
838 |
using N mem_cball that by blast |
|
839 |
then have "cmod (\<F> n w) \<le> B N" |
|
840 |
using B \<open>\<And>n. \<F> n \<in> \<H>\<close> by blast |
|
841 |
also have "... \<le> \<bar>B N\<bar> + 1" |
|
842 |
by simp |
|
843 |
finally show ?thesis . |
|
844 |
qed |
|
845 |
then show ?thesis |
|
846 |
by (rule_tac M="\<bar>B N\<bar> + 1" in that) auto |
|
847 |
qed |
|
848 |
have "cmod (\<F> n z - \<F> n y) < e" |
|
849 |
if "y \<in> K i" and y_near_z: "cmod (z - y) < r/3" "cmod (z - y) < e * r / (6 * M)" |
|
850 |
for n y |
|
851 |
proof - |
|
852 |
have "((\<lambda>w. \<F> n w / (w - \<xi>)) has_contour_integral |
|
853 |
(2 * pi) * \<i> * winding_number (circlepath z (2 / 3 * r)) \<xi> * \<F> n \<xi>) |
|
854 |
(circlepath z (2 / 3 * r))" |
|
855 |
if "dist \<xi> z < (2 / 3 * r)" for \<xi> |
|
856 |
proof (rule Cauchy_integral_formula_convex_simple) |
|
857 |
have "\<F> n holomorphic_on S" |
|
858 |
by (simp add: \<H> \<open>\<And>n. \<F> n \<in> \<H>\<close>) |
|
859 |
with z23S show "\<F> n holomorphic_on cball z (2 / 3 * r)" |
|
860 |
using holomorphic_on_subset by blast |
|
861 |
qed (use that \<open>0 < r\<close> in \<open>auto simp: dist_commute\<close>) |
|
862 |
then have *: "((\<lambda>w. \<F> n w / (w - \<xi>)) has_contour_integral (2 * pi) * \<i> * \<F> n \<xi>) |
|
863 |
(circlepath z (2 / 3 * r))" |
|
864 |
if "dist \<xi> z < (2 / 3 * r)" for \<xi> |
|
865 |
using that by (simp add: winding_number_circlepath dist_norm) |
|
866 |
have y: "((\<lambda>w. \<F> n w / (w - y)) has_contour_integral (2 * pi) * \<i> * \<F> n y) |
|
867 |
(circlepath z (2 / 3 * r))" |
|
868 |
apply (rule *) |
|
869 |
using that \<open>0 < r\<close> by (simp only: dist_norm norm_minus_commute) |
|
870 |
have z: "((\<lambda>w. \<F> n w / (w - z)) has_contour_integral (2 * pi) * \<i> * \<F> n z) |
|
871 |
(circlepath z (2 / 3 * r))" |
|
872 |
apply (rule *) |
|
873 |
using \<open>0 < r\<close> by simp |
|
874 |
have le_er: "cmod (\<F> n x / (x - y) - \<F> n x / (x - z)) \<le> e / r" |
|
875 |
if "cmod (x - z) = r/3 + r/3" for x |
|
876 |
proof - |
|
877 |
have "~ (cmod (x - y) < r/3)" |
|
878 |
using y_near_z(1) that \<open>M > 0\<close> \<open>r > 0\<close> |
|
879 |
by (metis (full_types) norm_diff_triangle_less norm_minus_commute order_less_irrefl) |
|
880 |
then have r4_le_xy: "r/4 \<le> cmod (x - y)" |
|
881 |
using \<open>r > 0\<close> by simp |
|
882 |
then have neq: "x \<noteq> y" "x \<noteq> z" |
|
883 |
using that \<open>r > 0\<close> by (auto simp: divide_simps norm_minus_commute) |
|
884 |
have leM: "cmod (\<F> n x) \<le> M" |
|
885 |
by (simp add: M dist_commute dist_norm that) |
|
886 |
have "cmod (\<F> n x / (x - y) - \<F> n x / (x - z)) = cmod (\<F> n x) * cmod (1 / (x - y) - 1 / (x - z))" |
|
887 |
by (metis (no_types, lifting) divide_inverse mult.left_neutral norm_mult right_diff_distrib') |
|
888 |
also have "... = cmod (\<F> n x) * cmod ((y - z) / ((x - y) * (x - z)))" |
|
889 |
using neq by (simp add: divide_simps) |
|
890 |
also have "... = cmod (\<F> n x) * (cmod (y - z) / (cmod(x - y) * (2/3 * r)))" |
|
891 |
by (simp add: norm_mult norm_divide that) |
|
892 |
also have "... \<le> M * (cmod (y - z) / (cmod(x - y) * (2/3 * r)))" |
|
893 |
apply (rule mult_mono) |
|
894 |
apply (rule leM) |
|
895 |
using \<open>r > 0\<close> \<open>M > 0\<close> neq by auto |
|
896 |
also have "... < M * ((e * r / (6 * M)) / (cmod(x - y) * (2/3 * r)))" |
|
897 |
unfolding mult_less_cancel_left |
|
898 |
using y_near_z(2) \<open>M > 0\<close> \<open>r > 0\<close> neq |
|
899 |
apply (simp add: field_simps mult_less_0_iff norm_minus_commute) |
|
900 |
done |
|
901 |
also have "... \<le> e/r" |
|
902 |
using \<open>e > 0\<close> \<open>r > 0\<close> r4_le_xy by (simp add: divide_simps) |
|
903 |
finally show ?thesis by simp |
|
904 |
qed |
|
905 |
have "(2 * pi) * cmod (\<F> n y - \<F> n z) = cmod ((2 * pi) * \<i> * \<F> n y - (2 * pi) * \<i> * \<F> n z)" |
|
906 |
by (simp add: right_diff_distrib [symmetric] norm_mult) |
|
907 |
also have "cmod ((2 * pi) * \<i> * \<F> n y - (2 * pi) * \<i> * \<F> n z) \<le> e / r * (2 * pi * (2 / 3 * r))" |
|
908 |
apply (rule has_contour_integral_bound_circlepath [OF has_contour_integral_diff [OF y z], of "e/r"]) |
|
909 |
using \<open>e > 0\<close> \<open>r > 0\<close> le_er by auto |
|
910 |
also have "... = (2 * pi) * e * ((2 / 3))" |
|
911 |
using \<open>r > 0\<close> by (simp add: divide_simps) |
|
912 |
finally have "cmod (\<F> n y - \<F> n z) \<le> e * (2 / 3)" |
|
913 |
by simp |
|
914 |
also have "... < e" |
|
915 |
using \<open>e > 0\<close> by simp |
|
916 |
finally show ?thesis by (simp add: norm_minus_commute) |
|
917 |
qed |
|
918 |
then show ?thesis |
|
919 |
apply (rule_tac x="min (r/3) ((e * r)/(6 * M))" in exI) |
|
920 |
using \<open>0 < e\<close> \<open>0 < r\<close> \<open>0 < M\<close> by simp |
|
921 |
qed |
|
922 |
show "\<And>n x. x \<in> K i \<Longrightarrow> cmod (\<F> n x) \<le> B i" |
|
923 |
using B \<open>\<And>n. \<F> n \<in> \<H>\<close> by blast |
|
924 |
qed (use comK in \<open>fastforce+\<close>) |
|
925 |
then show ?thesis |
|
926 |
by fastforce |
|
927 |
qed |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
928 |
have "\<exists>k g. strict_mono (k::nat\<Rightarrow>nat) \<and> (\<forall>e > 0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> K i. norm((\<F> \<circ> r \<circ> k) n x - g x) < e)" |
65040 | 929 |
for i r |
930 |
apply (rule *) |
|
931 |
using rng_f by auto |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
932 |
then have **: "\<And>i r. \<exists>k. strict_mono (k::nat\<Rightarrow>nat) \<and> (\<exists>g. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> K i. norm((\<F> \<circ> (r \<circ> k)) n x - g x) < e)" |
65040 | 933 |
by (force simp: o_assoc) |
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
934 |
obtain k :: "nat \<Rightarrow> nat" where "strict_mono k" |
65040 | 935 |
and "\<And>i. \<exists>g. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>K i. cmod ((\<F> \<circ> (id \<circ> k)) n x - g x) < e" |
936 |
apply (rule subsequence_diagonalization_lemma [OF **, of id]) |
|
937 |
apply (erule ex_forward all_forward imp_forward)+ |
|
938 |
apply auto |
|
939 |
apply (rule_tac x="max N Na" in exI, fastforce+) |
|
940 |
done |
|
941 |
then have lt_e: "\<And>i. \<exists>g. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>K i. cmod ((\<F> \<circ> k) n x - g x) < e" |
|
942 |
by simp |
|
943 |
have "\<exists>l. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. norm(\<F> (k n) z - l) < e" if "z \<in> S" for z |
|
944 |
proof - |
|
945 |
obtain G where G: "\<And>i e. e > 0 \<Longrightarrow> \<exists>M. \<forall>n\<ge>M. \<forall>x\<in>K i. cmod ((\<F> \<circ> k) n x - G i x) < e" |
|
946 |
using lt_e by metis |
|
947 |
obtain N where "\<And>n. n \<ge> N \<Longrightarrow> z \<in> K n" |
|
948 |
using subK [of "{z}"] that \<open>z \<in> S\<close> by auto |
|
949 |
moreover have "\<And>e. e > 0 \<Longrightarrow> \<exists>M. \<forall>n\<ge>M. \<forall>x\<in>K N. cmod ((\<F> \<circ> k) n x - G N x) < e" |
|
950 |
using G by auto |
|
951 |
ultimately show ?thesis |
|
952 |
by (metis comp_apply order_refl) |
|
953 |
qed |
|
954 |
then obtain g where g: "\<And>z e. \<lbrakk>z \<in> S; e > 0\<rbrakk> \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. norm(\<F> (k n) z - g z) < e" |
|
955 |
by metis |
|
956 |
show ?thesis |
|
957 |
proof |
|
958 |
show g_lim: "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>n. \<F> (k n) x) \<longlonglongrightarrow> g x" |
|
959 |
by (simp add: lim_sequentially g dist_norm) |
|
960 |
have dg_le_e: "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>T. cmod (\<F> (k n) x - g x) < e" |
