author | wenzelm |
Mon, 14 Jul 2008 17:51:48 +0200 | |
changeset 27579 | 97ce525f664c |
parent 26873 | 691f35f855cd |
child 28086 | db584d1d2af4 |
permissions | -rw-r--r-- |
18537 | 1 |
% |
2 |
\begin{isabellebody}% |
|
3 |
\def\isabellecontext{logic}% |
|
4 |
% |
|
5 |
\isadelimtheory |
|
6 |
\isanewline |
|
7 |
\isanewline |
|
8 |
\isanewline |
|
9 |
% |
|
10 |
\endisadelimtheory |
|
11 |
% |
|
12 |
\isatagtheory |
|
13 |
\isacommand{theory}\isamarkupfalse% |
|
14 |
\ logic\ \isakeyword{imports}\ base\ \isakeyword{begin}% |
|
15 |
\endisatagtheory |
|
16 |
{\isafoldtheory}% |
|
17 |
% |
|
18 |
\isadelimtheory |
|
19 |
% |
|
20 |
\endisadelimtheory |
|
21 |
% |
|
20471 | 22 |
\isamarkupchapter{Primitive logic \label{ch:logic}% |
18537 | 23 |
} |
24 |
\isamarkuptrue% |
|
25 |
% |
|
20481 | 26 |
\begin{isamarkuptext}% |
27 |
The logical foundations of Isabelle/Isar are that of the Pure logic, |
|
28 |
which has been introduced as a natural-deduction framework in |
|
20493 | 29 |
\cite{paulson700}. This is essentially the same logic as ``\isa{{\isasymlambda}HOL}'' in the more abstract setting of Pure Type Systems (PTS) |
20481 | 30 |
\cite{Barendregt-Geuvers:2001}, although there are some key |
20491 | 31 |
differences in the specific treatment of simple types in |
32 |
Isabelle/Pure. |
|
20481 | 33 |
|
34 |
Following type-theoretic parlance, the Pure logic consists of three |
|
20543 | 35 |
levels of \isa{{\isasymlambda}}-calculus with corresponding arrows, \isa{{\isasymRightarrow}} for syntactic function space (terms depending on terms), \isa{{\isasymAnd}} for universal quantification (proofs depending on terms), and |
20481 | 36 |
\isa{{\isasymLongrightarrow}} for implication (proofs depending on proofs). |
37 |
||
20537 | 38 |
Derivations are relative to a logical theory, which declares type |
39 |
constructors, constants, and axioms. Theory declarations support |
|
40 |
schematic polymorphism, which is strictly speaking outside the |
|
41 |
logic.\footnote{This is the deeper logical reason, why the theory |
|
42 |
context \isa{{\isasymTheta}} is separate from the proof context \isa{{\isasymGamma}} |
|
43 |
of the core calculus.}% |
|
20481 | 44 |
\end{isamarkuptext}% |
45 |
\isamarkuptrue% |
|
46 |
% |
|
20451 | 47 |
\isamarkupsection{Types \label{sec:types}% |
18537 | 48 |
} |
49 |
\isamarkuptrue% |
|
50 |
% |
|
51 |
\begin{isamarkuptext}% |
|
20481 | 52 |
The language of types is an uninterpreted order-sorted first-order |
53 |
algebra; types are qualified by ordered type classes. |
|
20451 | 54 |
|
20481 | 55 |
\medskip A \emph{type class} is an abstract syntactic entity |
56 |
declared in the theory context. The \emph{subclass relation} \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}} is specified by stating an acyclic |
|
20491 | 57 |
generating relation; the transitive closure is maintained |
58 |
internally. The resulting relation is an ordering: reflexive, |
|
59 |
transitive, and antisymmetric. |
|
20451 | 60 |
|
20537 | 61 |
A \emph{sort} is a list of type classes written as \isa{s\ {\isacharequal}\ {\isacharbraceleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlisub m{\isacharbraceright}}, which represents symbolic |
20481 | 62 |
intersection. Notationally, the curly braces are omitted for |
63 |
singleton intersections, i.e.\ any class \isa{c} may be read as |
|
64 |
a sort \isa{{\isacharbraceleft}c{\isacharbraceright}}. The ordering on type classes is extended to |
|
20491 | 65 |
sorts according to the meaning of intersections: \isa{{\isacharbraceleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}\ c\isactrlisub m{\isacharbraceright}\ {\isasymsubseteq}\ {\isacharbraceleft}d\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ d\isactrlisub n{\isacharbraceright}} iff |
66 |
\isa{{\isasymforall}j{\isachardot}\ {\isasymexists}i{\isachardot}\ c\isactrlisub i\ {\isasymsubseteq}\ d\isactrlisub j}. The empty intersection |
|
67 |
\isa{{\isacharbraceleft}{\isacharbraceright}} refers to the universal sort, which is the largest |
|
68 |
element wrt.\ the sort order. The intersections of all (finitely |
|
69 |
many) classes declared in the current theory are the minimal |
|
70 |
elements wrt.\ the sort order. |
|
20451 | 71 |
|
20491 | 72 |
\medskip A \emph{fixed type variable} is a pair of a basic name |
20537 | 73 |
(starting with a \isa{{\isacharprime}} character) and a sort constraint, e.g.\ |
74 |
\isa{{\isacharparenleft}{\isacharprime}a{\isacharcomma}\ s{\isacharparenright}} which is usually printed as \isa{{\isasymalpha}\isactrlisub s}. |
|
75 |
A \emph{schematic type variable} is a pair of an indexname and a |
|
76 |
sort constraint, e.g.\ \isa{{\isacharparenleft}{\isacharparenleft}{\isacharprime}a{\isacharcomma}\ {\isadigit{0}}{\isacharparenright}{\isacharcomma}\ s{\isacharparenright}} which is usually |
|
77 |
printed as \isa{{\isacharquery}{\isasymalpha}\isactrlisub s}. |
|
20481 | 78 |
|
79 |
Note that \emph{all} syntactic components contribute to the identity |
|
20493 | 80 |
of type variables, including the sort constraint. The core logic |
81 |
handles type variables with the same name but different sorts as |
|
82 |
different, although some outer layers of the system make it hard to |
|
83 |
produce anything like this. |
|
18537 | 84 |
|
20493 | 85 |
A \emph{type constructor} \isa{{\isasymkappa}} is a \isa{k}-ary operator |
86 |
on types declared in the theory. Type constructor application is |
|
20537 | 87 |
written postfix as \isa{{\isacharparenleft}{\isasymalpha}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlisub k{\isacharparenright}{\isasymkappa}}. For |
88 |
\isa{k\ {\isacharequal}\ {\isadigit{0}}} the argument tuple is omitted, e.g.\ \isa{prop} |
|
89 |
instead of \isa{{\isacharparenleft}{\isacharparenright}prop}. For \isa{k\ {\isacharequal}\ {\isadigit{1}}} the parentheses |
|
90 |
are omitted, e.g.\ \isa{{\isasymalpha}\ list} instead of \isa{{\isacharparenleft}{\isasymalpha}{\isacharparenright}list}. |
|
91 |
Further notation is provided for specific constructors, notably the |
|
92 |
right-associative infix \isa{{\isasymalpha}\ {\isasymRightarrow}\ {\isasymbeta}} instead of \isa{{\isacharparenleft}{\isasymalpha}{\isacharcomma}\ {\isasymbeta}{\isacharparenright}fun}. |
|
20481 | 93 |
|
20537 | 94 |
A \emph{type} is defined inductively over type variables and type |
20543 | 95 |
constructors as follows: \isa{{\isasymtau}\ {\isacharequal}\ {\isasymalpha}\isactrlisub s\ {\isacharbar}\ {\isacharquery}{\isasymalpha}\isactrlisub s\ {\isacharbar}\ {\isacharparenleft}{\isasymtau}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlsub k{\isacharparenright}{\isasymkappa}}. |
