author | eberlm <eberlm@in.tum.de> |
Thu, 17 Aug 2017 18:19:16 +0200 | |
changeset 66448 | 97ad7a583457 |
parent 63146 | f1ecba0272f9 |
child 67613 | ce654b0e6d69 |
permissions | -rw-r--r-- |
37936 | 1 |
(* Title: HOL/UNITY/SubstAx.thy |
4776 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1998 University of Cambridge |
|
4 |
||
6536 | 5 |
Weak LeadsTo relation (restricted to the set of reachable states) |
4776 | 6 |
*) |
7 |
||
63146 | 8 |
section\<open>Weak Progress\<close> |
13798 | 9 |
|
16417 | 10 |
theory SubstAx imports WFair Constrains begin |
4776 | 11 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
19769
diff
changeset
|
12 |
definition Ensures :: "['a set, 'a set] => 'a program set" (infixl "Ensures" 60) where |
13805 | 13 |
"A Ensures B == {F. F \<in> (reachable F \<inter> A) ensures B}" |
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8041
diff
changeset
|
14 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
19769
diff
changeset
|
15 |
definition LeadsTo :: "['a set, 'a set] => 'a program set" (infixl "LeadsTo" 60) where |
13805 | 16 |
"A LeadsTo B == {F. F \<in> (reachable F \<inter> A) leadsTo B}" |
4776 | 17 |
|
60773 | 18 |
notation LeadsTo (infixl "\<longmapsto>w" 60) |
13796 | 19 |
|
20 |
||
63146 | 21 |
text\<open>Resembles the previous definition of LeadsTo\<close> |
13796 | 22 |
lemma LeadsTo_eq_leadsTo: |
13805 | 23 |
"A LeadsTo B = {F. F \<in> (reachable F \<inter> A) leadsTo (reachable F \<inter> B)}" |
13796 | 24 |
apply (unfold LeadsTo_def) |
25 |
apply (blast dest: psp_stable2 intro: leadsTo_weaken) |
|
26 |
done |
|
27 |
||
28 |
||
63146 | 29 |
subsection\<open>Specialized laws for handling invariants\<close> |
13796 | 30 |
|
31 |
(** Conjoining an Always property **) |
|
32 |
||
33 |
lemma Always_LeadsTo_pre: |
|
13805 | 34 |
"F \<in> Always INV ==> (F \<in> (INV \<inter> A) LeadsTo A') = (F \<in> A LeadsTo A')" |
35 |
by (simp add: LeadsTo_def Always_eq_includes_reachable Int_absorb2 |
|
36 |
Int_assoc [symmetric]) |
|
13796 | 37 |
|
38 |
lemma Always_LeadsTo_post: |
|
13805 | 39 |
"F \<in> Always INV ==> (F \<in> A LeadsTo (INV \<inter> A')) = (F \<in> A LeadsTo A')" |
40 |
by (simp add: LeadsTo_eq_leadsTo Always_eq_includes_reachable Int_absorb2 |
|
41 |
Int_assoc [symmetric]) |
|
13796 | 42 |
|
13805 | 43 |
(* [| F \<in> Always C; F \<in> (C \<inter> A) LeadsTo A' |] ==> F \<in> A LeadsTo A' *) |
45605 | 44 |
lemmas Always_LeadsToI = Always_LeadsTo_pre [THEN iffD1] |
13796 | 45 |
|
13805 | 46 |
(* [| F \<in> Always INV; F \<in> A LeadsTo A' |] ==> F \<in> A LeadsTo (INV \<inter> A') *) |
45605 | 47 |
lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2] |
13796 | 48 |
|
49 |
||
63146 | 50 |
subsection\<open>Introduction rules: Basis, Trans, Union\<close> |