|
961 |
if T: "compact T" "T \<subseteq> S" and "0 < e" for T e |
|
962 |
proof - |
|
963 |
obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> T \<subseteq> K n" |
|
964 |
using subK [OF T] by blast |
|
965 |
obtain h where h: "\<And>e. e>0 \<Longrightarrow> \<exists>M. \<forall>n\<ge>M. \<forall>x\<in>K N. cmod ((\<F> \<circ> k) n x - h x) < e" |
|
966 |
using lt_e by blast |
|
967 |
have geq: "g w = h w" if "w \<in> T" for w |
|
968 |
apply (rule LIMSEQ_unique [of "\<lambda>n. \<F>(k n) w"]) |
|
969 |
using \<open>T \<subseteq> S\<close> g_lim that apply blast |
|
970 |
using h N that by (force simp: lim_sequentially dist_norm) |
|
971 |
show ?thesis |
|
972 |
using T h N \<open>0 < e\<close> by (fastforce simp add: geq) |
|
973 |
qed |
|
974 |
then show "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> |
|
975 |
\<Longrightarrow> uniform_limit K (\<F> \<circ> k) g sequentially" |
|
976 |
by (simp add: uniform_limit_iff dist_norm eventually_sequentially) |
|
977 |
show "g holomorphic_on S" |
|
978 |
proof (rule holomorphic_uniform_sequence [OF \<open>open S\<close> \<H>]) |
|
979 |
show "\<And>n. (\<F> \<circ> k) n \<in> \<H>" |
|
980 |
by (simp add: range_subsetD rng_f) |
|
981 |
show "\<exists>d>0. cball z d \<subseteq> S \<and> uniform_limit (cball z d) (\<lambda>n. (\<F> \<circ> k) n) g sequentially" |
|
982 |
if "z \<in> S" for z |
|
983 |
proof - |
|
984 |
obtain d where d: "d>0" "cball z d \<subseteq> S" |
|
985 |
using \<open>open S\<close> \<open>z \<in> S\<close> open_contains_cball by blast |
|
986 |
then have "uniform_limit (cball z d) (\<F> \<circ> k) g sequentially" |
|
987 |
using dg_le_e compact_cball by (auto simp: uniform_limit_iff eventually_sequentially dist_norm) |
|
988 |
with d show ?thesis by blast |
|
989 |
qed |
|
990 |
qed |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
991 |
qed (auto simp: \<open>strict_mono k\<close>) |
65040 | 992 |
qed |
993 |
||
994 |
||
995 |
||
996 |
subsection\<open>Some simple but useful cases of Hurwitz's theorem\<close> |
|
997 |
||
998 |
proposition Hurwitz_no_zeros: |
|
999 |
assumes S: "open S" "connected S" |
|
1000 |
and holf: "\<And>n::nat. \<F> n holomorphic_on S" |
|
1001 |
and holg: "g holomorphic_on S" |
|
1002 |
and ul_g: "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> \<Longrightarrow> uniform_limit K \<F> g sequentially" |
|
1003 |
and nonconst: "\<And>c. \<exists>z \<in> S. g z \<noteq> c" |
|
1004 |
and nz: "\<And>n z. z \<in> S \<Longrightarrow> \<F> n z \<noteq> 0" |
|
1005 |
and "z0 \<in> S" |
|
1006 |
shows "g z0 \<noteq> 0" |
|
1007 |
proof |
|
1008 |
assume g0: "g z0 = 0" |
|
1009 |
obtain h r m |
|
1010 |
where "0 < m" "0 < r" and subS: "ball z0 r \<subseteq> S" |
|
1011 |
and holh: "h holomorphic_on ball z0 r" |
|
1012 |
and geq: "\<And>w. w \<in> ball z0 r \<Longrightarrow> g w = (w - z0)^m * h w" |
|
1013 |
and hnz: "\<And>w. w \<in> ball z0 r \<Longrightarrow> h w \<noteq> 0" |
|
1014 |
by (blast intro: holomorphic_factor_zero_nonconstant [OF holg S \<open>z0 \<in> S\<close> g0 nonconst]) |
|
1015 |
then have holf0: "\<F> n holomorphic_on ball z0 r" for n |
|
1016 |
by (meson holf holomorphic_on_subset) |
|
1017 |
have *: "((\<lambda>z. deriv (\<F> n) z / \<F> n z) has_contour_integral 0) (circlepath z0 (r/2))" for n |
|
1018 |
proof (rule Cauchy_theorem_disc_simple [of _ z0 r]) |
|
1019 |
show "(\<lambda>z. deriv (\<F> n) z / \<F> n z) holomorphic_on ball z0 r" |
|
1020 |
apply (intro holomorphic_intros holomorphic_deriv holf holf0 open_ball nz) |
|
1021 |
using \<open>ball z0 r \<subseteq> S\<close> by blast |
|
1022 |
qed (use \<open>0 < r\<close> in auto) |
|
1023 |
have hol_dg: "deriv g holomorphic_on S" |
|
1024 |
by (simp add: \<open>open S\<close> holg holomorphic_deriv) |
|
1025 |
have "continuous_on (sphere z0 (r/2)) (deriv g)" |
|
1026 |
apply (intro holomorphic_on_imp_continuous_on holomorphic_on_subset [OF hol_dg]) |
|
1027 |
using \<open>0 < r\<close> subS by auto |
|
1028 |
then have "compact (deriv g ` (sphere z0 (r/2)))" |
|
1029 |
by (rule compact_continuous_image [OF _ compact_sphere]) |
|
1030 |
then have bo_dg: "bounded (deriv g ` (sphere z0 (r/2)))" |
|
1031 |
using compact_imp_bounded by blast |
|
1032 |
have "continuous_on (sphere z0 (r/2)) (cmod \<circ> g)" |
|
1033 |
apply (intro continuous_intros holomorphic_on_imp_continuous_on holomorphic_on_subset [OF holg]) |
|
1034 |
using \<open>0 < r\<close> subS by auto |
|
1035 |
then have "compact ((cmod \<circ> g) ` sphere z0 (r/2))" |
|
1036 |
by (rule compact_continuous_image [OF _ compact_sphere]) |
|
1037 |
moreover have "(cmod \<circ> g) ` sphere z0 (r/2) \<noteq> {}" |
|
1038 |
using \<open>0 < r\<close> by auto |
|
1039 |
ultimately obtain b where b: "b \<in> (cmod \<circ> g) ` sphere z0 (r/2)" |
|
1040 |
"\<And>t. t \<in> (cmod \<circ> g) ` sphere z0 (r/2) \<Longrightarrow> b \<le> t" |
|
1041 |
using compact_attains_inf [of "(norm \<circ> g) ` (sphere z0 (r/2))"] by blast |
|
1042 |
have "(\<lambda>n. contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv (\<F> n) z / \<F> n z)) \<longlonglongrightarrow> |
|
1043 |
contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv g z / g z)" |
|
1044 |
proof (rule contour_integral_uniform_limit_circlepath) |
|
1045 |
show "\<forall>\<^sub>F n in sequentially. (\<lambda>z. deriv (\<F> n) z / \<F> n z) contour_integrable_on circlepath z0 (r/2)" |
|
1046 |
using * contour_integrable_on_def eventually_sequentiallyI by meson |
|
1047 |
show "uniform_limit (sphere z0 (r/2)) (\<lambda>n z. deriv (\<F> n) z / \<F> n z) (\<lambda>z. deriv g z / g z) sequentially" |
|
1048 |
proof (rule uniform_lim_divide [OF _ _ bo_dg]) |
|
1049 |
show "uniform_limit (sphere z0 (r/2)) (\<lambda>a. deriv (\<F> a)) (deriv g) sequentially" |
|
1050 |
proof (rule uniform_limitI) |
|
1051 |
fix e::real |
|
1052 |
assume "0 < e" |
|
1053 |
have *: "dist (deriv (\<F> n) w) (deriv g w) < e" |
|
1054 |
if e8: "\<And>x. dist z0 x \<le> 3 * r / 4 \<Longrightarrow> dist (\<F> n x) (g x) * 8 < r * e" |
|
1055 |
and w: "dist w z0 = r/2" for n w |
|
1056 |
proof - |
|
1057 |
have "ball w (r/4) \<subseteq> ball z0 r" "cball w (r/4) \<subseteq> ball z0 r" |
|
1058 |
using \<open>0 < r\<close> by (simp_all add: ball_subset_ball_iff cball_subset_ball_iff w) |
|
1059 |
with subS have wr4_sub: "ball w (r/4) \<subseteq> S" "cball w (r/4) \<subseteq> S" by force+ |
|
1060 |
moreover |
|
1061 |
have "(\<lambda>z. \<F> n z - g z) holomorphic_on S" |
|
1062 |
by (intro holomorphic_intros holf holg) |
|
1063 |
ultimately have hol: "(\<lambda>z. \<F> n z - g z) holomorphic_on ball w (r/4)" |
|
1064 |
and cont: "continuous_on (cball w (r / 4)) (\<lambda>z. \<F> n z - g z)" |
|
1065 |
using holomorphic_on_subset by (blast intro: holomorphic_on_imp_continuous_on)+ |
|
1066 |
have "w \<in> S" |
|
1067 |
using \<open>0 < r\<close> wr4_sub by auto |
|
1068 |
have "\<And>y. dist w y < r / 4 \<Longrightarrow> dist z0 y \<le> 3 * r / 4" |
|
1069 |
apply (rule dist_triangle_le [where z=w]) |
|
1070 |
using w by (simp add: dist_commute) |
|
1071 |
with e8 have in_ball: "\<And>y. y \<in> ball w (r/4) \<Longrightarrow> \<F> n y - g y \<in> ball 0 (r/4 * e/2)" |
|
1072 |
by (simp add: dist_norm [symmetric]) |
|
1073 |
have "\<F> n field_differentiable at w" |
|
1074 |
by (metis holomorphic_on_imp_differentiable_at \<open>w \<in> S\<close> holf \<open>open S\<close>) |
|
1075 |
moreover |
|
1076 |
have "g field_differentiable at w" |
|
1077 |
using \<open>w \<in> S\<close> \<open>open S\<close> holg holomorphic_on_imp_differentiable_at by auto |
|
1078 |
moreover |
|
1079 |
have "cmod (deriv (\<lambda>w. \<F> n w - g w) w) * 2 \<le> e" |