20451 | 96 |
|
20514 | 97 |
A \emph{type abbreviation} is a syntactic definition \isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}\ {\isacharequal}\ {\isasymtau}} of an arbitrary type expression \isa{{\isasymtau}} over |
20537 | 98 |
variables \isa{\isactrlvec {\isasymalpha}}. Type abbreviations appear as type |
99 |
constructors in the syntax, but are expanded before entering the |
|
100 |
logical core. |
|
20451 | 101 |
|
20481 | 102 |
A \emph{type arity} declares the image behavior of a type |
20494 | 103 |
constructor wrt.\ the algebra of sorts: \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlisub k{\isacharparenright}s} means that \isa{{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub k{\isacharparenright}{\isasymkappa}} is |
104 |
of sort \isa{s} if every argument type \isa{{\isasymtau}\isactrlisub i} is |
|
105 |
of sort \isa{s\isactrlisub i}. Arity declarations are implicitly |
|
106 |
completed, i.e.\ \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}c} entails \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}c{\isacharprime}} for any \isa{c{\isacharprime}\ {\isasymsupseteq}\ c}. |
|
20451 | 107 |
|
20491 | 108 |
\medskip The sort algebra is always maintained as \emph{coregular}, |
109 |
which means that type arities are consistent with the subclass |
|
20537 | 110 |
relation: for any type constructor \isa{{\isasymkappa}}, and classes \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}}, and arities \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s\isactrlisub {\isadigit{1}}{\isacharparenright}c\isactrlisub {\isadigit{1}}} and \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s\isactrlisub {\isadigit{2}}{\isacharparenright}c\isactrlisub {\isadigit{2}}} holds \isa{\isactrlvec s\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ \isactrlvec s\isactrlisub {\isadigit{2}}} component-wise. |
20491 | 111 |
|
112 |
The key property of a coregular order-sorted algebra is that sort |
|
20537 | 113 |
constraints can be solved in a most general fashion: for each type |
114 |
constructor \isa{{\isasymkappa}} and sort \isa{s} there is a most general |
|
115 |
vector of argument sorts \isa{{\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlisub k{\isacharparenright}} such |
|
116 |
that a type scheme \isa{{\isacharparenleft}{\isasymalpha}\isactrlbsub s\isactrlisub {\isadigit{1}}\isactrlesub {\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlbsub s\isactrlisub k\isactrlesub {\isacharparenright}{\isasymkappa}} is of sort \isa{s}. |
|
20543 | 117 |
Consequently, type unification has most general solutions (modulo |
118 |
equivalence of sorts), so type-inference produces primary types as |
|
119 |
expected \cite{nipkow-prehofer}.% |
|
18537 | 120 |
\end{isamarkuptext}% |
121 |
\isamarkuptrue% |
|
122 |
% |
|
20481 | 123 |
\isadelimmlref |
124 |
% |
|
125 |
\endisadelimmlref |
|
126 |
% |
|
127 |
\isatagmlref |
|
128 |
% |
|
129 |
\begin{isamarkuptext}% |
|
130 |
\begin{mldecls} |
|
131 |
\indexmltype{class}\verb|type class| \\ |
|
132 |
\indexmltype{sort}\verb|type sort| \\ |
|
20494 | 133 |
\indexmltype{arity}\verb|type arity| \\ |
20481 | 134 |
\indexmltype{typ}\verb|type typ| \\ |
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
135 |
\indexml{map\_atyps}\verb|map_atyps: (typ -> typ) -> typ -> typ| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
136 |
\indexml{fold\_atyps}\verb|fold_atyps: (typ -> 'a -> 'a) -> typ -> 'a -> 'a| \\ |
20547 | 137 |
\end{mldecls} |
138 |
\begin{mldecls} |
|
20481 | 139 |
\indexml{Sign.subsort}\verb|Sign.subsort: theory -> sort * sort -> bool| \\ |
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
140 |
\indexml{Sign.of\_sort}\verb|Sign.of_sort: theory -> typ * sort -> bool| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
141 |
\indexml{Sign.add\_types}\verb|Sign.add_types: (string * int * mixfix) list -> theory -> theory| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
142 |
\indexml{Sign.add\_tyabbrs\_i}\verb|Sign.add_tyabbrs_i: |\isasep\isanewline% |
20520 | 143 |
\verb| (string * string list * typ * mixfix) list -> theory -> theory| \\ |
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
144 |
\indexml{Sign.primitive\_class}\verb|Sign.primitive_class: string * class list -> theory -> theory| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
145 |
\indexml{Sign.primitive\_classrel}\verb|Sign.primitive_classrel: class * class -> theory -> theory| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
146 |
\indexml{Sign.primitive\_arity}\verb|Sign.primitive_arity: arity -> theory -> theory| \\ |
20481 | 147 |
\end{mldecls} |
148 |
||
149 |
\begin{description} |
|
150 |
||
151 |
\item \verb|class| represents type classes; this is an alias for |
|
152 |
\verb|string|. |
|
153 |
||
154 |
\item \verb|sort| represents sorts; this is an alias for |
|
155 |
\verb|class list|. |
|
156 |
||
157 |
\item \verb|arity| represents type arities; this is an alias for |
|
20494 | 158 |
triples of the form \isa{{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec s{\isacharcomma}\ s{\isacharparenright}} for \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}s} described above. |
20481 | 159 |
|
160 |
\item \verb|typ| represents types; this is a datatype with |
|
161 |
constructors \verb|TFree|, \verb|TVar|, \verb|Type|. |
|
162 |
||
20537 | 163 |
\item \verb|map_atyps|~\isa{f\ {\isasymtau}} applies the mapping \isa{f} |
164 |
to all atomic types (\verb|TFree|, \verb|TVar|) occurring in \isa{{\isasymtau}}. |
|
20519 | 165 |
|
20537 | 166 |
\item \verb|fold_atyps|~\isa{f\ {\isasymtau}} iterates the operation \isa{f} over all occurrences of atomic types (\verb|TFree|, \verb|TVar|) |
167 |
in \isa{{\isasymtau}}; the type structure is traversed from left to right. |
|
20494 | 168 |
|
20481 | 169 |
\item \verb|Sign.subsort|~\isa{thy\ {\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ s\isactrlisub {\isadigit{2}}{\isacharparenright}} |
170 |
tests the subsort relation \isa{s\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ s\isactrlisub {\isadigit{2}}}. |
|
171 |
||
20537 | 172 |
\item \verb|Sign.of_sort|~\isa{thy\ {\isacharparenleft}{\isasymtau}{\isacharcomma}\ s{\isacharparenright}} tests whether type |
173 |
\isa{{\isasymtau}} is of sort \isa{s}. |
|
20481 | 174 |
|
20537 | 175 |
\item \verb|Sign.add_types|~\isa{{\isacharbrackleft}{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ k{\isacharcomma}\ mx{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} declares a new |