13796 | 51 |
|
13805 | 52 |
lemma leadsTo_imp_LeadsTo: "F \<in> A leadsTo B ==> F \<in> A LeadsTo B" |
13796 | 53 |
apply (simp add: LeadsTo_def) |
54 |
apply (blast intro: leadsTo_weaken_L) |
|
55 |
done |
|
56 |
||
57 |
lemma LeadsTo_Trans: |
|
13805 | 58 |
"[| F \<in> A LeadsTo B; F \<in> B LeadsTo C |] ==> F \<in> A LeadsTo C" |
13796 | 59 |
apply (simp add: LeadsTo_eq_leadsTo) |
60 |
apply (blast intro: leadsTo_Trans) |
|
61 |
done |
|
62 |
||
63 |
lemma LeadsTo_Union: |
|
61952 | 64 |
"(!!A. A \<in> S ==> F \<in> A LeadsTo B) ==> F \<in> (\<Union>S) LeadsTo B" |
13796 | 65 |
apply (simp add: LeadsTo_def) |
66 |
apply (subst Int_Union) |
|
67 |
apply (blast intro: leadsTo_UN) |
|
68 |
done |
|
69 |
||
70 |
||
63146 | 71 |
subsection\<open>Derived rules\<close> |
13796 | 72 |
|
13805 | 73 |
lemma LeadsTo_UNIV [simp]: "F \<in> A LeadsTo UNIV" |
13796 | 74 |
by (simp add: LeadsTo_def) |
75 |
||
63146 | 76 |
text\<open>Useful with cancellation, disjunction\<close> |
13796 | 77 |
lemma LeadsTo_Un_duplicate: |
13805 | 78 |
"F \<in> A LeadsTo (A' \<union> A') ==> F \<in> A LeadsTo A'" |
13796 | 79 |
by (simp add: Un_ac) |
80 |
||
81 |
lemma LeadsTo_Un_duplicate2: |
|
13805 | 82 |
"F \<in> A LeadsTo (A' \<union> C \<union> C) ==> F \<in> A LeadsTo (A' \<union> C)" |
13796 | 83 |
by (simp add: Un_ac) |
84 |
||
85 |
lemma LeadsTo_UN: |
|
13805 | 86 |
"(!!i. i \<in> I ==> F \<in> (A i) LeadsTo B) ==> F \<in> (\<Union>i \<in> I. A i) LeadsTo B" |
13796 | 87 |
apply (blast intro: LeadsTo_Union) |
88 |
done |
|
89 |
||
63146 | 90 |
text\<open>Binary union introduction rule\<close> |
13796 | 91 |
lemma LeadsTo_Un: |
13805 | 92 |
"[| F \<in> A LeadsTo C; F \<in> B LeadsTo C |] ==> F \<in> (A \<union> B) LeadsTo C" |
44106 | 93 |
using LeadsTo_UN [of "{A, B}" F id C] by auto |
13796 | 94 |
|
63146 | 95 |
text\<open>Lets us look at the starting state\<close> |
13796 | 96 |
lemma single_LeadsTo_I: |
13805 | 97 |
"(!!s. s \<in> A ==> F \<in> {s} LeadsTo B) ==> F \<in> A LeadsTo B" |
13796 | 98 |
by (subst UN_singleton [symmetric], rule LeadsTo_UN, blast) |
99 |
||
13805 | 100 |
lemma subset_imp_LeadsTo: "A \<subseteq> B ==> F \<in> A LeadsTo B" |
13796 | 101 |
apply (simp add: LeadsTo_def) |
102 |
apply (blast intro: subset_imp_leadsTo) |
|
103 |
done |
|
104 |
||
45605 | 105 |
lemmas empty_LeadsTo = empty_subsetI [THEN subset_imp_LeadsTo, simp] |
13796 | 106 |
|
45477 | 107 |
lemma LeadsTo_weaken_R: |
13805 | 108 |
"[| F \<in> A LeadsTo A'; A' \<subseteq> B' |] ==> F \<in> A LeadsTo B'" |
109 |
apply (simp add: LeadsTo_def) |
|
13796 | 110 |
apply (blast intro: leadsTo_weaken_R) |
111 |
done |
|
112 |
||
45477 | 113 |
lemma LeadsTo_weaken_L: |
13805 | 114 |
"[| F \<in> A LeadsTo A'; B \<subseteq> A |] |