|
1080 |
apply (rule Cauchy_higher_deriv_bound [OF hol cont in_ball, of 1, simplified]) |
|
1081 |
using \<open>r > 0\<close> by auto |
|
1082 |
ultimately have "dist (deriv (\<F> n) w) (deriv g w) \<le> e/2" |
|
1083 |
by (simp add: dist_norm) |
|
1084 |
then show ?thesis |
|
1085 |
using \<open>e > 0\<close> by auto |
|
1086 |
qed |
|
1087 |
have "cball z0 (3 * r / 4) \<subseteq> ball z0 r" |
|
1088 |
by (simp add: cball_subset_ball_iff \<open>0 < r\<close>) |
|
1089 |
with subS have "uniform_limit (cball z0 (3 * r/4)) \<F> g sequentially" |
|
1090 |
by (force intro: ul_g) |
|
1091 |
then have "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>cball z0 (3 * r / 4). dist (\<F> n x) (g x) < r / 4 * e / 2" |
|
1092 |
using \<open>0 < e\<close> \<open>0 < r\<close> by (force simp: intro!: uniform_limitD) |
|
1093 |
then show "\<forall>\<^sub>F n in sequentially. \<forall>x \<in> sphere z0 (r/2). dist (deriv (\<F> n) x) (deriv g x) < e" |
|
1094 |
apply (simp add: eventually_sequentially) |
|
1095 |
apply (elim ex_forward all_forward imp_forward asm_rl) |
|
1096 |
using * apply (force simp: dist_commute) |
|
1097 |
done |
|
1098 |
qed |
|
1099 |
show "uniform_limit (sphere z0 (r/2)) \<F> g sequentially" |
|
1100 |
proof (rule uniform_limitI) |
|
1101 |
fix e::real |
|
1102 |
assume "0 < e" |
|
1103 |
have "sphere z0 (r/2) \<subseteq> ball z0 r" |
|
1104 |
using \<open>0 < r\<close> by auto |
|
1105 |
with subS have "uniform_limit (sphere z0 (r/2)) \<F> g sequentially" |
|
1106 |
by (force intro: ul_g) |
|
1107 |
then show "\<forall>\<^sub>F n in sequentially. \<forall>x \<in> sphere z0 (r/2). dist (\<F> n x) (g x) < e" |
|
1108 |
apply (rule uniform_limitD) |
|
1109 |
using \<open>0 < e\<close> by force |
|
1110 |
qed |
|
1111 |
show "b > 0" "\<And>x. x \<in> sphere z0 (r/2) \<Longrightarrow> b \<le> cmod (g x)" |
|
1112 |
using b \<open>0 < r\<close> by (fastforce simp: geq hnz)+ |
|
1113 |
qed |
|
1114 |
qed (use \<open>0 < r\<close> in auto) |
|
1115 |
then have "(\<lambda>n. 0) \<longlonglongrightarrow> contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv g z / g z)" |
|
1116 |
by (simp add: contour_integral_unique [OF *]) |
|
1117 |
then have "contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv g z / g z) = 0" |
|
1118 |
by (simp add: LIMSEQ_const_iff) |
|
1119 |
moreover |
|
1120 |
have "contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv g z / g z) = |
|
1121 |
contour_integral (circlepath z0 (r/2)) (\<lambda>z. m / (z - z0) + deriv h z / h z)" |
|
1122 |
proof (rule contour_integral_eq, use \<open>0 < r\<close> in simp) |
|
1123 |
fix w |
|
1124 |
assume w: "dist z0 w * 2 = r" |
|
1125 |
then have w_inb: "w \<in> ball z0 r" |
|
1126 |
using \<open>0 < r\<close> by auto |
|
1127 |
have h_der: "(h has_field_derivative deriv h w) (at w)" |
|
1128 |
using holh holomorphic_derivI w_inb by blast |
|
1129 |
have "deriv g w = ((of_nat m * h w + deriv h w * (w - z0)) * (w - z0) ^ m) / (w - z0)" |
|
1130 |
if "r = dist z0 w * 2" "w \<noteq> z0" |
|
1131 |
proof - |
|
1132 |
have "((\<lambda>w. (w - z0) ^ m * h w) has_field_derivative |
|
1133 |
(m * h w + deriv h w * (w - z0)) * (w - z0) ^ m / (w - z0)) (at w)" |
|
1134 |
apply (rule derivative_eq_intros h_der refl)+ |
|
1135 |
using that \<open>m > 0\<close> \<open>0 < r\<close> apply (simp add: divide_simps distrib_right) |
|
1136 |
apply (metis Suc_pred mult.commute power_Suc) |
|
1137 |
done |
|
1138 |
then show ?thesis |
|
1139 |
apply (rule DERIV_imp_deriv [OF DERIV_transform_within_open [where s = "ball z0 r"]]) |
|
1140 |
using that \<open>m > 0\<close> \<open>0 < r\<close> |
|
1141 |
apply (simp_all add: hnz geq) |
|
1142 |
done |
|
1143 |
qed |
|
1144 |
with \<open>0 < r\<close> \<open>0 < m\<close> w w_inb show "deriv g w / g w = of_nat m / (w - z0) + deriv h w / h w" |
|
1145 |
by (auto simp: geq divide_simps hnz) |
|
1146 |
qed |
|
1147 |
moreover |
|
1148 |
have "contour_integral (circlepath z0 (r/2)) (\<lambda>z. m / (z - z0) + deriv h z / h z) = |
|
65064
a4abec71279a
Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents:
65040
diff
changeset
|
1149 |
2 * of_real pi * \<i> * m + 0" |
65040 | 1150 |
proof (rule contour_integral_unique [OF has_contour_integral_add]) |
1151 |
show "((\<lambda>x. m / (x - z0)) has_contour_integral 2 * of_real pi * \<i> * m) (circlepath z0 (r/2))" |
|
1152 |
by (force simp: \<open>0 < r\<close> intro: Cauchy_integral_circlepath_simple) |
|
1153 |
show "((\<lambda>x. deriv h x / h x) has_contour_integral 0) (circlepath z0 (r/2))" |
|
1154 |
apply (rule Cauchy_theorem_disc_simple [of _ z0 r]) |
|
1155 |
using hnz holh holomorphic_deriv holomorphic_on_divide \<open>0 < r\<close> |
|
1156 |
apply force+ |
|
1157 |
done |
|
1158 |
qed |
|
1159 |
ultimately show False using \<open>0 < m\<close> by auto |
|
1160 |
qed |
|
1161 |
||
1162 |
corollary Hurwitz_injective: |
|
1163 |
assumes S: "open S" "connected S" |
|
1164 |
and holf: "\<And>n::nat. \<F> n holomorphic_on S" |
|
1165 |
and holg: "g holomorphic_on S" |
|
1166 |
and ul_g: "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> \<Longrightarrow> uniform_limit K \<F> g sequentially" |
|
1167 |
and nonconst: "\<And>c. \<exists>z \<in> S. g z \<noteq> c" |
|
1168 |
and inj: "\<And>n. inj_on (\<F> n) S" |
|
1169 |
shows "inj_on g S" |
|
1170 |
proof - |
|
1171 |
have False if z12: "z1 \<in> S" "z2 \<in> S" "z1 \<noteq> z2" "g z2 = g z1" for z1 z2 |
|
1172 |
proof - |
|
1173 |
obtain z0 where "z0 \<in> S" and z0: "g z0 \<noteq> g z2" |
|
1174 |
using nonconst by blast |
|
1175 |
have "(\<lambda>z. g z - g z1) holomorphic_on S" |
|
1176 |
by (intro holomorphic_intros holg) |
|
1177 |
then obtain r where "0 < r" "ball z2 r \<subseteq> S" "\<And>z. dist z2 z < r \<and> z \<noteq> z2 \<Longrightarrow> g z \<noteq> g z1" |
|
1178 |
apply (rule isolated_zeros [of "\<lambda>z. g z - g z1" S z2 z0]) |
|
1179 |
using S \<open>z0 \<in> S\<close> z0 z12 by auto |
|
1180 |
have "g z2 - g z1 \<noteq> 0" |
|
1181 |
proof (rule Hurwitz_no_zeros [of "S - {z1}" "\<lambda>n z. \<F> n z - \<F> n z1" "\<lambda>z. g z - g z1"]) |
|
1182 |
show "open (S - {z1})" |
|
1183 |
by (simp add: S open_delete) |
|
1184 |
show "connected (S - {z1})" |
|
1185 |
by (simp add: connected_open_delete [OF S]) |
|
1186 |
show "\<And>n. (\<lambda>z. \<F> n z - \<F> n z1) holomorphic_on S - {z1}" |
|
1187 |
by (intro holomorphic_intros holomorphic_on_subset [OF holf]) blast |
|
1188 |
show "(\<lambda>z. g z - g z1) holomorphic_on S - {z1}" |
|
1189 |
by (intro holomorphic_intros holomorphic_on_subset [OF holg]) blast |
|
1190 |
show "uniform_limit K (\<lambda>n z. \<F> n z - \<F> n z1) (\<lambda>z. g z - g z1) sequentially" |
|
1191 |
if "compact K" "K \<subseteq> S - {z1}" for K |
|
1192 |
proof (rule uniform_limitI) |
|
1193 |
fix e::real |
|
1194 |
assume "e > 0" |
|
1195 |
have "uniform_limit K \<F> g sequentially" |
|
1196 |
using that ul_g by fastforce |
|
1197 |
then have K: "\<forall>\<^sub>F n in sequentially. \<forall>x \<in> K. dist (\<F> n x) (g x) < e/2" |
|
1198 |
using \<open>0 < e\<close> by (force simp: intro!: uniform_limitD) |
|
1199 |
have "uniform_limit {z1} \<F> g sequentially" |
|
1200 |
by (simp add: ul_g z12) |
|
1201 |
then have "\<forall>\<^sub>F n in sequentially. \<forall>x \<in> {z1}. dist (\<F> n x) (g x) < e/2" |
|
1202 |
using \<open>0 < e\<close> by (force simp: intro!: uniform_limitD) |
|
1203 |
then have z1: "\<forall>\<^sub>F n in sequentially. dist (\<F> n z1) (g z1) < e/2" |
|
1204 |
by simp |
|
1205 |
have "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>K. dist (\<F> n x - \<F> n z1) (g x - g z1) < e/2 + e/2" |
|
1206 |