20494 | 176 |
type constructors \isa{{\isasymkappa}} with \isa{k} arguments and |
20481 | 177 |
optional mixfix syntax. |
178 |
||
20494 | 179 |
\item \verb|Sign.add_tyabbrs_i|~\isa{{\isacharbrackleft}{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec {\isasymalpha}{\isacharcomma}\ {\isasymtau}{\isacharcomma}\ mx{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} |
180 |
defines a new type abbreviation \isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}\ {\isacharequal}\ {\isasymtau}} with |
|
20491 | 181 |
optional mixfix syntax. |
20481 | 182 |
|
20537 | 183 |
\item \verb|Sign.primitive_class|~\isa{{\isacharparenleft}c{\isacharcomma}\ {\isacharbrackleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlisub n{\isacharbrackright}{\isacharparenright}} declares a new class \isa{c}, together with class |
20494 | 184 |
relations \isa{c\ {\isasymsubseteq}\ c\isactrlisub i}, for \isa{i\ {\isacharequal}\ {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ n}. |
20481 | 185 |
|
20543 | 186 |
\item \verb|Sign.primitive_classrel|~\isa{{\isacharparenleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ c\isactrlisub {\isadigit{2}}{\isacharparenright}} declares the class relation \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}}. |
20481 | 187 |
|
20494 | 188 |
\item \verb|Sign.primitive_arity|~\isa{{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec s{\isacharcomma}\ s{\isacharparenright}} declares |
20537 | 189 |
the arity \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}s}. |
20481 | 190 |
|
191 |
\end{description}% |
|
192 |
\end{isamarkuptext}% |
|
193 |
\isamarkuptrue% |
|
194 |
% |
|
195 |
\endisatagmlref |
|
196 |
{\isafoldmlref}% |
|
197 |
% |
|
198 |
\isadelimmlref |
|
199 |
% |
|
200 |
\endisadelimmlref |
|
201 |
% |
|
20451 | 202 |
\isamarkupsection{Terms \label{sec:terms}% |
18537 | 203 |
} |
204 |
\isamarkuptrue% |
|
205 |
% |
|
206 |
\begin{isamarkuptext}% |
|
20451 | 207 |
\glossary{Term}{FIXME} |
18537 | 208 |
|
20491 | 209 |
The language of terms is that of simply-typed \isa{{\isasymlambda}}-calculus |
20520 | 210 |
with de-Bruijn indices for bound variables (cf.\ \cite{debruijn72} |
20537 | 211 |
or \cite{paulson-ml2}), with the types being determined determined |
212 |
by the corresponding binders. In contrast, free variables and |
|
213 |
constants are have an explicit name and type in each occurrence. |
|
20514 | 214 |
|
215 |
\medskip A \emph{bound variable} is a natural number \isa{b}, |
|
20537 | 216 |
which accounts for the number of intermediate binders between the |
217 |
variable occurrence in the body and its binding position. For |
|
20543 | 218 |
example, the de-Bruijn term \isa{{\isasymlambda}\isactrlbsub nat\isactrlesub {\isachardot}\ {\isasymlambda}\isactrlbsub nat\isactrlesub {\isachardot}\ {\isadigit{1}}\ {\isacharplus}\ {\isadigit{0}}} would |
219 |
correspond to \isa{{\isasymlambda}x\isactrlbsub nat\isactrlesub {\isachardot}\ {\isasymlambda}y\isactrlbsub nat\isactrlesub {\isachardot}\ x\ {\isacharplus}\ y} in a named |
|
220 |
representation. Note that a bound variable may be represented by |
|
221 |
different de-Bruijn indices at different occurrences, depending on |
|
222 |
the nesting of abstractions. |
|
20537 | 223 |
|
20543 | 224 |
A \emph{loose variable} is a bound variable that is outside the |
20537 | 225 |
scope of local binders. The types (and names) for loose variables |
20543 | 226 |
can be managed as a separate context, that is maintained as a stack |
227 |
of hypothetical binders. The core logic operates on closed terms, |
|
228 |
without any loose variables. |
|
20514 | 229 |
|
20537 | 230 |
A \emph{fixed variable} is a pair of a basic name and a type, e.g.\ |
231 |
\isa{{\isacharparenleft}x{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed \isa{x\isactrlisub {\isasymtau}}. A |
|
232 |
\emph{schematic variable} is a pair of an indexname and a type, |
|
233 |
e.g.\ \isa{{\isacharparenleft}{\isacharparenleft}x{\isacharcomma}\ {\isadigit{0}}{\isacharparenright}{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed as \isa{{\isacharquery}x\isactrlisub {\isasymtau}}. |
|
20491 | 234 |
|
20537 | 235 |
\medskip A \emph{constant} is a pair of a basic name and a type, |
236 |
e.g.\ \isa{{\isacharparenleft}c{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed as \isa{c\isactrlisub {\isasymtau}}. Constants are declared in the context as polymorphic |
|
20543 | 237 |
families \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}, meaning that all substitution instances |
238 |
\isa{c\isactrlisub {\isasymtau}} for \isa{{\isasymtau}\ {\isacharequal}\ {\isasymsigma}{\isasymvartheta}} are valid. |
|
20514 | 239 |
|
20537 | 240 |
The vector of \emph{type arguments} of constant \isa{c\isactrlisub {\isasymtau}} |
241 |
wrt.\ the declaration \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} is defined as the codomain of |
|
242 |
the matcher \isa{{\isasymvartheta}\ {\isacharequal}\ {\isacharbraceleft}{\isacharquery}{\isasymalpha}\isactrlisub {\isadigit{1}}\ {\isasymmapsto}\ {\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isacharquery}{\isasymalpha}\isactrlisub n\ {\isasymmapsto}\ {\isasymtau}\isactrlisub n{\isacharbraceright}} presented in canonical order \isa{{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharparenright}}. Within a given theory context, |
|
243 |
there is a one-to-one correspondence between any constant \isa{c\isactrlisub {\isasymtau}} and the application \isa{c{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharparenright}} of its type arguments. For example, with \isa{plus\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}}, the instance \isa{plus\isactrlbsub nat\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ nat\isactrlesub } corresponds to \isa{plus{\isacharparenleft}nat{\isacharparenright}}. |
|
20481 | 244 |
|
20514 | 245 |
Constant declarations \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} may contain sort constraints |
246 |
for type variables in \isa{{\isasymsigma}}. These are observed by |
|
247 |
type-inference as expected, but \emph{ignored} by the core logic. |
|
248 |
This means the primitive logic is able to reason with instances of |
|
20537 | 249 |
polymorphic constants that the user-level type-checker would reject |
250 |
due to violation of type class restrictions. |
|
20481 | 251 |
|
20543 | 252 |
\medskip An \emph{atomic} term is either a variable or constant. A |
253 |
\emph{term} is defined inductively over atomic terms, with |
|
254 |
