author | eberlm <eberlm@in.tum.de> |
Thu, 17 Aug 2017 18:19:16 +0200 | |
changeset 66448 | 97ad7a583457 |
parent 61943 | 7fba644ed827 |
child 67613 | ce654b0e6d69 |
permissions | -rw-r--r-- |
35247 | 1 |
(* Title: HOL/Induct/SList.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
||
4 |
This theory is strictly of historical interest. It illustrates how |
|
5 |
recursive datatypes can be constructed in higher-order logic from |
|
6 |
first principles. Isabelle's datatype package automates a |
|
7 |
construction of this sort. |
|
8 |
||
9 |
Enriched theory of lists; mutual indirect recursive data-types. |
|
10 |
||
11 |
Definition of type 'a list (strict lists) by a least fixed point |
|
12 |
||
61943 | 13 |
We use list(A) == lfp(%Z. {NUMB(0)} <+> A \<times> Z) |
14 |
and not list == lfp(%Z. {NUMB(0)} <+> range(Leaf) \<times> Z) |
|
35247 | 15 |
|
16 |
so that list can serve as a "functor" for defining other recursive types. |
|
17 |
||
58305
57752a91eec4
renamed 'datatype' to 'old_datatype'; 'datatype' is now alias for 'datatype_new'
blanchet
parents:
58112
diff
changeset
|
18 |
This enables the conservative construction of mutual recursive datatypes |
35247 | 19 |
such as |
20 |
||
58305
57752a91eec4
renamed 'datatype' to 'old_datatype'; 'datatype' is now alias for 'datatype_new'
blanchet
parents:
58112
diff
changeset
|
21 |
datatype 'a m = Node 'a * 'a m list |
35247 | 22 |
*) |
23 |
||
60530 | 24 |
section \<open>Extended List Theory (old)\<close> |
35247 | 25 |
|
26 |
theory SList |
|
27 |
imports Sexp |
|
28 |
begin |
|
29 |
||
30 |
(*Hilbert_Choice is needed for the function "inv"*) |
|
31 |
||
32 |
(* *********************************************************************** *) |
|
33 |
(* *) |
|
34 |
(* Building up data type *) |
|
35 |
(* *) |
|
36 |
(* *********************************************************************** *) |
|
37 |
||
38 |
||
39 |
(* Defining the Concrete Constructors *) |
|
40 |
definition |
|
41 |
NIL :: "'a item" where |
|
42 |
"NIL = In0(Numb(0))" |
|
43 |
||
44 |
definition |
|
45 |
CONS :: "['a item, 'a item] => 'a item" where |
|
46 |
"CONS M N = In1(Scons M N)" |
|
47 |
||
48 |
inductive_set |
|
49 |
list :: "'a item set => 'a item set" |
|
50 |
for A :: "'a item set" |
|
51 |
where |
|
52 |
NIL_I: "NIL: list A" |
|
53 |
| CONS_I: "[| a: A; M: list A |] ==> CONS a M : list A" |
|
54 |
||
55 |
||
45694
4a8743618257
prefer typedef without extra definition and alternative name;
wenzelm
parents:
45605
diff
changeset
|
56 |
definition "List = list (range Leaf)" |
4a8743618257
prefer typedef without extra definition and alternative name;
wenzelm
parents:
45605
diff
changeset
|
57 |
|
49834 | 58 |
typedef 'a list = "List :: 'a item set" |
45694
4a8743618257
prefer typedef without extra definition and alternative name;
wenzelm
parents:
45605
diff
changeset
|
59 |
morphisms Rep_List Abs_List |
4a8743618257
prefer typedef without extra definition and alternative name;
wenzelm
parents:
45605
diff
changeset
|
60 |
unfolding List_def by (blast intro: list.NIL_I) |
35247 | 61 |
|
58112
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
blanchet
parents:
49834
diff
changeset
|
62 |
abbreviation "Case == Old_Datatype.Case" |
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
blanchet
parents:
49834
diff
changeset
|
63 |
abbreviation "Split == Old_Datatype.Split" |
35247 | 64 |
|
65 |
definition |
|
66 |
List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b" where |
|
67 |
"List_case c d = Case(%x. c)(Split(d))" |
|
68 |
||
69 |
definition |
|
70 |
List_rec :: "['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b" where |
|
71 |
"List_rec M c d = wfrec (pred_sexp^+) |
|
72 |
(%g. List_case c (%x y. d x y (g y))) M" |
|
73 |
||
74 |
||
75 |
(* *********************************************************************** *) |
|
76 |
(* *) |
|
77 |
(* Abstracting data type *) |
|
78 |
(* *) |
|
79 |
(* *********************************************************************** *) |
|
80 |
||
81 |
(*Declaring the abstract list constructors*) |
|
82 |
||
83 |
no_translations |
|
84 |
"[x, xs]" == "x#[xs]" |
|
85 |
"[x]" == "x#[]" |
|
86 |
no_notation |
|
87 |
Nil ("[]") and |
|
88 |
Cons (infixr "#" 65) |
|
89 |
||
90 |
definition |
|
91 |
Nil :: "'a list" ("[]") where |
|
92 |
"Nil = Abs_List(NIL)" |
|
93 |
||
94 |
definition |
|
95 |
"Cons" :: "['a, 'a list] => 'a list" (infixr "#" 65) where |
|
96 |
"x#xs = Abs_List(CONS (Leaf x)(Rep_List xs))" |
|
97 |
||
98 |
definition |
|
99 |
(* list Recursion -- the trancl is Essential; see list.ML *) |
|
100 |
list_rec :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b" where |
|
101 |
"list_rec l c d = |
|
102 |
List_rec(Rep_List l) c (%x y r. d(inv Leaf x)(Abs_List y) r)" |
|
103 |
||
104 |
definition |
|
105 |
list_case :: "['b, ['a, 'a list]=>'b, 'a list] => 'b" where |
|
106 |
"list_case a f xs = list_rec xs a (%x xs r. f x xs)" |
|
107 |
||
108 |
(* list Enumeration *) |
|
109 |
translations |
|
110 |
"[x, xs]" == "x#[xs]" |
|
111 |
"[x]" == "x#[]" |
|
112 |
||
113 |
"case xs of [] => a | y#ys => b" == "CONST list_case(a, %y ys. b, xs)" |
|
114 |
||
115 |
||
116 |
(* *********************************************************************** *) |
|
117 |
(* *) |
|
118 |
(* Generalized Map Functionals *) |
|
119 |
(* *) |
|
120 |
(* *********************************************************************** *) |
|
121 |
||
122 |
||
123 |
(* Generalized Map Functionals *) |
|
124 |
||
125 |
definition |
|
126 |
Rep_map :: "('b => 'a item) => ('b list => 'a item)" where |
|
127 |
"Rep_map f xs = list_rec xs NIL(%x l r. CONS(f x) r)" |
|
128 |
||
129 |
definition |