apply (rule eventually_mono [OF eventually_conj [OF K z1]]) |
|
1207 |
apply (simp add: dist_norm algebra_simps del: divide_const_simps) |
|
1208 |
by (metis add.commute dist_commute dist_norm dist_triangle_add_half) |
|
1209 |
have "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>K. dist (\<F> n x - \<F> n z1) (g x - g z1) < e/2 + e/2" |
|
1210 |
using eventually_conj [OF K z1] |
|
1211 |
apply (rule eventually_mono) |
|
1212 |
by (metis (no_types, hide_lams) diff_add_eq diff_diff_eq2 dist_commute dist_norm dist_triangle_add_half real_sum_of_halves) |
|
1213 |
then |
|
1214 |
show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>K. dist (\<F> n x - \<F> n z1) (g x - g z1) < e" |
|
1215 |
by simp |
|
1216 |
qed |
|
1217 |
show "\<And>c. \<exists>z\<in>S - {z1}. g z - g z1 \<noteq> c" |
|
1218 |
by (metis Diff_iff \<open>z0 \<in> S\<close> empty_iff insert_iff right_minus_eq z0 z12) |
|
1219 |
show "\<And>n z. z \<in> S - {z1} \<Longrightarrow> \<F> n z - \<F> n z1 \<noteq> 0" |
|
1220 |
by (metis DiffD1 DiffD2 eq_iff_diff_eq_0 inj inj_onD insertI1 \<open>z1 \<in> S\<close>) |
|
1221 |
show "z2 \<in> S - {z1}" |
|
1222 |
using \<open>z2 \<in> S\<close> \<open>z1 \<noteq> z2\<close> by auto |
|
1223 |
qed |
|
1224 |
with z12 show False by auto |
|
1225 |
qed |
|
1226 |
then show ?thesis by (auto simp: inj_on_def) |
|
1227 |
qed |
|
1228 |
||
1229 |
||
1230 |
||
1231 |
subsection\<open>The Great Picard theorem\<close> |
|
1232 |
||
1233 |
lemma GPicard1: |
|
1234 |
assumes S: "open S" "connected S" and "w \<in> S" "0 < r" "Y \<subseteq> X" |
|
1235 |
and holX: "\<And>h. h \<in> X \<Longrightarrow> h holomorphic_on S" |
|
1236 |
and X01: "\<And>h z. \<lbrakk>h \<in> X; z \<in> S\<rbrakk> \<Longrightarrow> h z \<noteq> 0 \<and> h z \<noteq> 1" |
|
1237 |
and r: "\<And>h. h \<in> Y \<Longrightarrow> norm(h w) \<le> r" |
|
1238 |
obtains B Z where "0 < B" "open Z" "w \<in> Z" "Z \<subseteq> S" "\<And>h z. \<lbrakk>h \<in> Y; z \<in> Z\<rbrakk> \<Longrightarrow> norm(h z) \<le> B" |
|
1239 |
proof - |
|
1240 |
obtain e where "e > 0" and e: "cball w e \<subseteq> S" |
|
1241 |
using assms open_contains_cball_eq by blast |
|
1242 |
show ?thesis |
|
1243 |
proof |
|
1244 |
show "0 < exp(pi * exp(pi * (2 + 2 * r + 12)))" |
|
1245 |
by simp |
|
1246 |
show "ball w (e / 2) \<subseteq> S" |
|
1247 |
using e ball_divide_subset_numeral ball_subset_cball by blast |
|
1248 |
show "cmod (h z) \<le> exp (pi * exp (pi * (2 + 2 * r + 12)))" |
|
1249 |
if "h \<in> Y" "z \<in> ball w (e / 2)" for h z |
|
1250 |
proof - |
|
1251 |
have "h \<in> X" |
|
1252 |
using \<open>Y \<subseteq> X\<close> \<open>h \<in> Y\<close> by blast |
|
1253 |
with holX have "h holomorphic_on S" |
|
1254 |
by auto |
|
1255 |
then have "h holomorphic_on cball w e" |
|
1256 |
by (metis e holomorphic_on_subset) |
|
1257 |
then have hol_h_o: "(h \<circ> (\<lambda>z. (w + of_real e * z))) holomorphic_on cball 0 1" |
|
1258 |
apply (intro holomorphic_intros holomorphic_on_compose) |
|
1259 |
apply (erule holomorphic_on_subset) |
|
1260 |
using that \<open>e > 0\<close> by (auto simp: dist_norm norm_mult) |
|
1261 |
have norm_le_r: "cmod ((h \<circ> (\<lambda>z. w + complex_of_real e * z)) 0) \<le> r" |
|
1262 |
by (auto simp: r \<open>h \<in> Y\<close>) |
|
1263 |
have le12: "norm (of_real(inverse e) * (z - w)) \<le> 1/2" |
|
1264 |
using that \<open>e > 0\<close> by (simp add: inverse_eq_divide dist_norm norm_minus_commute norm_divide) |
|
1265 |
have non01: "\<And>z::complex. cmod z \<le> 1 \<Longrightarrow> h (w + e * z) \<noteq> 0 \<and> h (w + e * z) \<noteq> 1" |
|
1266 |
apply (rule X01 [OF \<open>h \<in> X\<close>]) |
|
1267 |
apply (rule subsetD [OF e]) |
|
1268 |
using \<open>0 < e\<close> by (auto simp: dist_norm norm_mult) |
|
1269 |
have "cmod (h z) \<le> cmod (h (w + of_real e * (inverse e * (z - w))))" |
|
1270 |
using \<open>0 < e\<close> by (simp add: divide_simps) |
|
1271 |
also have "... \<le> exp (pi * exp (pi * (14 + 2 * r)))" |
|
1272 |
using r [OF \<open>h \<in> Y\<close>] Schottky [OF hol_h_o norm_le_r _ _ _ le12] non01 by auto |
|
1273 |
finally |
|
1274 |
show ?thesis by simp |
|
1275 |
qed |
|
1276 |
qed (use \<open>e > 0\<close> in auto) |
|
1277 |
qed |
|
1278 |
||
1279 |
lemma GPicard2: |
|
1280 |
assumes "S \<subseteq> T" "connected T" "S \<noteq> {}" "open S" "\<And>x. \<lbrakk>x islimpt S; x \<in> T\<rbrakk> \<Longrightarrow> x \<in> S" |
|
1281 |
shows "S = T" |
|
1282 |
by (metis assms open_subset connected_clopen closedin_limpt) |
|
1283 |
||
1284 |
||
1285 |
lemma GPicard3: |
|
1286 |
assumes S: "open S" "connected S" "w \<in> S" and "Y \<subseteq> X" |
|
1287 |
and holX: "\<And>h. h \<in> X \<Longrightarrow> h holomorphic_on S" |
|
1288 |
and X01: "\<And>h z. \<lbrakk>h \<in> X; z \<in> S\<rbrakk> \<Longrightarrow> h z \<noteq> 0 \<and> h z \<noteq> 1" |
|
1289 |
and no_hw_le1: "\<And>h. h \<in> Y \<Longrightarrow> norm(h w) \<le> 1" |
|
1290 |
and "compact K" "K \<subseteq> S" |
|
1291 |
obtains B where "\<And>h z. \<lbrakk>h \<in> Y; z \<in> K\<rbrakk> \<Longrightarrow> norm(h z) \<le> B" |
|
1292 |
proof - |
|
1293 |
define U where "U \<equiv> {z \<in> S. \<exists>B Z. 0 < B \<and> open Z \<and> z \<in> Z \<and> Z \<subseteq> S \<and> |
|
1294 |
(\<forall>h z'. h \<in> Y \<and> z' \<in> Z \<longrightarrow> norm(h z') \<le> B)}" |
|
1295 |
then have "U \<subseteq> S" by blast |
|
1296 |
have "U = S" |
|
1297 |
proof (rule GPicard2 [OF \<open>U \<subseteq> S\<close> \<open>connected S\<close>]) |
|
1298 |
show "U \<noteq> {}" |
|
1299 |
proof - |
|
1300 |
obtain B Z where "0 < B" "open Z" "w \<in> Z" "Z \<subseteq> S" |
|
1301 |
and "\<And>h z. \<lbrakk>h \<in> Y; z \<in> Z\<rbrakk> \<Longrightarrow> norm(h z) \<le> B" |
|
1302 |
apply (rule GPicard1 [OF S zero_less_one \<open>Y \<subseteq> X\<close> holX]) |
|
1303 |
using no_hw_le1 X01 by force+ |
|
1304 |
then show ?thesis |
|
1305 |
unfolding U_def using \<open>w \<in> S\<close> by blast |
|
1306 |
qed |
|
1307 |
show "open U" |
|
1308 |
unfolding open_subopen [of U] by (auto simp: U_def) |
|
1309 |
fix v |
|
1310 |
assume v: "v islimpt U" "v \<in> S" |
|
1311 |
have "~ (\<forall>r>0. \<exists>h\<in>Y. r < cmod (h v))" |
|
1312 |
proof |
|
1313 |
assume "\<forall>r>0. \<exists>h\<in>Y. r < cmod (h v)" |
|
1314 |
then have "\<forall>n. \<exists>h\<in>Y. Suc n < cmod (h v)" |
|
1315 |
by simp |
|
1316 |
then obtain \<F> where FY: "\<And>n. \<F> n \<in> Y" and ltF: "\<And>n. Suc n < cmod (\<F> n v)" |
|
1317 |
by metis |
|
1318 |
define \<G> where "\<G> \<equiv> \<lambda>n z. inverse(\<F> n z)" |
|
1319 |
have hol\<G>: "\<G> n holomorphic_on S" for n |
|
1320 |
apply (simp add: \<G>_def) |
|
1321 |
using FY X01 \<open>Y \<subseteq> X\<close> holX apply (blast intro: holomorphic_on_inverse) |
|
1322 |
done |
|
1323 |
have \<G>not0: "\<G> n z \<noteq> 0" and \<G>not1: "\<G> n z \<noteq> 1" if "z \<in> S" for n z |
|
1324 |
using FY X01 \<open>Y \<subseteq> X\<close> that by (force simp: \<G>_def)+ |
|
1325 |
have \<G>_le1: "cmod (\<G> n v) \<le> 1" for n |
|
1326 |
using less_le_trans linear ltF |
|
1327 |
by (fastforce simp add: \<G>_def norm_inverse inverse_le_1_iff) |
|
1328 |
define W where "W \<equiv> {h. h holomorphic_on S \<and> (\<forall>z \<in> S. h z \<noteq> 0 \<and> h z \<noteq> 1)}" |
|
1329 |
obtain B Z where "0 < B" "open Z" "v \<in> Z" "Z \<subseteq> S" |
|
1330 |
and B: "\<And>h z. \<lbrakk>h \<in> range \<G>; z \<in> Z\<rbrakk> \<Longrightarrow> norm(h z) \<le> B" |
|
1331 |
apply (rule GPicard1 [OF \<open>open S\<close> \<open>connected S\<close> \<open>v \<in> S\<close> zero_less_one, of "range \<G>" W]) |
|
1332 |