abstraction and application as follows: \isa{t\ {\isacharequal}\ b\ {\isacharbar}\ x\isactrlisub {\isasymtau}\ {\isacharbar}\ {\isacharquery}x\isactrlisub {\isasymtau}\ {\isacharbar}\ c\isactrlisub {\isasymtau}\ {\isacharbar}\ {\isasymlambda}\isactrlisub {\isasymtau}{\isachardot}\ t\ {\isacharbar}\ t\isactrlisub {\isadigit{1}}\ t\isactrlisub {\isadigit{2}}}. |
|
255 |
Parsing and printing takes care of converting between an external |
|
256 |
representation with named bound variables. Subsequently, we shall |
|
257 |
use the latter notation instead of internal de-Bruijn |
|
258 |
representation. |
|
20499 | 259 |
|
20537 | 260 |
The inductive relation \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}} assigns a (unique) type to a |
261 |
term according to the structure of atomic terms, abstractions, and |
|
262 |
applicatins: |
|
20499 | 263 |
\[ |
20502 | 264 |
\infer{\isa{a\isactrlisub {\isasymtau}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}}}{} |
20499 | 265 |
\qquad |
20502 | 266 |
\infer{\isa{{\isacharparenleft}{\isasymlambda}x\isactrlsub {\isasymtau}{\isachardot}\ t{\isacharparenright}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymsigma}}}{\isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}} |
267 |
\qquad |
|
268 |
\infer{\isa{t\ u\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}}{\isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymsigma}} & \isa{u\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}}} |
|
20514 | 269 |
\] |
270 |
A \emph{well-typed term} is a term that can be typed according to these rules. |
|
271 |
||
272 |
Typing information can be omitted: type-inference is able to |
|
273 |
reconstruct the most general type of a raw term, while assigning |
|
274 |
most general types to all of its variables and constants. |
|
275 |
Type-inference depends on a context of type constraints for fixed |
|
276 |
variables, and declarations for polymorphic constants. |
|
277 |
||
20537 | 278 |
The identity of atomic terms consists both of the name and the type |
279 |
component. This means that different variables \isa{x\isactrlbsub {\isasymtau}\isactrlisub {\isadigit{1}}\isactrlesub } and \isa{x\isactrlbsub {\isasymtau}\isactrlisub {\isadigit{2}}\isactrlesub } may become the same after type |
|
280 |
instantiation. Some outer layers of the system make it hard to |
|
281 |
produce variables of the same name, but different types. In |
|
20543 | 282 |
contrast, mixed instances of polymorphic constants occur frequently. |
20514 | 283 |
|
284 |
\medskip The \emph{hidden polymorphism} of a term \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} |
|
285 |
is the set of type variables occurring in \isa{t}, but not in |
|
20537 | 286 |
\isa{{\isasymsigma}}. This means that the term implicitly depends on type |
20543 | 287 |
arguments that are not accounted in the result type, i.e.\ there are |
20537 | 288 |
different type instances \isa{t{\isasymvartheta}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} and \isa{t{\isasymvartheta}{\isacharprime}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} with the same type. This slightly |
20543 | 289 |
pathological situation notoriously demands additional care. |
20514 | 290 |
|
20537 | 291 |
\medskip A \emph{term abbreviation} is a syntactic definition \isa{c\isactrlisub {\isasymsigma}\ {\isasymequiv}\ t} of a closed term \isa{t} of type \isa{{\isasymsigma}}, |
292 |
without any hidden polymorphism. A term abbreviation looks like a |
|
20543 | 293 |
constant in the syntax, but is expanded before entering the logical |
294 |
core. Abbreviations are usually reverted when printing terms, using |
|
295 |
\isa{t\ {\isasymrightarrow}\ c\isactrlisub {\isasymsigma}} as rules for higher-order rewriting. |
|
20519 | 296 |
|
20537 | 297 |
\medskip Canonical operations on \isa{{\isasymlambda}}-terms include \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion: \isa{{\isasymalpha}}-conversion refers to capture-free |
20519 | 298 |
renaming of bound variables; \isa{{\isasymbeta}}-conversion contracts an |
20537 | 299 |
abstraction applied to an argument term, substituting the argument |
20519 | 300 |
in the body: \isa{{\isacharparenleft}{\isasymlambda}x{\isachardot}\ b{\isacharparenright}a} becomes \isa{b{\isacharbrackleft}a{\isacharslash}x{\isacharbrackright}}; \isa{{\isasymeta}}-conversion contracts vacuous application-abstraction: \isa{{\isasymlambda}x{\isachardot}\ f\ x} becomes \isa{f}, provided that the bound variable |
20537 | 301 |
does not occur in \isa{f}. |
20519 | 302 |
|
20537 | 303 |
Terms are normally treated modulo \isa{{\isasymalpha}}-conversion, which is |
304 |
implicit in the de-Bruijn representation. Names for bound variables |
|
305 |
in abstractions are maintained separately as (meaningless) comments, |
|
306 |
mostly for parsing and printing. Full \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion is |
|
20543 | 307 |
commonplace in various standard operations (\secref{sec:rules}) that |
20537 | 308 |
are based on higher-order unification and matching.% |
18537 | 309 |
\end{isamarkuptext}% |
310 |
\isamarkuptrue% |
|
311 |
% |
|
20514 | 312 |
\isadelimmlref |
313 |
% |
|
314 |
\endisadelimmlref |
|
315 |
% |
|
316 |
\isatagmlref |
|
317 |
% |
|
18537 | 318 |
\begin{isamarkuptext}% |
20514 | 319 |
\begin{mldecls} |
320 |
\indexmltype{term}\verb|type term| \\ |
|
20519 | 321 |
\indexml{op aconv}\verb|op aconv: term * term -> bool| \\ |
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
322 |
\indexml{map\_types}\verb|map_types: (typ -> typ) -> term -> term| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
323 |
\indexml{fold\_types}\verb|fold_types: (typ -> 'a -> 'a) -> term -> 'a -> 'a| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
324 |
\indexml{map\_aterms}\verb|map_aterms: (term -> term) -> term -> term| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
325 |
\indexml{fold\_aterms}\verb|fold_aterms: (term -> 'a -> 'a) -> term -> 'a -> 'a| \\ |
20547 | 326 |
\end{mldecls} |
327 |
\begin{mldecls} |
|
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
328 |
\indexml{fastype\_of}\verb|fastype_of: term -> typ| \\ |
20519 | 329 |
\indexml{lambda}\verb|lambda: term -> term -> term| \\ |
330 |
\indexml{betapply}\verb|betapply: term * term -> term| \\ |
|
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
331 |
\indexml{Sign.declare\_const}\verb|Sign.declare_const: Markup.property list -> bstring * typ * mixfix ->|\isasep\isanewline% |
24972
acafb18a47dc
replaced Sign.add_consts_i by Sign.declare_const;
wenzelm