115 |
==> F \<in> B LeadsTo A'" |
|
116 |
apply (simp add: LeadsTo_def) |
|
13796 | 117 |
apply (blast intro: leadsTo_weaken_L) |
118 |
done |
|
119 |
||
120 |
lemma LeadsTo_weaken: |
|
13805 | 121 |
"[| F \<in> A LeadsTo A'; |
122 |
B \<subseteq> A; A' \<subseteq> B' |] |
|
123 |
==> F \<in> B LeadsTo B'" |
|
13796 | 124 |
by (blast intro: LeadsTo_weaken_R LeadsTo_weaken_L LeadsTo_Trans) |
125 |
||
126 |
lemma Always_LeadsTo_weaken: |
|
13805 | 127 |
"[| F \<in> Always C; F \<in> A LeadsTo A'; |
128 |
C \<inter> B \<subseteq> A; C \<inter> A' \<subseteq> B' |] |
|
129 |
==> F \<in> B LeadsTo B'" |
|
13796 | 130 |
by (blast dest: Always_LeadsToI intro: LeadsTo_weaken intro: Always_LeadsToD) |
131 |
||
132 |
(** Two theorems for "proof lattices" **) |
|
133 |
||
13805 | 134 |
lemma LeadsTo_Un_post: "F \<in> A LeadsTo B ==> F \<in> (A \<union> B) LeadsTo B" |
13796 | 135 |
by (blast intro: LeadsTo_Un subset_imp_LeadsTo) |
136 |
||
137 |
lemma LeadsTo_Trans_Un: |
|
13805 | 138 |
"[| F \<in> A LeadsTo B; F \<in> B LeadsTo C |] |
139 |
==> F \<in> (A \<union> B) LeadsTo C" |
|
13796 | 140 |
by (blast intro: LeadsTo_Un subset_imp_LeadsTo LeadsTo_weaken_L LeadsTo_Trans) |
141 |
||
142 |
||
143 |
(** Distributive laws **) |
|
144 |
||
145 |
lemma LeadsTo_Un_distrib: |
|
13805 | 146 |
"(F \<in> (A \<union> B) LeadsTo C) = (F \<in> A LeadsTo C & F \<in> B LeadsTo C)" |
13796 | 147 |
by (blast intro: LeadsTo_Un LeadsTo_weaken_L) |
148 |
||
149 |
lemma LeadsTo_UN_distrib: |
|
13805 | 150 |
"(F \<in> (\<Union>i \<in> I. A i) LeadsTo B) = (\<forall>i \<in> I. F \<in> (A i) LeadsTo B)" |
13796 | 151 |
by (blast intro: LeadsTo_UN LeadsTo_weaken_L) |
152 |
||
153 |
lemma LeadsTo_Union_distrib: |
|
61952 | 154 |
"(F \<in> (\<Union>S) LeadsTo B) = (\<forall>A \<in> S. F \<in> A LeadsTo B)" |
13796 | 155 |
by (blast intro: LeadsTo_Union LeadsTo_weaken_L) |
156 |
||
157 |
||
158 |
(** More rules using the premise "Always INV" **) |
|
159 |
||
13805 | 160 |
lemma LeadsTo_Basis: "F \<in> A Ensures B ==> F \<in> A LeadsTo B" |
13796 | 161 |
by (simp add: Ensures_def LeadsTo_def leadsTo_Basis) |
162 |
||
163 |
lemma EnsuresI: |
|
13805 | 164 |
"[| F \<in> (A-B) Co (A \<union> B); F \<in> transient (A-B) |] |
165 |
==> F \<in> A Ensures B" |
|
13796 | 166 |
apply (simp add: Ensures_def Constrains_eq_constrains) |
167 |
apply (blast intro: ensuresI constrains_weaken transient_strengthen) |
|
168 |
done |
|
169 |
||
170 |
lemma Always_LeadsTo_Basis: |
|
13805 | 171 |
"[| F \<in> Always INV; |
172 |
F \<in> (INV \<inter> (A-A')) Co (A \<union> A'); |
|
173 |
F \<in> transient (INV \<inter> (A-A')) |] |
|
174 |
==> F \<in> A LeadsTo A'" |
|
13796 | 175 |
apply (rule Always_LeadsToI, assumption) |
176 |