using hol\<G> \<G>not0 \<G>not1 \<G>_le1 by (force simp: W_def)+ |
|
1333 |
then obtain e where "e > 0" and e: "ball v e \<subseteq> Z" |
|
1334 |
by (meson open_contains_ball) |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
1335 |
obtain h j where holh: "h holomorphic_on ball v e" and "strict_mono j" |
65040 | 1336 |
and lim: "\<And>x. x \<in> ball v e \<Longrightarrow> (\<lambda>n. \<G> (j n) x) \<longlonglongrightarrow> h x" |
1337 |
and ulim: "\<And>K. \<lbrakk>compact K; K \<subseteq> ball v e\<rbrakk> |
|
1338 |
\<Longrightarrow> uniform_limit K (\<G> \<circ> j) h sequentially" |
|
1339 |
proof (rule Montel) |
|
1340 |
show "\<And>h. h \<in> range \<G> \<Longrightarrow> h holomorphic_on ball v e" |
|
1341 |
by (metis \<open>Z \<subseteq> S\<close> e hol\<G> holomorphic_on_subset imageE) |
|
1342 |
show "\<And>K. \<lbrakk>compact K; K \<subseteq> ball v e\<rbrakk> \<Longrightarrow> \<exists>B. \<forall>h\<in>range \<G>. \<forall>z\<in>K. cmod (h z) \<le> B" |
|
1343 |
using B e by blast |
|
1344 |
qed auto |
|
1345 |
have "h v = 0" |
|
1346 |
proof (rule LIMSEQ_unique) |
|
1347 |
show "(\<lambda>n. \<G> (j n) v) \<longlonglongrightarrow> h v" |
|
1348 |
using \<open>e > 0\<close> lim by simp |
|
1349 |
have lt_Fj: "real x \<le> cmod (\<F> (j x) v)" for x |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
1350 |
by (metis of_nat_Suc ltF \<open>strict_mono j\<close> add.commute less_eq_real_def less_le_trans nat_le_real_less seq_suble) |
65040 | 1351 |
show "(\<lambda>n. \<G> (j n) v) \<longlonglongrightarrow> 0" |
1352 |
proof (rule Lim_null_comparison [OF eventually_sequentiallyI seq_harmonic]) |
|
1353 |
show "cmod (\<G> (j x) v) \<le> inverse (real x)" if "1 \<le> x" for x |
|
1354 |
using that by (simp add: \<G>_def norm_inverse_le_norm [OF lt_Fj]) |
|
1355 |
qed |
|
1356 |
qed |
|
1357 |
have "h v \<noteq> 0" |
|
1358 |
proof (rule Hurwitz_no_zeros [of "ball v e" "\<G> \<circ> j" h]) |
|
1359 |
show "\<And>n. (\<G> \<circ> j) n holomorphic_on ball v e" |
|
1360 |
using \<open>Z \<subseteq> S\<close> e hol\<G> by force |
|
1361 |
show "\<And>n z. z \<in> ball v e \<Longrightarrow> (\<G> \<circ> j) n z \<noteq> 0" |
|
1362 |
using \<G>not0 \<open>Z \<subseteq> S\<close> e by fastforce |
|
1363 |
show "\<exists>z\<in>ball v e. h z \<noteq> c" for c |
|
1364 |
proof - |
|
1365 |
have False if "\<And>z. dist v z < e \<Longrightarrow> h z = c" |
|
1366 |
proof - |
|
1367 |
have "h v = c" |
|
1368 |
by (simp add: \<open>0 < e\<close> that) |
|
1369 |
obtain y where "y \<in> U" "y \<noteq> v" and y: "dist y v < e" |
|
1370 |
using v \<open>e > 0\<close> by (auto simp: islimpt_approachable) |
|
1371 |
then obtain C T where "y \<in> S" "C > 0" "open T" "y \<in> T" "T \<subseteq> S" |
|
1372 |
and "\<And>h z'. \<lbrakk>h \<in> Y; z' \<in> T\<rbrakk> \<Longrightarrow> cmod (h z') \<le> C" |
|
1373 |
using \<open>y \<in> U\<close> by (auto simp: U_def) |
|
1374 |
then have le_C: "\<And>n. cmod (\<F> n y) \<le> C" |
|
1375 |
using FY by blast |
|
1376 |
have "\<forall>\<^sub>F n in sequentially. dist (\<G> (j n) y) (h y) < inverse C" |
|
1377 |
using uniform_limitD [OF ulim [of "{y}"], of "inverse C"] \<open>C > 0\<close> y |
|
1378 |
by (simp add: dist_commute) |
|
1379 |
then obtain n where "dist (\<G> (j n) y) (h y) < inverse C" |
|
1380 |
by (meson eventually_at_top_linorder order_refl) |
|
1381 |
moreover |
|
1382 |
have "h y = h v" |
|
1383 |
by (metis \<open>h v = c\<close> dist_commute that y) |
|
1384 |
ultimately have "norm (\<G> (j n) y) < inverse C" |
|
1385 |
by (simp add: \<open>h v = 0\<close>) |
|
1386 |
then have "C < norm (\<F> (j n) y)" |
|
1387 |
apply (simp add: \<G>_def) |
|
1388 |
by (metis FY X01 \<open>0 < C\<close> \<open>y \<in> S\<close> \<open>Y \<subseteq> X\<close> inverse_less_iff_less norm_inverse subsetD zero_less_norm_iff) |
|
1389 |
show False |
|
1390 |
using \<open>C < cmod (\<F> (j n) y)\<close> le_C not_less by blast |
|
1391 |
qed |
|
1392 |
then show ?thesis by force |
|
1393 |
qed |
|
1394 |
show "h holomorphic_on ball v e" |
|
1395 |
by (simp add: holh) |
|
1396 |
show "\<And>K. \<lbrakk>compact K; K \<subseteq> ball v e\<rbrakk> \<Longrightarrow> uniform_limit K (\<G> \<circ> j) h sequentially" |
|
1397 |
by (simp add: ulim) |
|
1398 |
qed (use \<open>e > 0\<close> in auto) |
|
1399 |
with \<open>h v = 0\<close> show False by blast |
|
1400 |
qed |
|
1401 |
then show "v \<in> U" |
|
1402 |
apply (clarsimp simp add: U_def v) |
|
1403 |
apply (rule GPicard1[OF \<open>open S\<close> \<open>connected S\<close> \<open>v \<in> S\<close> _ \<open>Y \<subseteq> X\<close> holX]) |
|
1404 |
using X01 no_hw_le1 apply (meson | force simp: not_less)+ |
|
1405 |
done |
|
1406 |
qed |
|
1407 |
have "\<And>x. x \<in> K \<longrightarrow> x \<in> U" |
|
1408 |
using \<open>U = S\<close> \<open>K \<subseteq> S\<close> by blast |
|
1409 |
then have "\<And>x. x \<in> K \<longrightarrow> (\<exists>B Z. 0 < B \<and> open Z \<and> x \<in> Z \<and> |
|
1410 |
(\<forall>h z'. h \<in> Y \<and> z' \<in> Z \<longrightarrow> norm(h z') \<le> B))" |
|
1411 |
unfolding U_def by blast |
|
1412 |
then obtain F Z where F: "\<And>x. x \<in> K \<Longrightarrow> open (Z x) \<and> x \<in> Z x \<and> |
|
1413 |
(\<forall>h z'. h \<in> Y \<and> z' \<in> Z x \<longrightarrow> norm(h z') \<le> F x)" |
|
1414 |
by metis |
|
1415 |
then obtain L where "L \<subseteq> K" "finite L" and L: "K \<subseteq> (\<Union>c \<in> L. Z c)" |
|
1416 |
by (auto intro: compactE_image [OF \<open>compact K\<close>, of K Z]) |
|
1417 |
then have *: "\<And>x h z'. \<lbrakk>x \<in> L; h \<in> Y \<and> z' \<in> Z x\<rbrakk> \<Longrightarrow> cmod (h z') \<le> F x" |
|
1418 |
using F by blast |
|
1419 |
have "\<exists>B. \<forall>h z. h \<in> Y \<and> z \<in> K \<longrightarrow> norm(h z) \<le> B" |
|
1420 |
proof (cases "L = {}") |
|
1421 |
case True with L show ?thesis by simp |
|
1422 |
next |
|
1423 |
case False |
|
1424 |
with \<open>finite L\<close> show ?thesis |
|
1425 |
apply (rule_tac x = "Max (F ` L)" in exI) |
|
1426 |
apply (simp add: linorder_class.Max_ge_iff) |
|
1427 |
using * F by (metis L UN_E subsetD) |
|
1428 |
qed |
|
1429 |
with that show ?thesis by metis |
|
1430 |
qed |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
1431 |
|
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
1432 |
|
65040 | 1433 |
lemma GPicard4: |
1434 |
assumes "0 < k" and holf: "f holomorphic_on (ball 0 k - {0})" |
|
1435 |
and AE: "\<And>e. \<lbrakk>0 < e; e < k\<rbrakk> \<Longrightarrow> \<exists>d. 0 < d \<and> d < e \<and> (\<forall>z \<in> sphere 0 d. norm(f z) \<le> B)" |
|
1436 |
obtains \<epsilon> where "0 < \<epsilon>" "\<epsilon> < k" "\<And>z. z \<in> ball 0 \<epsilon> - {0} \<Longrightarrow> norm(f z) \<le> B" |
|
1437 |
proof - |
|
1438 |
obtain \<epsilon> where "0 < \<epsilon>" "\<epsilon> < k/2" and \<epsilon>: "\<And>z. norm z = \<epsilon> \<Longrightarrow> norm(f z) \<le> B" |
|
1439 |
using AE [of "k/2"] \<open>0 < k\<close> by auto |
|
1440 |
show ?thesis |
|
1441 |
proof |
|
1442 |
show "\<epsilon> < k" |
|
1443 |
using \<open>0 < k\<close> \<open>\<epsilon> < k/2\<close> by auto |
|
1444 |
show "cmod (f \<xi>) \<le> B" if \<xi>: "\<xi> \<in> ball 0 \<epsilon> - {0}" for \<xi> |
|
1445 |
proof - |
|
1446 |
obtain d where "0 < d" "d < norm \<xi>" and d: "\<And>z. norm z = d \<Longrightarrow> norm(f z) \<le> B" |
|
1447 |
using AE [of "norm \<xi>"] \<open>\<epsilon> < k\<close> \<xi> by auto |
|
1448 |
have [simp]: "closure (cball 0 \<epsilon> - ball 0 d) = cball 0 \<epsilon> - ball 0 d" |
|
1449 |
by (blast intro!: closure_closed) |
|
1450 |
have [simp]: "interior (cball 0 \<epsilon> - ball 0 d) = ball 0 \<epsilon> - cball (0::complex) d" |