parents:
24828
diff
changeset
|
332 |
\verb| theory -> term * theory| \\ |
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
333 |
\indexml{Sign.add\_abbrev}\verb|Sign.add_abbrev: string -> Markup.property list -> bstring * term ->|\isasep\isanewline% |
24972
acafb18a47dc
replaced Sign.add_consts_i by Sign.declare_const;
wenzelm
parents:
24828
diff
changeset
|
334 |
\verb| theory -> (term * term) * theory| \\ |
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
335 |
\indexml{Sign.const\_typargs}\verb|Sign.const_typargs: theory -> string * typ -> typ list| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
336 |
\indexml{Sign.const\_instance}\verb|Sign.const_instance: theory -> string * typ list -> typ| \\ |
20514 | 337 |
\end{mldecls} |
18537 | 338 |
|
20514 | 339 |
\begin{description} |
18537 | 340 |
|
20537 | 341 |
\item \verb|term| represents de-Bruijn terms, with comments in |
342 |
abstractions, and explicitly named free variables and constants; |
|
343 |
this is a datatype with constructors \verb|Bound|, \verb|Free|, \verb|Var|, \verb|Const|, \verb|Abs|, \verb|op $|. |
|
20519 | 344 |
|
345 |
\item \isa{t}~\verb|aconv|~\isa{u} checks \isa{{\isasymalpha}}-equivalence of two terms. This is the basic equality relation |
|
346 |
on type \verb|term|; raw datatype equality should only be used |
|
347 |
for operations related to parsing or printing! |
|
348 |
||
20547 | 349 |
\item \verb|map_types|~\isa{f\ t} applies the mapping \isa{f} to all types occurring in \isa{t}. |
20537 | 350 |
|
351 |
\item \verb|fold_types|~\isa{f\ t} iterates the operation \isa{f} over all occurrences of types in \isa{t}; the term |
|
352 |
structure is traversed from left to right. |
|
20519 | 353 |
|
20537 | 354 |
\item \verb|map_aterms|~\isa{f\ t} applies the mapping \isa{f} |
355 |
to all atomic terms (\verb|Bound|, \verb|Free|, \verb|Var|, \verb|Const|) occurring in \isa{t}. |
|
356 |
||
357 |
\item \verb|fold_aterms|~\isa{f\ t} iterates the operation \isa{f} over all occurrences of atomic terms (\verb|Bound|, \verb|Free|, |
|
358 |
\verb|Var|, \verb|Const|) in \isa{t}; the term structure is |
|
20519 | 359 |
traversed from left to right. |
360 |
||
20537 | 361 |
\item \verb|fastype_of|~\isa{t} determines the type of a |
362 |
well-typed term. This operation is relatively slow, despite the |
|
363 |
omission of any sanity checks. |
|
20519 | 364 |
|
20537 | 365 |
\item \verb|lambda|~\isa{a\ b} produces an abstraction \isa{{\isasymlambda}a{\isachardot}\ b}, where occurrences of the atomic term \isa{a} in the |
366 |
body \isa{b} are replaced by bound variables. |
|
20519 | 367 |
|
20537 | 368 |
\item \verb|betapply|~\isa{{\isacharparenleft}t{\isacharcomma}\ u{\isacharparenright}} produces an application \isa{t\ u}, with topmost \isa{{\isasymbeta}}-conversion if \isa{t} is an |
369 |
abstraction. |
|
20519 | 370 |
|
24972
acafb18a47dc
replaced Sign.add_consts_i by Sign.declare_const;
wenzelm
parents:
24828
diff
changeset
|
371 |
\item \verb|Sign.declare_const|~\isa{properties\ {\isacharparenleft}c{\isacharcomma}\ {\isasymsigma}{\isacharcomma}\ mx{\isacharparenright}} |
acafb18a47dc
replaced Sign.add_consts_i by Sign.declare_const;
wenzelm
parents:
24828
diff
changeset
|
372 |
declares a new constant \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} with optional mixfix |
acafb18a47dc
replaced Sign.add_consts_i by Sign.declare_const;
wenzelm
parents:
24828
diff
changeset
|
373 |
syntax. |
20519 | 374 |
|
24828 | 375 |
\item \verb|Sign.add_abbrev|~\isa{print{\isacharunderscore}mode\ properties\ {\isacharparenleft}c{\isacharcomma}\ t{\isacharparenright}} |
21827 | 376 |
introduces a new term abbreviation \isa{c\ {\isasymequiv}\ t}. |
20519 | 377 |
|
20520 | 378 |
\item \verb|Sign.const_typargs|~\isa{thy\ {\isacharparenleft}c{\isacharcomma}\ {\isasymtau}{\isacharparenright}} and \verb|Sign.const_instance|~\isa{thy\ {\isacharparenleft}c{\isacharcomma}\ {\isacharbrackleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharbrackright}{\isacharparenright}} |
20543 | 379 |
convert between two representations of polymorphic constants: full |
380 |
type instance vs.\ compact type arguments form. |
|
20514 | 381 |
|
382 |
\end{description}% |
|
18537 | 383 |
\end{isamarkuptext}% |
384 |
\isamarkuptrue% |
|
385 |
% |
|
20514 | 386 |
\endisatagmlref |
387 |
{\isafoldmlref}% |
|
388 |
% |
|
389 |
\isadelimmlref |
|
390 |
% |
|
391 |
\endisadelimmlref |
|
392 |
% |
|
20451 | 393 |
\isamarkupsection{Theorems \label{sec:thms}% |
18537 | 394 |
} |
395 |
\isamarkuptrue% |
|
396 |
% |
|
397 |
\begin{isamarkuptext}% |
|
20521 | 398 |
\glossary{Proposition}{FIXME A \seeglossary{term} of |
399 |
\seeglossary{type} \isa{prop}. Internally, there is nothing |
|
400 |
special about propositions apart from their type, but the concrete |
|
401 |
syntax enforces a clear distinction. Propositions are structured |
|
402 |
via implication \isa{A\ {\isasymLongrightarrow}\ B} or universal quantification \isa{{\isasymAnd}x{\isachardot}\ B\ x} --- anything else is considered atomic. The canonical |
|
403 |
form for propositions is that of a \seeglossary{Hereditary Harrop |
|
404 |
Formula}. FIXME} |
|
20481 | 405 |
|
20502 | 406 |
\glossary{Theorem}{A proven proposition within a certain theory and |
407 |
proof context, formally \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}; both contexts are |
|
408 |
rarely spelled out explicitly. Theorems are usually normalized |
|
409 |
according to the \seeglossary{HHF} format. FIXME} |
|
18537 | 410 |
|
20519 | 411 |
\glossary{Fact}{Sometimes used interchangeably for |
20502 | 412 |
\seeglossary{theorem}. Strictly speaking, a list of theorems, |
413 |
essentially an extra-logical conjunction. Facts emerge either as |
|
414 |
local assumptions, or as results of local goal statements --- both |
|
415 |
may be simultaneous, hence the list representation. FIXME} |
|
416 |
||
417 |
\glossary{Schematic variable}{FIXME} |
|
418 |
||
419 |
\glossary{Fixed variable}{A variable that is bound within a certain |
|
420 |
proof context; an arbitrary-but-fixed entity within a portion of |
|
421 |
proof text. FIXME} |
|
18537 | 422 |
|
20502 | 423 |
\glossary{Free variable}{Synonymous for \seeglossary{fixed |
424 |
variable}. FIXME} |
|
425 |
||
426 |
\glossary{Bound variable}{FIXME} |
|
18537 | 427 |
|
20502 | 428 |
\glossary{Variable}{See \seeglossary{schematic variable}, |
429 |
\seeglossary{fixed variable}, \seeglossary{bound variable}, or |
|
430 |
\seeglossary{type variable}. The distinguishing feature of |
|
431 |