apply (blast intro: EnsuresI LeadsTo_Basis Always_ConstrainsD [THEN Constrains_weaken] transient_strengthen) |
|
177 |
done |
|
178 |
||
63146 | 179 |
text\<open>Set difference: maybe combine with \<open>leadsTo_weaken_L\<close>?? |
180 |
This is the most useful form of the "disjunction" rule\<close> |
|
13796 | 181 |
lemma LeadsTo_Diff: |
13805 | 182 |
"[| F \<in> (A-B) LeadsTo C; F \<in> (A \<inter> B) LeadsTo C |] |
183 |
==> F \<in> A LeadsTo C" |
|
13796 | 184 |
by (blast intro: LeadsTo_Un LeadsTo_weaken) |
185 |
||
186 |
||
187 |
lemma LeadsTo_UN_UN: |
|
13805 | 188 |
"(!! i. i \<in> I ==> F \<in> (A i) LeadsTo (A' i)) |
189 |
==> F \<in> (\<Union>i \<in> I. A i) LeadsTo (\<Union>i \<in> I. A' i)" |
|
13796 | 190 |
apply (blast intro: LeadsTo_Union LeadsTo_weaken_R) |
191 |
done |
|
192 |
||
193 |
||
63146 | 194 |
text\<open>Version with no index set\<close> |
13796 | 195 |
lemma LeadsTo_UN_UN_noindex: |
13805 | 196 |
"(!!i. F \<in> (A i) LeadsTo (A' i)) ==> F \<in> (\<Union>i. A i) LeadsTo (\<Union>i. A' i)" |
13796 | 197 |
by (blast intro: LeadsTo_UN_UN) |
198 |
||
63146 | 199 |
text\<open>Version with no index set\<close> |
13796 | 200 |
lemma all_LeadsTo_UN_UN: |
13805 | 201 |
"\<forall>i. F \<in> (A i) LeadsTo (A' i) |
202 |
==> F \<in> (\<Union>i. A i) LeadsTo (\<Union>i. A' i)" |
|
13796 | 203 |
by (blast intro: LeadsTo_UN_UN) |
204 |
||
63146 | 205 |
text\<open>Binary union version\<close> |
13796 | 206 |
lemma LeadsTo_Un_Un: |
13805 | 207 |
"[| F \<in> A LeadsTo A'; F \<in> B LeadsTo B' |] |
208 |
==> F \<in> (A \<union> B) LeadsTo (A' \<union> B')" |
|
13796 | 209 |
by (blast intro: LeadsTo_Un LeadsTo_weaken_R) |
210 |
||
211 |
||
212 |
(** The cancellation law **) |
|
213 |
||
214 |
lemma LeadsTo_cancel2: |
|
13805 | 215 |
"[| F \<in> A LeadsTo (A' \<union> B); F \<in> B LeadsTo B' |] |
216 |
==> F \<in> A LeadsTo (A' \<union> B')" |
|
13796 | 217 |
by (blast intro: LeadsTo_Un_Un subset_imp_LeadsTo LeadsTo_Trans) |
218 |
||
219 |
lemma LeadsTo_cancel_Diff2: |
|
13805 | 220 |
"[| F \<in> A LeadsTo (A' \<union> B); F \<in> (B-A') LeadsTo B' |] |
221 |
==> F \<in> A LeadsTo (A' \<union> B')" |
|
13796 | 222 |
apply (rule LeadsTo_cancel2) |
223 |
prefer 2 apply assumption |
|
224 |
apply (simp_all (no_asm_simp)) |
|
225 |
done |
|
226 |
||
227 |
lemma LeadsTo_cancel1: |
|
13805 | 228 |
"[| F \<in> A LeadsTo (B \<union> A'); F \<in> B LeadsTo B' |] |
229 |
==> F \<in> A LeadsTo (B' \<union> A')" |
|
13796 | 230 |
apply (simp add: Un_commute) |
231 |
apply (blast intro!: LeadsTo_cancel2) |
|
232 |
done |
|
233 |
||
234 |
lemma LeadsTo_cancel_Diff1: |
|
13805 | 235 |
"[| F \<in> A LeadsTo (B \<union> A'); F \<in> (B-A') LeadsTo B' |] |
236 |
==> F \<in> A LeadsTo (B' \<union> A')" |