|
1451 |
using \<open>0 < \<epsilon>\<close> \<open>0 < d\<close> by (simp add: interior_diff) |
|
1452 |
have *: "norm(f w) \<le> B" if "w \<in> cball 0 \<epsilon> - ball 0 d" for w |
|
1453 |
proof (rule maximum_modulus_frontier [of f "cball 0 \<epsilon> - ball 0 d"]) |
|
1454 |
show "f holomorphic_on interior (cball 0 \<epsilon> - ball 0 d)" |
|
1455 |
apply (rule holomorphic_on_subset [OF holf]) |
|
1456 |
using \<open>\<epsilon> < k\<close> \<open>0 < d\<close> that by auto |
|
1457 |
show "continuous_on (closure (cball 0 \<epsilon> - ball 0 d)) f" |
|
1458 |
apply (rule holomorphic_on_imp_continuous_on) |
|
1459 |
apply (rule holomorphic_on_subset [OF holf]) |
|
1460 |
using \<open>0 < d\<close> \<open>\<epsilon> < k\<close> by auto |
|
1461 |
show "\<And>z. z \<in> frontier (cball 0 \<epsilon> - ball 0 d) \<Longrightarrow> cmod (f z) \<le> B" |
|
1462 |
apply (simp add: frontier_def) |
|
1463 |
using \<epsilon> d less_eq_real_def by blast |
|
1464 |
qed (use that in auto) |
|
1465 |
show ?thesis |
|
1466 |
using * \<open>d < cmod \<xi>\<close> that by auto |
|
1467 |
qed |
|
1468 |
qed (use \<open>0 < \<epsilon>\<close> in auto) |
|
1469 |
qed |
|
1470 |
||
1471 |
||
1472 |
lemma GPicard5: |
|
1473 |
assumes holf: "f holomorphic_on (ball 0 1 - {0})" |
|
1474 |
and f01: "\<And>z. z \<in> ball 0 1 - {0} \<Longrightarrow> f z \<noteq> 0 \<and> f z \<noteq> 1" |
|
1475 |
obtains e B where "0 < e" "e < 1" "0 < B" |
|
1476 |
"(\<forall>z \<in> ball 0 e - {0}. norm(f z) \<le> B) \<or> |
|
1477 |
(\<forall>z \<in> ball 0 e - {0}. norm(f z) \<ge> B)" |
|
1478 |
proof - |
|
1479 |
have [simp]: "1 + of_nat n \<noteq> (0::complex)" for n |
|
1480 |
using of_nat_eq_0_iff by fastforce |
|
1481 |
have [simp]: "cmod (1 + of_nat n) = 1 + of_nat n" for n |
|
1482 |
by (metis norm_of_nat of_nat_Suc) |
|
1483 |
have *: "(\<lambda>x::complex. x / of_nat (Suc n)) ` (ball 0 1 - {0}) \<subseteq> ball 0 1 - {0}" for n |
|
1484 |
by (auto simp: norm_divide divide_simps split: if_split_asm) |
|
1485 |
define h where "h \<equiv> \<lambda>n z::complex. f (z / (Suc n))" |
|
1486 |
have holh: "(h n) holomorphic_on ball 0 1 - {0}" for n |
|
1487 |
unfolding h_def |
|
1488 |
proof (rule holomorphic_on_compose_gen [unfolded o_def, OF _ holf *]) |
|
1489 |
show "(\<lambda>x. x / of_nat (Suc n)) holomorphic_on ball 0 1 - {0}" |
|
1490 |
by (intro holomorphic_intros) auto |
|
1491 |
qed |
|
1492 |
have h01: "\<And>n z. z \<in> ball 0 1 - {0} \<Longrightarrow> h n z \<noteq> 0 \<and> h n z \<noteq> 1" |
|
1493 |
unfolding h_def |
|
1494 |
apply (rule f01) |
|
1495 |
using * by force |
|
1496 |
obtain w where w: "w \<in> ball 0 1 - {0::complex}" |
|
1497 |
by (rule_tac w = "1/2" in that) auto |
|
1498 |
consider "infinite {n. norm(h n w) \<le> 1}" | "infinite {n. 1 \<le> norm(h n w)}" |
|
1499 |
by (metis (mono_tags, lifting) infinite_nat_iff_unbounded_le le_cases mem_Collect_eq) |
|
1500 |
then show ?thesis |
|
1501 |
proof cases |
|
1502 |
case 1 |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
1503 |
with infinite_enumerate obtain r :: "nat \<Rightarrow> nat" |
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
1504 |
where "strict_mono r" and r: "\<And>n. r n \<in> {n. norm(h n w) \<le> 1}" |
65040 | 1505 |
by blast |
1506 |
obtain B where B: "\<And>j z. \<lbrakk>norm z = 1/2; j \<in> range (h \<circ> r)\<rbrakk> \<Longrightarrow> norm(j z) \<le> B" |
|
1507 |
proof (rule GPicard3 [OF _ _ w, where K = "sphere 0 (1/2)"]) |
|
1508 |
show "range (h \<circ> r) \<subseteq> |
|
1509 |
{g. g holomorphic_on ball 0 1 - {0} \<and> (\<forall>z\<in>ball 0 1 - {0}. g z \<noteq> 0 \<and> g z \<noteq> 1)}" |
|
1510 |
apply clarsimp |
|
1511 |
apply (intro conjI holomorphic_intros holomorphic_on_compose holh) |
|
1512 |
using h01 apply auto |
|
1513 |
done |
|
1514 |
show "connected (ball 0 1 - {0::complex})" |
|
1515 |
by (simp add: connected_open_delete) |
|
1516 |
qed (use r in auto) |
|
1517 |
have normf_le_B: "cmod(f z) \<le> B" if "norm z = 1 / (2 * (1 + of_nat (r n)))" for z n |
|
1518 |
proof - |
|
1519 |
have *: "\<And>w. norm w = 1/2 \<Longrightarrow> cmod((f (w / (1 + of_nat (r n))))) \<le> B" |
|
1520 |
using B by (auto simp: h_def o_def) |
|
1521 |
have half: "norm (z * (1 + of_nat (r n))) = 1/2" |
|
1522 |
by (simp add: norm_mult divide_simps that) |
|
1523 |
show ?thesis |
|
1524 |
using * [OF half] by simp |
|
1525 |
qed |
|
1526 |
obtain \<epsilon> where "0 < \<epsilon>" "\<epsilon> < 1" "\<And>z. z \<in> ball 0 \<epsilon> - {0} \<Longrightarrow> cmod(f z) \<le> B" |
|
1527 |
proof (rule GPicard4 [OF zero_less_one holf, of B]) |
|
1528 |
fix e::real |
|
1529 |
assume "0 < e" "e < 1" |
|
1530 |
obtain n where "(1/e - 2) / 2 < real n" |
|
1531 |
using reals_Archimedean2 by blast |
|
1532 |
also have "... \<le> r n" |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
1533 |
using \<open>strict_mono r\<close> by (simp add: seq_suble) |
65040 | 1534 |
finally have "(1/e - 2) / 2 < real (r n)" . |
1535 |
with \<open>0 < e\<close> have e: "e > 1 / (2 + 2 * real (r n))" |
|
1536 |
by (simp add: field_simps) |
|
1537 |
show "\<exists>d>0. d < e \<and> (\<forall>z\<in>sphere 0 d. cmod (f z) \<le> B)" |
|
1538 |
apply (rule_tac x="1 / (2 * (1 + of_nat (r n)))" in exI) |
|
1539 |
using normf_le_B by (simp add: e) |
|
1540 |
qed blast |
|
1541 |
then have \<epsilon>: "cmod (f z) \<le> \<bar>B\<bar> + 1" if "cmod z < \<epsilon>" "z \<noteq> 0" for z |
|
1542 |
using that by fastforce |
|
1543 |
have "0 < \<bar>B\<bar> + 1" |
|
1544 |
by simp |
|
1545 |
then show ?thesis |
|
1546 |
apply (rule that [OF \<open>0 < \<epsilon>\<close> \<open>\<epsilon> < 1\<close>]) |
|
1547 |
using \<epsilon> by auto |
|
1548 |
next |
|
1549 |
case 2 |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
1550 |
with infinite_enumerate obtain r :: "nat \<Rightarrow> nat" |
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
1551 |
where "strict_mono r" and r: "\<And>n. r n \<in> {n. norm(h n w) \<ge> 1}" |
65040 | 1552 |
by blast |
1553 |
obtain B where B: "\<And>j z. \<lbrakk>norm z = 1/2; j \<in> range (\<lambda>n. inverse \<circ> h (r n))\<rbrakk> \<Longrightarrow> norm(j z) \<le> B" |
|
1554 |
proof (rule GPicard3 [OF _ _ w, where K = "sphere 0 (1/2)"]) |
|
1555 |
show "range (\<lambda>n. inverse \<circ> h (r n)) \<subseteq> |
|
1556 |
{g. g holomorphic_on ball 0 1 - {0} \<and> (\<forall>z\<in>ball 0 1 - {0}. g z \<noteq> 0 \<and> g z \<noteq> 1)}" |
|
1557 |
apply clarsimp |
|
1558 |
apply (intro conjI holomorphic_intros holomorphic_on_compose_gen [unfolded o_def, OF _ holh] holomorphic_on_compose) |
|
1559 |
using h01 apply auto |
|
1560 |
done |
|
1561 |
show "connected (ball 0 1 - {0::complex})" |
|
1562 |
by (simp add: connected_open_delete) |
|
1563 |
show "\<And>j. j \<in> range (\<lambda>n. inverse \<circ> h (r n)) \<Longrightarrow> cmod (j w) \<le> 1" |
|
1564 |
using r norm_inverse_le_norm by fastforce |
|
1565 |
qed (use r in auto) |
|
1566 |
have norm_if_le_B: "cmod(inverse (f z)) \<le> B" if "norm z = 1 / (2 * (1 + of_nat (r n)))" for z n |
|
1567 |
proof - |
|
1568 |
have *: "inverse (cmod((f (z / (1 + of_nat (r n)))))) \<le> B" if "norm z = 1/2" for z |
|
1569 |
using B [OF that] by (force simp: norm_inverse h_def) |
|
1570 |
have half: "norm (z * (1 + of_nat (r n))) = 1/2" |
|
1571 |
by (simp add: norm_mult divide_simps that) |
|
1572 |
show ?thesis |
|
1573 |
using * [OF half] by (simp add: norm_inverse) |
|
1574 |
qed |
|
1575 |
have hol_if: "(inverse \<circ> f) holomorphic_on (ball 0 1 - {0})" |
|
1576 |
by (metis (no_types, lifting) holf comp_apply f01 holomorphic_on_inverse holomorphic_transform) |
|
1577 |