different variables is their binding scope. FIXME} |
|
18537 | 432 |
|
20543 | 433 |
A \emph{proposition} is a well-typed term of type \isa{prop}, a |
20521 | 434 |
\emph{theorem} is a proven proposition (depending on a context of |
435 |
hypotheses and the background theory). Primitive inferences include |
|
20537 | 436 |
plain natural deduction rules for the primary connectives \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} of the framework. There is also a builtin |
437 |
notion of equality/equivalence \isa{{\isasymequiv}}.% |
|
20521 | 438 |
\end{isamarkuptext}% |
439 |
\isamarkuptrue% |
|
440 |
% |
|
26873 | 441 |
\isamarkupsubsection{Primitive connectives and rules \label{sec:prim-rules}% |
20521 | 442 |
} |
443 |
\isamarkuptrue% |
|
444 |
% |
|
445 |
\begin{isamarkuptext}% |
|
20543 | 446 |
The theory \isa{Pure} contains constant declarations for the |
447 |
primitive connectives \isa{{\isasymAnd}}, \isa{{\isasymLongrightarrow}}, and \isa{{\isasymequiv}} of |
|
448 |
the logical framework, see \figref{fig:pure-connectives}. The |
|
449 |
derivability judgment \isa{A\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ A\isactrlisub n\ {\isasymturnstile}\ B} is |
|
450 |
defined inductively by the primitive inferences given in |
|
451 |
\figref{fig:prim-rules}, with the global restriction that the |
|
452 |
hypotheses must \emph{not} contain any schematic variables. The |
|
453 |
builtin equality is conceptually axiomatized as shown in |
|
20521 | 454 |
\figref{fig:pure-equality}, although the implementation works |
20543 | 455 |
directly with derived inferences. |
18537 | 456 |
|
20521 | 457 |
\begin{figure}[htb] |
458 |
\begin{center} |
|
20502 | 459 |
\begin{tabular}{ll} |
460 |
\isa{all\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}{\isasymalpha}\ {\isasymRightarrow}\ prop{\isacharparenright}\ {\isasymRightarrow}\ prop} & universal quantification (binder \isa{{\isasymAnd}}) \\ |
|
461 |
\isa{{\isasymLongrightarrow}\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & implication (right associative infix) \\ |
|
20521 | 462 |
\isa{{\isasymequiv}\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & equality relation (infix) \\ |
20502 | 463 |
\end{tabular} |
20537 | 464 |
\caption{Primitive connectives of Pure}\label{fig:pure-connectives} |
20521 | 465 |
\end{center} |
466 |
\end{figure} |
|
18537 | 467 |
|
20502 | 468 |
\begin{figure}[htb] |
469 |
\begin{center} |
|
20499 | 470 |
\[ |
471 |
\infer[\isa{{\isacharparenleft}axiom{\isacharparenright}}]{\isa{{\isasymturnstile}\ A}}{\isa{A\ {\isasymin}\ {\isasymTheta}}} |
|
472 |
\qquad |
|
473 |
\infer[\isa{{\isacharparenleft}assume{\isacharparenright}}]{\isa{A\ {\isasymturnstile}\ A}}{} |
|
474 |
\] |
|
475 |
\[ |
|
20537 | 476 |
\infer[\isa{{\isacharparenleft}{\isasymAnd}{\isacharunderscore}intro{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymAnd}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ b{\isacharbrackleft}x{\isacharbrackright}} & \isa{x\ {\isasymnotin}\ {\isasymGamma}}} |
20499 | 477 |
\qquad |
20537 | 478 |
\infer[\isa{{\isacharparenleft}{\isasymAnd}{\isacharunderscore}elim{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ b{\isacharbrackleft}a{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymAnd}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}}} |
20499 | 479 |
\] |
480 |
\[ |
|
481 |
\infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}intro{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isacharminus}\ A\ {\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B}} |
|
482 |
\qquad |
|
483 |
\infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}elim{\isacharparenright}}]{\isa{{\isasymGamma}\isactrlsub {\isadigit{1}}\ {\isasymunion}\ {\isasymGamma}\isactrlsub {\isadigit{2}}\ {\isasymturnstile}\ B}}{\isa{{\isasymGamma}\isactrlsub {\isadigit{1}}\ {\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B} & \isa{{\isasymGamma}\isactrlsub {\isadigit{2}}\ {\isasymturnstile}\ A}} |
|
484 |
\] |
|
20521 | 485 |
\caption{Primitive inferences of Pure}\label{fig:prim-rules} |
486 |
\end{center} |
|
487 |
\end{figure} |
|
488 |
||
489 |
\begin{figure}[htb] |
|
490 |
\begin{center} |
|
491 |
\begin{tabular}{ll} |
|
20537 | 492 |
\isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}{\isacharparenright}\ a\ {\isasymequiv}\ b{\isacharbrackleft}a{\isacharbrackright}} & \isa{{\isasymbeta}}-conversion \\ |
20521 | 493 |
\isa{{\isasymturnstile}\ x\ {\isasymequiv}\ x} & reflexivity \\ |
494 |
\isa{{\isasymturnstile}\ x\ {\isasymequiv}\ y\ {\isasymLongrightarrow}\ P\ x\ {\isasymLongrightarrow}\ P\ y} & substitution \\ |
|
495 |
\isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ f\ x\ {\isasymequiv}\ g\ x{\isacharparenright}\ {\isasymLongrightarrow}\ f\ {\isasymequiv}\ g} & extensionality \\ |
|
20537 | 496 |
\isa{{\isasymturnstile}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}B\ {\isasymLongrightarrow}\ A{\isacharparenright}\ {\isasymLongrightarrow}\ A\ {\isasymequiv}\ B} & logical equivalence \\ |
20521 | 497 |
\end{tabular} |
20542 | 498 |
\caption{Conceptual axiomatization of Pure equality}\label{fig:pure-equality} |
20502 | 499 |
\end{center} |
500 |
\end{figure} |
|
20499 | 501 |
|
20537 | 502 |
The introduction and elimination rules for \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} are analogous to formation of dependently typed \isa{{\isasymlambda}}-terms representing the underlying proof objects. Proof terms |
20543 | 503 |
are irrelevant in the Pure logic, though; they cannot occur within |
504 |
propositions. The system provides a runtime option to record |
|
20537 | 505 |
explicit proof terms for primitive inferences. Thus all three |
506 |
levels of \isa{{\isasymlambda}}-calculus become explicit: \isa{{\isasymRightarrow}} for |
|
507 |
terms, and \isa{{\isasymAnd}{\isacharslash}{\isasymLongrightarrow}} for proofs (cf.\ |
|
508 |
\cite{Berghofer-Nipkow:2000:TPHOL}). |
|
20499 | 509 |
|
20537 | 510 |
Observe that locally fixed parameters (as in \isa{{\isasymAnd}{\isacharunderscore}intro}) need |
511 |
not be recorded in the hypotheses, because the simple syntactic |
|
20543 | 512 |
types of Pure are always inhabitable. ``Assumptions'' \isa{x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}} for type-membership are only present as long as some \isa{x\isactrlisub {\isasymtau}} occurs in the statement body.\footnote{This is the key |
513 |
difference to ``\isa{{\isasymlambda}HOL}'' in the PTS framework |
|
514 |
\cite{Barendregt-Geuvers:2001}, where hypotheses \isa{x\ {\isacharcolon}\ A} are |
|
515 |