|
13796 | 237 |
apply (rule LeadsTo_cancel1) |
238 |
prefer 2 apply assumption |
|
239 |
apply (simp_all (no_asm_simp)) |
|
240 |
done |
|
241 |
||
242 |
||
63146 | 243 |
text\<open>The impossibility law\<close> |
13796 | 244 |
|
63146 | 245 |
text\<open>The set "A" may be non-empty, but it contains no reachable states\<close> |
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
246 |
lemma LeadsTo_empty: "[|F \<in> A LeadsTo {}; all_total F|] ==> F \<in> Always (-A)" |
13805 | 247 |
apply (simp add: LeadsTo_def Always_eq_includes_reachable) |
13796 | 248 |
apply (drule leadsTo_empty, auto) |
249 |
done |
|
250 |
||
251 |
||
63146 | 252 |
subsection\<open>PSP: Progress-Safety-Progress\<close> |
13796 | 253 |
|
63146 | 254 |
text\<open>Special case of PSP: Misra's "stable conjunction"\<close> |
13796 | 255 |
lemma PSP_Stable: |
13805 | 256 |
"[| F \<in> A LeadsTo A'; F \<in> Stable B |] |
257 |
==> F \<in> (A \<inter> B) LeadsTo (A' \<inter> B)" |
|
258 |
apply (simp add: LeadsTo_eq_leadsTo Stable_eq_stable) |
|
13796 | 259 |
apply (drule psp_stable, assumption) |
260 |
apply (simp add: Int_ac) |
|
261 |
done |
|
262 |
||
263 |
lemma PSP_Stable2: |
|
13805 | 264 |
"[| F \<in> A LeadsTo A'; F \<in> Stable B |] |
265 |
==> F \<in> (B \<inter> A) LeadsTo (B \<inter> A')" |
|
13796 | 266 |
by (simp add: PSP_Stable Int_ac) |
267 |
||
268 |
lemma PSP: |
|
13805 | 269 |
"[| F \<in> A LeadsTo A'; F \<in> B Co B' |] |
270 |
==> F \<in> (A \<inter> B') LeadsTo ((A' \<inter> B) \<union> (B' - B))" |
|
271 |
apply (simp add: LeadsTo_def Constrains_eq_constrains) |
|
13796 | 272 |
apply (blast dest: psp intro: leadsTo_weaken) |
273 |
done |
|
274 |
||
275 |
lemma PSP2: |
|
13805 | 276 |
"[| F \<in> A LeadsTo A'; F \<in> B Co B' |] |
277 |
==> F \<in> (B' \<inter> A) LeadsTo ((B \<inter> A') \<union> (B' - B))" |
|
13796 | 278 |
by (simp add: PSP Int_ac) |
279 |
||
280 |
lemma PSP_Unless: |
|
13805 | 281 |
"[| F \<in> A LeadsTo A'; F \<in> B Unless B' |] |
282 |
==> F \<in> (A \<inter> B) LeadsTo ((A' \<inter> B) \<union> B')" |
|
13796 | 283 |
apply (unfold Unless_def) |
284 |
apply (drule PSP, assumption) |
|
285 |
apply (blast intro: LeadsTo_Diff LeadsTo_weaken subset_imp_LeadsTo) |
|
286 |
done |
|
287 |
||
288 |
||
289 |
lemma Stable_transient_Always_LeadsTo: |
|
13805 | 290 |
"[| F \<in> Stable A; F \<in> transient C; |
291 |
F \<in> Always (-A \<union> B \<union> C) |] ==> F \<in> A LeadsTo B" |
|
13796 | 292 |
apply (erule Always_LeadsTo_weaken) |
293 |
apply (rule LeadsTo_Diff) |
|
294 |
prefer 2 |
|
295 |
apply (erule |
|
296 |
transient_imp_leadsTo [THEN leadsTo_imp_LeadsTo, THEN PSP_Stable2]) |
|
297 |
apply (blast intro: subset_imp_LeadsTo)+ |
|
298 |
done |
|
299 |
||
300 |
||
63146 | 301 |