obtain \<epsilon> where "0 < \<epsilon>" "\<epsilon> < 1" and leB: "\<And>z. z \<in> ball 0 \<epsilon> - {0} \<Longrightarrow> cmod((inverse \<circ> f) z) \<le> B" |
|
1578 |
proof (rule GPicard4 [OF zero_less_one hol_if, of B]) |
|
1579 |
fix e::real |
|
1580 |
assume "0 < e" "e < 1" |
|
1581 |
obtain n where "(1/e - 2) / 2 < real n" |
|
1582 |
using reals_Archimedean2 by blast |
|
1583 |
also have "... \<le> r n" |
|
66447
a1f5c5c26fa6
Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents:
65823
diff
changeset
|
1584 |
using \<open>strict_mono r\<close> by (simp add: seq_suble) |
65040 | 1585 |
finally have "(1/e - 2) / 2 < real (r n)" . |
1586 |
with \<open>0 < e\<close> have e: "e > 1 / (2 + 2 * real (r n))" |
|
1587 |
by (simp add: field_simps) |
|
1588 |
show "\<exists>d>0. d < e \<and> (\<forall>z\<in>sphere 0 d. cmod ((inverse \<circ> f) z) \<le> B)" |
|
1589 |
apply (rule_tac x="1 / (2 * (1 + of_nat (r n)))" in exI) |
|
1590 |
using norm_if_le_B by (simp add: e) |
|
1591 |
qed blast |
|
1592 |
have \<epsilon>: "cmod (f z) \<ge> inverse B" and "B > 0" if "cmod z < \<epsilon>" "z \<noteq> 0" for z |
|
1593 |
proof - |
|
1594 |
have "inverse (cmod (f z)) \<le> B" |
|
1595 |
using leB that by (simp add: norm_inverse) |
|
1596 |
moreover |
|
1597 |
have "f z \<noteq> 0" |
|
1598 |
using \<open>\<epsilon> < 1\<close> f01 that by auto |
|
1599 |
ultimately show "cmod (f z) \<ge> inverse B" |
|
1600 |
by (simp add: norm_inverse inverse_le_imp_le) |
|
1601 |
show "B > 0" |
|
1602 |
using \<open>f z \<noteq> 0\<close> \<open>inverse (cmod (f z)) \<le> B\<close> not_le order.trans by fastforce |
|
1603 |
qed |
|
1604 |
then have "B > 0" |
|
1605 |
by (metis \<open>0 < \<epsilon>\<close> dense leI order.asym vector_choose_size) |
|
1606 |
then have "inverse B > 0" |
|
1607 |
by (simp add: divide_simps) |
|
1608 |
then show ?thesis |
|
1609 |
apply (rule that [OF \<open>0 < \<epsilon>\<close> \<open>\<epsilon> < 1\<close>]) |
|
1610 |
using \<epsilon> by auto |
|
1611 |
qed |
|
1612 |
qed |
|
1613 |
||
1614 |
||
1615 |
lemma GPicard6: |
|
1616 |
assumes "open M" "z \<in> M" "a \<noteq> 0" and holf: "f holomorphic_on (M - {z})" |
|
1617 |
and f0a: "\<And>w. w \<in> M - {z} \<Longrightarrow> f w \<noteq> 0 \<and> f w \<noteq> a" |
|
1618 |
obtains r where "0 < r" "ball z r \<subseteq> M" |
|
1619 |
"bounded(f ` (ball z r - {z})) \<or> |
|
1620 |
bounded((inverse \<circ> f) ` (ball z r - {z}))" |
|
1621 |
proof - |
|
1622 |
obtain r where "0 < r" and r: "ball z r \<subseteq> M" |
|
1623 |
using assms openE by blast |
|
1624 |
let ?g = "\<lambda>w. f (z + of_real r * w) / a" |
|
1625 |
obtain e B where "0 < e" "e < 1" "0 < B" |
|
1626 |
and B: "(\<forall>z \<in> ball 0 e - {0}. norm(?g z) \<le> B) \<or> (\<forall>z \<in> ball 0 e - {0}. norm(?g z) \<ge> B)" |
|
1627 |
proof (rule GPicard5) |
|
1628 |
show "?g holomorphic_on ball 0 1 - {0}" |
|
1629 |
apply (intro holomorphic_intros holomorphic_on_compose_gen [unfolded o_def, OF _ holf]) |
|
1630 |
using \<open>0 < r\<close> \<open>a \<noteq> 0\<close> r |
|
1631 |
by (auto simp: dist_norm norm_mult subset_eq) |
|
1632 |
show "\<And>w. w \<in> ball 0 1 - {0} \<Longrightarrow> f (z + of_real r * w) / a \<noteq> 0 \<and> f (z + of_real r * w) / a \<noteq> 1" |
|
1633 |
apply (simp add: divide_simps \<open>a \<noteq> 0\<close>) |
|
1634 |
apply (rule f0a) |
|
1635 |
using \<open>0 < r\<close> r by (auto simp: dist_norm norm_mult subset_eq) |
|
1636 |
qed |
|
1637 |
show ?thesis |
|
1638 |
proof |
|
1639 |
show "0 < e*r" |
|
1640 |
by (simp add: \<open>0 < e\<close> \<open>0 < r\<close>) |
|
1641 |
have "ball z (e * r) \<subseteq> ball z r" |
|
1642 |
by (simp add: \<open>0 < r\<close> \<open>e < 1\<close> order.strict_implies_order subset_ball) |
|
1643 |
then show "ball z (e * r) \<subseteq> M" |
|
1644 |
using r by blast |
|
1645 |
consider "\<And>z. z \<in> ball 0 e - {0} \<Longrightarrow> norm(?g z) \<le> B" | "\<And>z. z \<in> ball 0 e - {0} \<Longrightarrow> norm(?g z) \<ge> B" |
|
1646 |
using B by blast |
|
1647 |
then show "bounded (f ` (ball z (e * r) - {z})) \<or> |
|
1648 |
bounded ((inverse \<circ> f) ` (ball z (e * r) - {z}))" |
|
1649 |
proof cases |
|
1650 |
case 1 |
|
1651 |
have "\<lbrakk>dist z w < e * r; w \<noteq> z\<rbrakk> \<Longrightarrow> cmod (f w) \<le> B * norm a" for w |
|
1652 |
using \<open>a \<noteq> 0\<close> \<open>0 < r\<close> 1 [of "(w - z) / r"] |
|
1653 |
by (simp add: norm_divide dist_norm divide_simps) |
|
1654 |
then show ?thesis |
|
1655 |
by (force simp: intro!: boundedI) |
|
1656 |
next |
|
1657 |
case 2 |
|
1658 |
have "\<lbrakk>dist z w < e * r; w \<noteq> z\<rbrakk> \<Longrightarrow> cmod (f w) \<ge> B * norm a" for w |
|
1659 |
using \<open>a \<noteq> 0\<close> \<open>0 < r\<close> 2 [of "(w - z) / r"] |
|
1660 |
by (simp add: norm_divide dist_norm divide_simps) |
|
1661 |
then have "\<lbrakk>dist z w < e * r; w \<noteq> z\<rbrakk> \<Longrightarrow> inverse (cmod (f w)) \<le> inverse (B * norm a)" for w |
|
1662 |
by (metis \<open>0 < B\<close> \<open>a \<noteq> 0\<close> mult_pos_pos norm_inverse norm_inverse_le_norm zero_less_norm_iff) |
|
1663 |
then show ?thesis |
|
1664 |
by (force simp: norm_inverse intro!: boundedI) |
|
1665 |
qed |
|
1666 |
qed |
|
1667 |
qed |
|
1668 |
||
1669 |
||
1670 |
theorem great_Picard: |
|
1671 |
assumes "open M" "z \<in> M" "a \<noteq> b" and holf: "f holomorphic_on (M - {z})" |
|
1672 |
and fab: "\<And>w. w \<in> M - {z} \<Longrightarrow> f w \<noteq> a \<and> f w \<noteq> b" |
|
1673 |
obtains l where "(f \<longlongrightarrow> l) (at z) \<or> ((inverse \<circ> f) \<longlongrightarrow> l) (at z)" |
|
1674 |
proof - |
|
1675 |
obtain r where "0 < r" and zrM: "ball z r \<subseteq> M" |
|
1676 |
and r: "bounded((\<lambda>z. f z - a) ` (ball z r - {z})) \<or> |
|
1677 |
bounded((inverse \<circ> (\<lambda>z. f z - a)) ` (ball z r - {z}))" |
|
1678 |
proof (rule GPicard6 [OF \<open>open M\<close> \<open>z \<in> M\<close>]) |
|
1679 |
show "b - a \<noteq> 0" |
|
1680 |
using assms by auto |
|
1681 |
show "(\<lambda>z. f z - a) holomorphic_on M - {z}" |
|
1682 |
by (intro holomorphic_intros holf) |
|
1683 |
qed (use fab in auto) |
|
1684 |
have holfb: "f holomorphic_on ball z r - {z}" |
|
1685 |
apply (rule holomorphic_on_subset [OF holf]) |
|
1686 |
using zrM by auto |
|
1687 |
have holfb_i: "(\<lambda>z. inverse(f z - a)) holomorphic_on ball z r - {z}" |
|
1688 |
apply (intro holomorphic_intros holfb) |
|
1689 |
using fab zrM by fastforce |
|
1690 |
show ?thesis |
|
1691 |
using r |
|
1692 |
proof |
|
1693 |
assume "bounded ((\<lambda>z. f z - a) ` (ball z r - {z}))" |
|
1694 |
then obtain B where B: "\<And>w. w \<in> (\<lambda>z. f z - a) ` (ball z r - {z}) \<Longrightarrow> norm w \<le> B" |
|
1695 |
by (force simp: bounded_iff) |
|
1696 |
have "\<forall>\<^sub>F w in at z. cmod (f w - a) \<le> B" |
|
1697 |
apply (simp add: eventually_at) |
|
1698 |
apply (rule_tac x=r in exI) |
|
1699 |
using \<open>0 < r\<close> by (auto simp: dist_commute intro!: B) |
|
1700 |
then have "\<exists>B. \<forall>\<^sub>F w in at z. cmod (f w) \<le> B" |
|
1701 |
apply (rule_tac x="B + norm a" in exI) |
|
1702 |
apply (erule eventually_mono) |
|
1703 |
by (metis add.commute add_le_cancel_right norm_triangle_sub order.trans) |
|
1704 |
then obtain g where holg: "g holomorphic_on ball z r" and gf: "\<And>w. w \<in> ball z r - {z} \<Longrightarrow> g w = f w" |
|
1705 |
using \<open>0 < r\<close> holomorphic_on_extend_bounded [OF holfb] by auto |
|
1706 |
then have "g \<midarrow>z\<rightarrow> g z" |
|
1707 |
apply (simp add: continuous_at [symmetric]) |
|
1708 |
using \<open>0 < r\<close> centre_in_ball field_differentiable_imp_continuous_at holomorphic_on_imp_differentiable_at by blast |