treated uniformly for propositions and types.} |
|
20502 | 516 |
|
517 |
\medskip The axiomatization of a theory is implicitly closed by |
|
20537 | 518 |
forming all instances of type and term variables: \isa{{\isasymturnstile}\ A{\isasymvartheta}} holds for any substitution instance of an axiom |
20543 | 519 |
\isa{{\isasymturnstile}\ A}. By pushing substitutions through derivations |
520 |
inductively, we also get admissible \isa{generalize} and \isa{instance} rules as shown in \figref{fig:subst-rules}. |
|
20502 | 521 |
|
522 |
\begin{figure}[htb] |
|
523 |
\begin{center} |
|
20499 | 524 |
\[ |
20502 | 525 |
\infer{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}{\isasymalpha}{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} & \isa{{\isasymalpha}\ {\isasymnotin}\ {\isasymGamma}}} |
526 |
\quad |
|
527 |
\infer[\quad\isa{{\isacharparenleft}generalize{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}x{\isacharbrackright}} & \isa{x\ {\isasymnotin}\ {\isasymGamma}}} |
|
20499 | 528 |
\] |
529 |
\[ |
|
20502 | 530 |
\infer{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isasymtau}{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}{\isasymalpha}{\isacharbrackright}}} |
531 |
\quad |
|
532 |
\infer[\quad\isa{{\isacharparenleft}instantiate{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}t{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}}} |
|
20499 | 533 |
\] |
20502 | 534 |
\caption{Admissible substitution rules}\label{fig:subst-rules} |
535 |
\end{center} |
|
536 |
\end{figure} |
|
20499 | 537 |
|
20537 | 538 |
Note that \isa{instantiate} does not require an explicit |
539 |
side-condition, because \isa{{\isasymGamma}} may never contain schematic |
|
540 |
variables. |
|
541 |
||
542 |
In principle, variables could be substituted in hypotheses as well, |
|
20543 | 543 |
but this would disrupt the monotonicity of reasoning: deriving |
544 |
\isa{{\isasymGamma}{\isasymvartheta}\ {\isasymturnstile}\ B{\isasymvartheta}} from \isa{{\isasymGamma}\ {\isasymturnstile}\ B} is |
|
545 |
correct, but \isa{{\isasymGamma}{\isasymvartheta}\ {\isasymsupseteq}\ {\isasymGamma}} does not necessarily hold: |
|
546 |
the result belongs to a different proof context. |
|
20542 | 547 |
|
20543 | 548 |
\medskip An \emph{oracle} is a function that produces axioms on the |
549 |
fly. Logically, this is an instance of the \isa{axiom} rule |
|
550 |
(\figref{fig:prim-rules}), but there is an operational difference. |
|
551 |
The system always records oracle invocations within derivations of |
|
552 |
theorems. Tracing plain axioms (and named theorems) is optional. |
|
20542 | 553 |
|
554 |
Axiomatizations should be limited to the bare minimum, typically as |
|
555 |
part of the initial logical basis of an object-logic formalization. |
|
20543 | 556 |
Later on, theories are usually developed in a strictly definitional |
557 |
fashion, by stating only certain equalities over new constants. |
|
20542 | 558 |
|
20543 | 559 |
A \emph{simple definition} consists of a constant declaration \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} together with an axiom \isa{{\isasymturnstile}\ c\ {\isasymequiv}\ t}, where \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} is a closed term without any hidden polymorphism. The RHS |
560 |
may depend on further defined constants, but not \isa{c} itself. |
|
561 |
Definitions of functions may be presented as \isa{c\ \isactrlvec x\ {\isasymequiv}\ t} instead of the puristic \isa{c\ {\isasymequiv}\ {\isasymlambda}\isactrlvec x{\isachardot}\ t}. |
|
20542 | 562 |
|
20543 | 563 |
An \emph{overloaded definition} consists of a collection of axioms |
564 |
for the same constant, with zero or one equations \isa{c{\isacharparenleft}{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}{\isacharparenright}\ {\isasymequiv}\ t} for each type constructor \isa{{\isasymkappa}} (for |
|
565 |
distinct variables \isa{\isactrlvec {\isasymalpha}}). The RHS may mention |
|
566 |
previously defined constants as above, or arbitrary constants \isa{d{\isacharparenleft}{\isasymalpha}\isactrlisub i{\isacharparenright}} for some \isa{{\isasymalpha}\isactrlisub i} projected from \isa{\isactrlvec {\isasymalpha}}. Thus overloaded definitions essentially work by |
|
567 |
primitive recursion over the syntactic structure of a single type |
|
568 |
argument.% |
|
20521 | 569 |
\end{isamarkuptext}% |
570 |
\isamarkuptrue% |
|
571 |
% |
|
572 |
\isadelimmlref |
|
573 |
% |
|
574 |
\endisadelimmlref |
|
575 |
% |
|
576 |
\isatagmlref |
|
577 |
% |
|
578 |
\begin{isamarkuptext}% |
|
579 |
\begin{mldecls} |
|
580 |
\indexmltype{ctyp}\verb|type ctyp| \\ |
|
581 |
\indexmltype{cterm}\verb|type cterm| \\ |
|
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
582 |
\indexml{Thm.ctyp\_of}\verb|Thm.ctyp_of: theory -> typ -> ctyp| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
583 |
\indexml{Thm.cterm\_of}\verb|Thm.cterm_of: theory -> term -> cterm| \\ |
20547 | 584 |
\end{mldecls} |
585 |
\begin{mldecls} |
|
20521 | 586 |
\indexmltype{thm}\verb|type thm| \\ |
20542 | 587 |
\indexml{proofs}\verb|proofs: int ref| \\ |
588 |
\indexml{Thm.assume}\verb|Thm.assume: cterm -> thm| \\ |
|
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
589 |
\indexml{Thm.forall\_intr}\verb|Thm.forall_intr: cterm -> thm -> thm| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
590 |
\indexml{Thm.forall\_elim}\verb|Thm.forall_elim: cterm -> thm -> thm| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
591 |
\indexml{Thm.implies\_intr}\verb|Thm.implies_intr: cterm -> thm -> thm| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
592 |
\indexml{Thm.implies\_elim}\verb|Thm.implies_elim: thm -> thm -> thm| \\ |
20542 | 593 |
\indexml{Thm.generalize}\verb|Thm.generalize: string list * string list -> int -> thm -> thm| \\ |
594 |
\indexml{Thm.instantiate}\verb|Thm.instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm| \\ |
|
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
595 |
\indexml{Thm.get\_axiom\_i}\verb|Thm.get_axiom_i: theory -> string -> thm| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
596 |
\indexml{Thm.invoke\_oracle\_i}\verb|Thm.invoke_oracle_i: theory -> string -> theory * Object.T -> thm| \\ |
20547 | 597 |
\end{mldecls} |
598 |
\begin{mldecls} |
|
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
599 |
\indexml{Theory.add\_axioms\_i}\verb|Theory.add_axioms_i: (string * term) list -> theory -> theory| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
600 |