subsection\<open>Induction rules\<close> |
13796 | 302 |
|
303 |
(** Meta or object quantifier ????? **) |
|
304 |
lemma LeadsTo_wf_induct: |
|
305 |
"[| wf r; |
|
13805 | 306 |
\<forall>m. F \<in> (A \<inter> f-`{m}) LeadsTo |
307 |
((A \<inter> f-`(r^-1 `` {m})) \<union> B) |] |
|
308 |
==> F \<in> A LeadsTo B" |
|
309 |
apply (simp add: LeadsTo_eq_leadsTo) |
|
13796 | 310 |
apply (erule leadsTo_wf_induct) |
311 |
apply (blast intro: leadsTo_weaken) |
|
312 |
done |
|
313 |
||
314 |
||
315 |
lemma Bounded_induct: |
|
316 |
"[| wf r; |
|
13805 | 317 |
\<forall>m \<in> I. F \<in> (A \<inter> f-`{m}) LeadsTo |
318 |
((A \<inter> f-`(r^-1 `` {m})) \<union> B) |] |
|
319 |
==> F \<in> A LeadsTo ((A - (f-`I)) \<union> B)" |
|
13796 | 320 |
apply (erule LeadsTo_wf_induct, safe) |
13805 | 321 |
apply (case_tac "m \<in> I") |
13796 | 322 |
apply (blast intro: LeadsTo_weaken) |
323 |
apply (blast intro: subset_imp_LeadsTo) |
|
324 |
done |
|
325 |
||
326 |
||
327 |
lemma LessThan_induct: |
|
13805 | 328 |
"(!!m::nat. F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(lessThan m)) \<union> B)) |
329 |
==> F \<in> A LeadsTo B" |
|
330 |
by (rule wf_less_than [THEN LeadsTo_wf_induct], auto) |
|
13796 | 331 |
|
63146 | 332 |
text\<open>Integer version. Could generalize from 0 to any lower bound\<close> |
13796 | 333 |
lemma integ_0_le_induct: |
13805 | 334 |
"[| F \<in> Always {s. (0::int) \<le> f s}; |
335 |
!! z. F \<in> (A \<inter> {s. f s = z}) LeadsTo |
|
336 |
((A \<inter> {s. f s < z}) \<union> B) |] |
|
337 |
==> F \<in> A LeadsTo B" |
|
13796 | 338 |
apply (rule_tac f = "nat o f" in LessThan_induct) |
339 |
apply (simp add: vimage_def) |
|
340 |
apply (rule Always_LeadsTo_weaken, assumption+) |
|
341 |
apply (auto simp add: nat_eq_iff nat_less_iff) |
|
342 |
done |
|
343 |
||
344 |
lemma LessThan_bounded_induct: |
|
13805 | 345 |
"!!l::nat. \<forall>m \<in> greaterThan l. |
346 |
F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(lessThan m)) \<union> B) |
|
347 |
==> F \<in> A LeadsTo ((A \<inter> (f-`(atMost l))) \<union> B)" |
|
348 |
apply (simp only: Diff_eq [symmetric] vimage_Compl |
|
349 |
Compl_greaterThan [symmetric]) |
|
350 |
apply (rule wf_less_than [THEN Bounded_induct], simp) |
|
13796 | 351 |
done |
352 |
||
353 |
lemma GreaterThan_bounded_induct: |
|
13805 | 354 |
"!!l::nat. \<forall>m \<in> lessThan l. |
355 |
F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(greaterThan m)) \<union> B) |
|
356 |
==> F \<in> A LeadsTo ((A \<inter> (f-`(atLeast l))) \<union> B)" |
|
13796 | 357 |
apply (rule_tac f = f and f1 = "%k. l - k" |
358 |
in wf_less_than [THEN wf_inv_image, THEN LeadsTo_wf_induct]) |
|
19769
c40ce2de2020
Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