|
130 |
Abs_map :: "('a item => 'b) => 'a item => 'b list" where |
|
131 |
"Abs_map g M = List_rec M Nil (%N L r. g(N)#r)" |
|
132 |
||
133 |
||
134 |
definition |
|
135 |
map :: "('a=>'b) => ('a list => 'b list)" where |
|
136 |
"map f xs = list_rec xs [] (%x l r. f(x)#r)" |
|
137 |
||
39246 | 138 |
primrec take :: "['a list,nat] => 'a list" where |
35247 | 139 |
take_0: "take xs 0 = []" |
39246 | 140 |
| take_Suc: "take xs (Suc n) = list_case [] (%x l. x # take l n) xs" |
35247 | 141 |
|
142 |
lemma ListI: "x : list (range Leaf) ==> x : List" |
|
143 |
by (simp add: List_def) |
|
144 |
||
145 |
lemma ListD: "x : List ==> x : list (range Leaf)" |
|
146 |
by (simp add: List_def) |
|
147 |
||
148 |
lemma list_unfold: "list(A) = usum {Numb(0)} (uprod A (list(A)))" |
|
149 |
by (fast intro!: list.intros [unfolded NIL_def CONS_def] |
|
150 |
elim: list.cases [unfolded NIL_def CONS_def]) |
|
151 |
||
152 |
(*This justifies using list in other recursive type definitions*) |
|
153 |
lemma list_mono: "A<=B ==> list(A) <= list(B)" |
|
154 |
apply (rule subsetI) |
|
155 |
apply (erule list.induct) |
|
156 |
apply (auto intro!: list.intros) |
|
157 |
done |
|
158 |
||
159 |
(*Type checking -- list creates well-founded sets*) |
|
160 |
lemma list_sexp: "list(sexp) <= sexp" |
|
161 |
apply (rule subsetI) |
|
162 |
apply (erule list.induct) |
|
163 |
apply (unfold NIL_def CONS_def) |
|
164 |
apply (auto intro: sexp.intros sexp_In0I sexp_In1I) |
|
165 |
done |
|
166 |
||
167 |
(* A <= sexp ==> list(A) <= sexp *) |
|
168 |
lemmas list_subset_sexp = subset_trans [OF list_mono list_sexp] |
|
169 |
||
170 |
||
171 |
(*Induction for the type 'a list *) |
|
172 |
lemma list_induct: |
|
173 |
"[| P(Nil); |
|
174 |
!!x xs. P(xs) ==> P(x # xs) |] ==> P(l)" |
|
175 |
apply (unfold Nil_def Cons_def) |
|
176 |
apply (rule Rep_List_inverse [THEN subst]) |
|
177 |
(*types force good instantiation*) |
|
178 |
apply (rule Rep_List [unfolded List_def, THEN list.induct], simp) |
|
179 |
apply (erule Abs_List_inverse [unfolded List_def, THEN subst], blast) |
|
180 |
done |
|
181 |
||
182 |
||
183 |
(*** Isomorphisms ***) |
|
184 |
||
185 |
lemma inj_on_Abs_list: "inj_on Abs_List (list(range Leaf))" |
|
186 |
apply (rule inj_on_inverseI) |
|
187 |
apply (erule Abs_List_inverse [unfolded List_def]) |
|
188 |
done |
|
189 |
||
190 |
(** Distinctness of constructors **) |
|
191 |
||
192 |
lemma CONS_not_NIL [iff]: "CONS M N ~= NIL" |
|
193 |
by (simp add: NIL_def CONS_def) |
|
194 |
||
195 |
lemmas NIL_not_CONS [iff] = CONS_not_NIL [THEN not_sym] |
|
45605 | 196 |
lemmas CONS_neq_NIL = CONS_not_NIL [THEN notE] |
35247 | 197 |
lemmas NIL_neq_CONS = sym [THEN CONS_neq_NIL] |
198 |
||
199 |
lemma Cons_not_Nil [iff]: "x # xs ~= Nil" |
|
200 |
apply (unfold Nil_def Cons_def) |
|
201 |