|
1709 |
then have "(f \<longlongrightarrow> g z) (at z)" |
|
1710 |
apply (rule Lim_transform_within_open [of g "g z" z UNIV "ball z r"]) |
|
1711 |
using \<open>0 < r\<close> by (auto simp: gf) |
|
1712 |
then show ?thesis |
|
1713 |
using that by blast |
|
1714 |
next |
|
1715 |
assume "bounded((inverse \<circ> (\<lambda>z. f z - a)) ` (ball z r - {z}))" |
|
1716 |
then obtain B where B: "\<And>w. w \<in> (inverse \<circ> (\<lambda>z. f z - a)) ` (ball z r - {z}) \<Longrightarrow> norm w \<le> B" |
|
1717 |
by (force simp: bounded_iff) |
|
1718 |
have "\<forall>\<^sub>F w in at z. cmod (inverse (f w - a)) \<le> B" |
|
1719 |
apply (simp add: eventually_at) |
|
1720 |
apply (rule_tac x=r in exI) |
|
1721 |
using \<open>0 < r\<close> by (auto simp: dist_commute intro!: B) |
|
1722 |
then have "\<exists>B. \<forall>\<^sub>F z in at z. cmod (inverse (f z - a)) \<le> B" |
|
1723 |
by blast |
|
1724 |
then obtain g where holg: "g holomorphic_on ball z r" and gf: "\<And>w. w \<in> ball z r - {z} \<Longrightarrow> g w = inverse (f w - a)" |
|
1725 |
using \<open>0 < r\<close> holomorphic_on_extend_bounded [OF holfb_i] by auto |
|
1726 |
then have gz: "g \<midarrow>z\<rightarrow> g z" |
|
1727 |
apply (simp add: continuous_at [symmetric]) |
|
1728 |
using \<open>0 < r\<close> centre_in_ball field_differentiable_imp_continuous_at holomorphic_on_imp_differentiable_at by blast |
|
1729 |
have gnz: "\<And>w. w \<in> ball z r - {z} \<Longrightarrow> g w \<noteq> 0" |
|
1730 |
using gf fab zrM by fastforce |
|
1731 |
show ?thesis |
|
1732 |
proof (cases "g z = 0") |
|
1733 |
case True |
|
1734 |
have *: "\<lbrakk>g \<noteq> 0; inverse g = f - a\<rbrakk> \<Longrightarrow> g / (1 + a * g) = inverse f" for f g::complex |
|
1735 |
by (auto simp: field_simps) |
|
1736 |
have "(inverse \<circ> f) \<midarrow>z\<rightarrow> 0" |
|
1737 |
proof (rule Lim_transform_within_open [of "\<lambda>w. g w / (1 + a * g w)" _ _ UNIV "ball z r"]) |
|
1738 |
show "(\<lambda>w. g w / (1 + a * g w)) \<midarrow>z\<rightarrow> 0" |
|
1739 |
using True by (auto simp: intro!: tendsto_eq_intros gz) |
|
1740 |
show "\<And>x. \<lbrakk>x \<in> ball z r; x \<noteq> z\<rbrakk> \<Longrightarrow> g x / (1 + a * g x) = (inverse \<circ> f) x" |
|
1741 |
using * gf gnz by simp |
|
1742 |
qed (use \<open>0 < r\<close> in auto) |
|
1743 |
with that show ?thesis by blast |
|
1744 |
next |
|
1745 |
case False |
|
1746 |
show ?thesis |
|
1747 |
proof (cases "1 + a * g z = 0") |
|
1748 |
case True |
|
1749 |
have "(f \<longlongrightarrow> 0) (at z)" |
|
1750 |
proof (rule Lim_transform_within_open [of "\<lambda>w. (1 + a * g w) / g w" _ _ _ "ball z r"]) |
|
1751 |
show "(\<lambda>w. (1 + a * g w) / g w) \<midarrow>z\<rightarrow> 0" |
|
1752 |
apply (rule tendsto_eq_intros refl gz \<open>g z \<noteq> 0\<close>)+ |
|
1753 |
by (simp add: True) |
|
1754 |
show "\<And>x. \<lbrakk>x \<in> ball z r; x \<noteq> z\<rbrakk> \<Longrightarrow> (1 + a * g x) / g x = f x" |
|
1755 |
using fab fab zrM by (fastforce simp add: gf divide_simps) |
|
1756 |
qed (use \<open>0 < r\<close> in auto) |
|
1757 |
then show ?thesis |
|
1758 |
using that by blast |
|
1759 |
next |
|
1760 |
case False |
|
1761 |
have *: "\<lbrakk>g \<noteq> 0; inverse g = f - a\<rbrakk> \<Longrightarrow> g / (1 + a * g) = inverse f" for f g::complex |
|
1762 |
by (auto simp: field_simps) |
|
1763 |
have "(inverse \<circ> f) \<midarrow>z\<rightarrow> g z / (1 + a * g z)" |
|
1764 |
proof (rule Lim_transform_within_open [of "\<lambda>w. g w / (1 + a * g w)" _ _ UNIV "ball z r"]) |
|
1765 |
show "(\<lambda>w. g w / (1 + a * g w)) \<midarrow>z\<rightarrow> g z / (1 + a * g z)" |
|
1766 |
using False by (auto simp: False intro!: tendsto_eq_intros gz) |
|
1767 |
show "\<And>x. \<lbrakk>x \<in> ball z r; x \<noteq> z\<rbrakk> \<Longrightarrow> g x / (1 + a * g x) = (inverse \<circ> f) x" |
|
1768 |
using * gf gnz by simp |
|
1769 |
qed (use \<open>0 < r\<close> in auto) |
|
1770 |
with that show ?thesis by blast |
|
1771 |
qed |
|
1772 |
qed |
|
1773 |
qed |
|
1774 |
qed |
|
1775 |
||
1776 |
||
1777 |
corollary great_Picard_alt: |
|
1778 |
assumes M: "open M" "z \<in> M" and holf: "f holomorphic_on (M - {z})" |
|
1779 |
and non: "\<And>l. \<not> (f \<longlongrightarrow> l) (at z)" "\<And>l. \<not> ((inverse \<circ> f) \<longlongrightarrow> l) (at z)" |
|
1780 |
obtains a where "- {a} \<subseteq> f ` (M - {z})" |
|
1781 |
apply (simp add: subset_iff image_iff) |
|
1782 |
by (metis great_Picard [OF M _ holf] non) |
|
1783 |
||
1784 |
||
1785 |
corollary great_Picard_infinite: |
|
1786 |
assumes M: "open M" "z \<in> M" and holf: "f holomorphic_on (M - {z})" |
|
1787 |
and non: "\<And>l. \<not> (f \<longlongrightarrow> l) (at z)" "\<And>l. \<not> ((inverse \<circ> f) \<longlongrightarrow> l) (at z)" |
|
1788 |
obtains a where "\<And>w. w \<noteq> a \<Longrightarrow> infinite {x. x \<in> M - {z} \<and> f x = w}" |
|
1789 |
proof - |
|
1790 |
have False if "a \<noteq> b" and ab: "finite {x. x \<in> M - {z} \<and> f x = a}" "finite {x. x \<in> M - {z} \<and> f x = b}" for a b |
|
1791 |
proof - |
|
1792 |
have finab: "finite {x. x \<in> M - {z} \<and> f x \<in> {a,b}}" |
|
1793 |
using finite_UnI [OF ab] unfolding mem_Collect_eq insert_iff empty_iff |
|
1794 |
by (simp add: conj_disj_distribL) |
|
1795 |
obtain r where "0 < r" and zrM: "ball z r \<subseteq> M" and r: "\<And>x. \<lbrakk>x \<in> M - {z}; f x \<in> {a,b}\<rbrakk> \<Longrightarrow> x \<notin> ball z r" |
|
1796 |
proof - |
|
1797 |
obtain e where "e > 0" and e: "ball z e \<subseteq> M" |
|
1798 |
using assms openE by blast |
|
1799 |
show ?thesis |
|
1800 |
proof (cases "{x \<in> M - {z}. f x \<in> {a, b}} = {}") |
|
1801 |
case True |
|
1802 |
then show ?thesis |
|
1803 |
apply (rule_tac r=e in that) |
|
1804 |
using e \<open>e > 0\<close> by auto |
|
1805 |
next |
|
1806 |
case False |
|
1807 |
let ?r = "min e (Min (dist z ` {x \<in> M - {z}. f x \<in> {a,b}}))" |
|
1808 |
show ?thesis |
|
1809 |
proof |
|
1810 |
show "0 < ?r" |
|
1811 |
using min_less_iff_conj Min_gr_iff finab False \<open>0 < e\<close> by auto |
|
1812 |
have "ball z ?r \<subseteq> ball z e" |
|
1813 |
by (simp add: subset_ball) |
|
1814 |
with e show "ball z ?r \<subseteq> M" by blast |
|
1815 |
show "\<And>x. \<lbrakk>x \<in> M - {z}; f x \<in> {a, b}\<rbrakk> \<Longrightarrow> x \<notin> ball z ?r" |
|
1816 |
using min_less_iff_conj Min_gr_iff finab False \<open>0 < e\<close> by auto |
|
1817 |
qed |
|
1818 |
qed |
|
1819 |
qed |
|
1820 |
have holfb: "f holomorphic_on (ball z r - {z})" |
|
1821 |
apply (rule holomorphic_on_subset [OF holf]) |
|
1822 |
using zrM by auto |
|
1823 |
show ?thesis |
|
1824 |
apply (rule great_Picard [OF open_ball _ \<open>a \<noteq> b\<close> holfb]) |
|
1825 |
using non \<open>0 < r\<close> r zrM by auto |
|
1826 |
qed |
|
1827 |
with that show thesis |
|
1828 |
by meson |
|
1829 |
qed |
|
1830 |
||
1831 |
||
1832 |
corollary Casorati_Weierstrass: |
|
1833 |
assumes "open M" "z \<in> M" "f holomorphic_on (M - {z})" |
|
1834 |
and "\<And>l. \<not> (f \<longlongrightarrow> l) (at z)" "\<And>l. \<not> ((inverse \<circ> f) \<longlongrightarrow> l) (at z)" |
|
1835 |
shows "closure(f ` (M - {z})) = UNIV" |
|
1836 |
proof - |
|
1837 |
obtain a where a: "- {a} \<subseteq> f ` (M - {z})" |
|
1838 |
using great_Picard_alt [OF assms] . |
|
1839 |
have "UNIV = closure(- {a})" |
|
1840 |
by (simp add: closure_interior) |
|
1841 |
also have "... \<subseteq> closure(f ` (M - {z}))" |
|
1842 |
by (simp add: a closure_mono) |
|
1843 |
finally show ?thesis |
|
1844 |
by blast |
|
1845 |
qed |
|
1846 |
||
1847 |
end |