krauss
parents:
16417
diff
changeset
|
359 |
apply (simp add: Image_singleton, clarify) |
13796 | 360 |
apply (case_tac "m<l") |
13805 | 361 |
apply (blast intro: LeadsTo_weaken_R diff_less_mono2) |
61824
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
paulson <lp15@cam.ac.uk>
parents:
60773
diff
changeset
|
362 |
apply (blast intro: not_le_imp_less subset_imp_LeadsTo) |
13796 | 363 |
done |
364 |
||
365 |
||
63146 | 366 |
subsection\<open>Completion: Binary and General Finite versions\<close> |
13796 | 367 |
|
368 |
lemma Completion: |
|
13805 | 369 |
"[| F \<in> A LeadsTo (A' \<union> C); F \<in> A' Co (A' \<union> C); |
370 |
F \<in> B LeadsTo (B' \<union> C); F \<in> B' Co (B' \<union> C) |] |
|
371 |
==> F \<in> (A \<inter> B) LeadsTo ((A' \<inter> B') \<union> C)" |
|
372 |
apply (simp add: LeadsTo_eq_leadsTo Constrains_eq_constrains Int_Un_distrib) |
|
13796 | 373 |
apply (blast intro: completion leadsTo_weaken) |
374 |
done |
|
375 |
||
376 |
lemma Finite_completion_lemma: |
|
377 |
"finite I |
|
13805 | 378 |
==> (\<forall>i \<in> I. F \<in> (A i) LeadsTo (A' i \<union> C)) --> |
379 |
(\<forall>i \<in> I. F \<in> (A' i) Co (A' i \<union> C)) --> |
|
380 |
F \<in> (\<Inter>i \<in> I. A i) LeadsTo ((\<Inter>i \<in> I. A' i) \<union> C)" |
|
13796 | 381 |
apply (erule finite_induct, auto) |
382 |
apply (rule Completion) |
|
383 |
prefer 4 |
|
384 |
apply (simp only: INT_simps [symmetric]) |
|
385 |
apply (rule Constrains_INT, auto) |
|
386 |
done |
|
387 |
||
388 |
lemma Finite_completion: |
|
389 |
"[| finite I; |
|
13805 | 390 |
!!i. i \<in> I ==> F \<in> (A i) LeadsTo (A' i \<union> C); |
391 |
!!i. i \<in> I ==> F \<in> (A' i) Co (A' i \<union> C) |] |
|
392 |
==> F \<in> (\<Inter>i \<in> I. A i) LeadsTo ((\<Inter>i \<in> I. A' i) \<union> C)" |
|
13796 | 393 |
by (blast intro: Finite_completion_lemma [THEN mp, THEN mp]) |
394 |
||
395 |
lemma Stable_completion: |
|
13805 | 396 |
"[| F \<in> A LeadsTo A'; F \<in> Stable A'; |
397 |
F \<in> B LeadsTo B'; F \<in> Stable B' |] |
|
398 |
==> F \<in> (A \<inter> B) LeadsTo (A' \<inter> B')" |
|
13796 | 399 |
apply (unfold Stable_def) |
400 |
apply (rule_tac C1 = "{}" in Completion [THEN LeadsTo_weaken_R]) |
|
401 |
apply (force+) |
|
402 |
done |
|
403 |
||
404 |
lemma Finite_stable_completion: |
|
405 |
"[| finite I; |
|
13805 | 406 |
!!i. i \<in> I ==> F \<in> (A i) LeadsTo (A' i); |
407 |
!!i. i \<in> I ==> F \<in> Stable (A' i) |] |
|
408 |
==> F \<in> (\<Inter>i \<in> I. A i) LeadsTo (\<Inter>i \<in> I. A' i)" |
|
13796 | 409 |
apply (unfold Stable_def) |
410 |
apply (rule_tac C1 = "{}" in Finite_completion [THEN LeadsTo_weaken_R]) |
|
13805 | 411 |
apply (simp_all, blast+) |
13796 | 412 |
done |
413 |
||
4776 | 414 |
end |