apply (rule CONS_not_NIL [THEN inj_on_Abs_list [THEN inj_on_contraD]]) |
|
202 |
apply (simp_all add: list.intros rangeI Rep_List [unfolded List_def]) |
|
203 |
done |
|
204 |
||
45605 | 205 |
lemmas Nil_not_Cons = Cons_not_Nil [THEN not_sym] |
206 |
declare Nil_not_Cons [iff] |
|
207 |
lemmas Cons_neq_Nil = Cons_not_Nil [THEN notE] |
|
35247 | 208 |
lemmas Nil_neq_Cons = sym [THEN Cons_neq_Nil] |
209 |
||
210 |
(** Injectiveness of CONS and Cons **) |
|
211 |
||
212 |
lemma CONS_CONS_eq [iff]: "(CONS K M)=(CONS L N) = (K=L & M=N)" |
|
213 |
by (simp add: CONS_def) |
|
214 |
||
215 |
(*For reasoning about abstract list constructors*) |
|
216 |
declare Rep_List [THEN ListD, intro] ListI [intro] |
|
217 |
declare list.intros [intro,simp] |
|
218 |
declare Leaf_inject [dest!] |
|
219 |
||
220 |
lemma Cons_Cons_eq [iff]: "(x#xs=y#ys) = (x=y & xs=ys)" |
|
221 |
apply (simp add: Cons_def) |
|
222 |
apply (subst Abs_List_inject) |
|
223 |
apply (auto simp add: Rep_List_inject) |
|
224 |
done |
|
225 |
||
45605 | 226 |
lemmas Cons_inject2 = Cons_Cons_eq [THEN iffD1, THEN conjE] |
35247 | 227 |
|
228 |
lemma CONS_D: "CONS M N: list(A) ==> M: A & N: list(A)" |
|
45694
4a8743618257
prefer typedef without extra definition and alternative name;
wenzelm
parents:
45605
diff
changeset
|
229 |
by (induct L == "CONS M N" rule: list.induct) auto |
35247 | 230 |
|
231 |
lemma sexp_CONS_D: "CONS M N: sexp ==> M: sexp & N: sexp" |
|
232 |
apply (simp add: CONS_def In1_def) |
|
233 |
apply (fast dest!: Scons_D) |
|
234 |
done |
|
235 |
||
236 |
||
237 |
(*Reasoning about constructors and their freeness*) |
|
238 |
||
239 |
||
240 |
lemma not_CONS_self: "N: list(A) ==> !M. N ~= CONS M N" |
|
241 |
apply (erule list.induct) apply simp_all done |
|
242 |
||
243 |
lemma not_Cons_self2: "\<forall>x. l ~= x#l" |
|
244 |
by (induct l rule: list_induct) simp_all |
|
245 |
||
246 |
||
247 |
lemma neq_Nil_conv2: "(xs ~= []) = (\<exists>y ys. xs = y#ys)" |
|
248 |
by (induct xs rule: list_induct) auto |
|
249 |
||
250 |
(** Conversion rules for List_case: case analysis operator **) |
|
251 |
||
252 |
lemma List_case_NIL [simp]: "List_case c h NIL = c" |
|
253 |
by (simp add: List_case_def NIL_def) |
|
254 |
||
255 |
lemma List_case_CONS [simp]: "List_case c h (CONS M N) = h M N" |
|
256 |
by (simp add: List_case_def CONS_def) |
|
257 |
||
258 |
||
259 |
(*** List_rec -- by wf recursion on pred_sexp ***) |
|
260 |
||
261 |
(* The trancl(pred_sexp) is essential because pred_sexp_CONS_I1,2 would not |
|
262 |
hold if pred_sexp^+ were changed to pred_sexp. *) |
|
263 |
||
264 |
lemma List_rec_unfold_lemma: |
|
265 |
"(%M. List_rec M c d) == |
|
266 |
wfrec (pred_sexp^+) (%g. List_case c (%x y. d x y (g y)))" |
|
267 |
by (simp add: List_rec_def) |
|
268 |
||
269 |
lemmas List_rec_unfold = |
|
45605 | 270 |
def_wfrec [OF List_rec_unfold_lemma wf_pred_sexp [THEN wf_trancl]] |
35247 | 271 |
|
272 |
||
273 |
(** pred_sexp lemmas **) |
|
274 |
||
275 |
lemma pred_sexp_CONS_I1: |
|
276 |
"[| M: sexp; N: sexp |] ==> (M, CONS M N) : pred_sexp^+" |
|
277 |
by (simp add: CONS_def In1_def) |
|
278 |
||
279 |
lemma pred_sexp_CONS_I2: |
|
280 |
"[| M: sexp; N: sexp |] ==> (N, CONS M N) : pred_sexp^+" |
|
281 |
by (simp add: CONS_def In1_def) |
|
282 |
||
283 |
lemma pred_sexp_CONS_D: |
|
284 |
"(CONS M1 M2, N) : pred_sexp^+ ==> |
|
285 |
(M1,N) : pred_sexp^+ & (M2,N) : pred_sexp^+" |
|
286 |
apply (frule pred_sexp_subset_Sigma [THEN trancl_subset_Sigma, THEN subsetD]) |
|
287 |
apply (blast dest!: sexp_CONS_D intro: pred_sexp_CONS_I1 pred_sexp_CONS_I2 |
|
288 |
trans_trancl [THEN transD]) |
|
289 |
done |
|
290 |
||
291 |
||
292 |
(** Conversion rules for List_rec **) |
|
293 |
||
294 |
lemma List_rec_NIL [simp]: "List_rec NIL c h = c" |
|
295 |
apply (rule List_rec_unfold [THEN trans]) |
|
296 |
apply (simp add: List_case_NIL) |
|
297 |
done |
|
298 |
||
299 |
lemma List_rec_CONS [simp]: |
|
300 |
"[| M: sexp; N: sexp |] |
|
301 |
==> List_rec (CONS M N) c h = h M N (List_rec N c h)" |
|
302 |
apply (rule List_rec_unfold [THEN trans]) |
|
303 |
apply (simp add: pred_sexp_CONS_I2) |
|
304 |
done |
|
305 |
||
306 |
||
307 |
(*** list_rec -- by List_rec ***) |
|
308 |
||
309 |
lemmas Rep_List_in_sexp = |
|
310 |
subsetD [OF range_Leaf_subset_sexp [THEN list_subset_sexp] |
|
311 |
Rep_List [THEN ListD]] |
|
312 |
||
313 |
||
314 |
lemma list_rec_Nil [simp]: "list_rec Nil c h = c" |
|
315 |
by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Nil_def) |
|
316 |
||
317 |
||
318 |
lemma list_rec_Cons [simp]: "list_rec (a#l) c h = h a l (list_rec l c h)" |
|
319 |
by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Cons_def |
|
320 |
Rep_List_inverse Rep_List [THEN ListD] inj_Leaf Rep_List_in_sexp) |
|
321 |
||
322 |
||
323 |
(*Type checking. Useful?*) |
|
324 |
lemma List_rec_type: |
|
325 |
"[| M: list(A); |
|
326 |
A<=sexp; |
|
327 |
c: C(NIL); |
|
328 |
!!x y r. [| x: A; y: list(A); r: C(y) |] ==> h x y r: C(CONS x y) |
|
329 |
|] ==> List_rec M c h : C(M :: 'a item)" |
|
330 |
apply (erule list.induct, simp) |
|
331 |
apply (insert list_subset_sexp) |
|
332 |
apply (subst List_rec_CONS, blast+) |
|
333 |
done |
|
334 |
||
335 |
||
336 |
||
337 |
(** Generalized map functionals **) |
|
338 |
||
339 |
lemma Rep_map_Nil [simp]: "Rep_map f Nil = NIL" |
|
340 |
by (simp add: Rep_map_def) |
|
341 |
||
342 |
lemma Rep_map_Cons [simp]: |
|
343 |
"Rep_map f(x#xs) = CONS(f x)(Rep_map f xs)" |
|
344 |
by (simp add: Rep_map_def) |
|
345 |
||
346 |
lemma Rep_map_type: "(!!x. f(x): A) ==> Rep_map f xs: list(A)" |
|
347 |
apply (simp add: Rep_map_def) |
|
348 |
apply (rule list_induct, auto) |
|
349 |
done |
|
350 |
||
351 |
lemma Abs_map_NIL [simp]: "Abs_map g NIL = Nil" |
|
352 |
by (simp add: Abs_map_def) |
|
353 |
||
354 |
lemma Abs_map_CONS [simp]: |
|
355 |
"[| M: sexp; N: sexp |] ==> Abs_map g (CONS M N) = g(M) # Abs_map g N" |
|
356 |
by (simp add: Abs_map_def) |
|
357 |
||
358 |
(*Eases the use of primitive recursion.*) |
|
359 |
lemma def_list_rec_NilCons: |
|
360 |
"[| !!xs. f(xs) = list_rec xs c h |] |
|
361 |
==> f [] = c & f(x#xs) = h x xs (f xs)" |
|
362 |
by simp |
|
363 |
||
364 |
lemma Abs_map_inverse: |
|
365 |
"[| M: list(A); A<=sexp; !!z. z: A ==> f(g(z)) = z |] |
|
366 |
==> Rep_map f (Abs_map g M) = M" |
|
367 |
apply (erule list.induct, simp_all) |
|
368 |
apply (insert list_subset_sexp) |
|
369 |
apply (subst Abs_map_CONS, blast) |
|
370 |
apply blast |
|
371 |
apply simp |
|
372 |
done |
|
373 |
||
374 |
(*Rep_map_inverse is obtained via Abs_Rep_map and map_ident*) |
|
375 |
||
376 |
(** list_case **) |
|
377 |
||
378 |
(* setting up rewrite sets *) |
|
379 |
||
60530 | 380 |
text\<open>Better to have a single theorem with a conjunctive conclusion.\<close> |
35247 | 381 |
declare def_list_rec_NilCons [OF list_case_def, simp] |
382 |
||
383 |
(** list_case **) |
|
384 |
||
385 |
lemma expand_list_case: |
|
386 |
"P(list_case a f xs) = ((xs=[] --> P a ) & (!y ys. xs=y#ys --> P(f y ys)))" |
|
387 |
by (induct xs rule: list_induct) simp_all |
|
388 |
||
389 |
||
390 |
(**** Function definitions ****) |
|
391 |
||
392 |
declare def_list_rec_NilCons [OF map_def, simp] |
|
393 |
||
394 |
(** The functional "map" and the generalized functionals **) |
|
395 |
||
396 |
lemma Abs_Rep_map: |
|
397 |
"(!!x. f(x): sexp) ==> |
|
398 |
Abs_map g (Rep_map f xs) = map (%t. g(f(t))) xs" |
|
399 |
apply (induct xs rule: list_induct) |
|
400 |
apply (simp_all add: Rep_map_type list_sexp [THEN subsetD]) |
|
401 |
done |
|
402 |
||
403 |
||
404 |
(** Additional mapping lemmas **) |
|
405 |
||
406 |
lemma map_ident [simp]: "map(%x. x)(xs) = xs" |
|
407 |
by (induct xs rule: list_induct) simp_all |
|
408 |
||
409 |
lemma map_compose: "map(f o g)(xs) = map f (map g xs)" |
|
410 |
apply (simp add: o_def) |
|
411 |
apply (induct xs rule: list_induct) |
|
412 |
apply simp_all |
|
413 |
done |
|
414 |
||
415 |
||
416 |
(** take **) |
|
417 |
||
418 |
lemma take_Suc1 [simp]: "take [] (Suc x) = []" |
|
419 |
by simp |
|
420 |
||
421 |
lemma take_Suc2 [simp]: "take(a#xs)(Suc x) = a#take xs x" |
|
422 |
by simp |
|
423 |
||
424 |
lemma take_Nil [simp]: "take [] n = []" |
|
425 |
by (induct n) simp_all |
|
426 |
||
427 |
lemma take_take_eq [simp]: "\<forall>n. take (take xs n) n = take xs n" |
|
428 |
apply (induct xs rule: list_induct) |
|
429 |
apply simp_all |
|
430 |
apply (rule allI) |
|
431 |
apply (induct_tac n) |
|
432 |
apply auto |
|
433 |
done |
|
434 |
||
435 |
end |