\indexml{Theory.add\_deps}\verb|Theory.add_deps: string -> string * typ -> (string * typ) list -> theory -> theory| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
601 |
\indexml{Theory.add\_oracle}\verb|Theory.add_oracle: string * (theory * Object.T -> term) -> theory -> theory| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
602 |
\indexml{Theory.add\_defs\_i}\verb|Theory.add_defs_i: bool -> bool -> (bstring * term) list -> theory -> theory| \\ |
20521 | 603 |
\end{mldecls} |
604 |
||
605 |
\begin{description} |
|
606 |
||
20542 | 607 |
\item \verb|ctyp| and \verb|cterm| represent certified types |
608 |
and terms, respectively. These are abstract datatypes that |
|
609 |
guarantee that its values have passed the full well-formedness (and |
|
610 |
well-typedness) checks, relative to the declarations of type |
|
611 |
constructors, constants etc. in the theory. |
|
612 |
||
20547 | 613 |
\item \verb|ctyp_of|~\isa{thy\ {\isasymtau}} and \verb|cterm_of|~\isa{thy\ t} explicitly checks types and terms, respectively. This also |
614 |
involves some basic normalizations, such expansion of type and term |
|
615 |
abbreviations from the theory context. |
|
616 |
||
617 |
Re-certification is relatively slow and should be avoided in tight |
|
618 |
reasoning loops. There are separate operations to decompose |
|
619 |
certified entities (including actual theorems). |
|
20542 | 620 |
|
621 |
\item \verb|thm| represents proven propositions. This is an |
|
622 |
abstract datatype that guarantees that its values have been |
|
623 |
constructed by basic principles of the \verb|Thm| module. |
|
20543 | 624 |
Every \verb|thm| value contains a sliding back-reference to the |
625 |
enclosing theory, cf.\ \secref{sec:context-theory}. |
|
20542 | 626 |
|
20543 | 627 |
\item \verb|proofs| determines the detail of proof recording within |
628 |
\verb|thm| values: \verb|0| records only oracles, \verb|1| records |
|
629 |
oracles, axioms and named theorems, \verb|2| records full proof |
|
630 |
terms. |
|
20542 | 631 |
|
632 |
\item \verb|Thm.assume|, \verb|Thm.forall_intr|, \verb|Thm.forall_elim|, \verb|Thm.implies_intr|, and \verb|Thm.implies_elim| |
|
633 |
correspond to the primitive inferences of \figref{fig:prim-rules}. |
|
634 |
||
635 |
\item \verb|Thm.generalize|~\isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharcomma}\ \isactrlvec x{\isacharparenright}} |
|
636 |
corresponds to the \isa{generalize} rules of |
|
20543 | 637 |
\figref{fig:subst-rules}. Here collections of type and term |
638 |
variables are generalized simultaneously, specified by the given |
|
639 |
basic names. |
|
20499 | 640 |
|
20542 | 641 |
\item \verb|Thm.instantiate|~\isa{{\isacharparenleft}\isactrlvec {\isasymalpha}\isactrlisub s{\isacharcomma}\ \isactrlvec x\isactrlisub {\isasymtau}{\isacharparenright}} corresponds to the \isa{instantiate} rules |
642 |
of \figref{fig:subst-rules}. Type variables are substituted before |
|
643 |
term variables. Note that the types in \isa{\isactrlvec x\isactrlisub {\isasymtau}} |
|
644 |
refer to the instantiated versions. |
|
645 |
||
646 |
\item \verb|Thm.get_axiom_i|~\isa{thy\ name} retrieves a named |
|
647 |
axiom, cf.\ \isa{axiom} in \figref{fig:prim-rules}. |
|
20521 | 648 |
|
20543 | 649 |
\item \verb|Thm.invoke_oracle_i|~\isa{thy\ name\ arg} invokes a |
650 |
named oracle function, cf.\ \isa{axiom} in |
|
651 |
\figref{fig:prim-rules}. |
|
20542 | 652 |
|
20543 | 653 |
\item \verb|Theory.add_axioms_i|~\isa{{\isacharbrackleft}{\isacharparenleft}name{\isacharcomma}\ A{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} declares |
654 |
arbitrary propositions as axioms. |
|
20542 | 655 |
|
20543 | 656 |
\item \verb|Theory.add_oracle|~\isa{{\isacharparenleft}name{\isacharcomma}\ f{\isacharparenright}} declares an oracle |
657 |
function for generating arbitrary axioms on the fly. |
|
20542 | 658 |
|
20543 | 659 |
\item \verb|Theory.add_deps|~\isa{name\ c\isactrlisub {\isasymtau}\ \isactrlvec d\isactrlisub {\isasymsigma}} declares dependencies of a named specification |
660 |
for constant \isa{c\isactrlisub {\isasymtau}}, relative to existing |
|
661 |
specifications for constants \isa{\isactrlvec d\isactrlisub {\isasymsigma}}. |
|
20542 | 662 |
|
20543 | 663 |
\item \verb|Theory.add_defs_i|~\isa{unchecked\ overloaded\ {\isacharbrackleft}{\isacharparenleft}name{\isacharcomma}\ c\ \isactrlvec x\ {\isasymequiv}\ t{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} states a definitional axiom for an existing |
664 |
constant \isa{c}. Dependencies are recorded (cf.\ \verb|Theory.add_deps|), unless the \isa{unchecked} option is set. |
|
20521 | 665 |
|
666 |
\end{description}% |
|
667 |
\end{isamarkuptext}% |
|
668 |
\isamarkuptrue% |
|
669 |
% |
|
670 |
\endisatagmlref |
|
671 |
{\isafoldmlref}% |
|
672 |
% |
|
673 |
\isadelimmlref |
|
674 |
% |
|
675 |
\endisadelimmlref |
|
676 |
% |
|
20543 | 677 |
\isamarkupsubsection{Auxiliary definitions% |
20521 | 678 |
} |
679 |
\isamarkuptrue% |
|
680 |
% |
|
681 |
\begin{isamarkuptext}% |
|
20543 | 682 |
Theory \isa{Pure} provides a few auxiliary definitions, see |
683 |
\figref{fig:pure-aux}. These special constants are normally not |
|
684 |
exposed to the user, but appear in internal encodings. |
|
20502 | 685 |
|
686 |
\begin{figure}[htb] |
|
687 |
\begin{center} |
|
20499 | 688 |
\begin{tabular}{ll} |
20521 | 689 |
\isa{conjunction\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & (infix \isa{{\isacharampersand}}) \\ |
690 |
\isa{{\isasymturnstile}\ A\ {\isacharampersand}\ B\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}C{\isachardot}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ C{\isacharparenright}\ {\isasymLongrightarrow}\ C{\isacharparenright}} \\[1ex] |
|
20543 | 691 |
\isa{prop\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop} & (prefix \isa{{\isacharhash}}, suppressed) \\ |
20521 | 692 |
\isa{{\isacharhash}A\ {\isasymequiv}\ A} \\[1ex] |
693 |
\isa{term\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & (prefix \isa{TERM}) \\ |
|
694 |
\isa{term\ x\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}A{\isachardot}\ A\ {\isasymLongrightarrow}\ A{\isacharparenright}} \\[1ex] |
|
695 |
\isa{TYPE\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ itself} & (prefix \isa{TYPE}) \\ |
|
696 |
\isa{{\isacharparenleft}unspecified{\isacharparenright}} \\ |
|
20499 | 697 |
\end{tabular} |
20521 | 698 |
\caption{Definitions of auxiliary connectives}\label{fig:pure-aux} |
20502 | 699 |
\end{center} |
700 |
\end{figure} |
|
701 |
||
20537 | 702 |
Derived conjunction rules include introduction \isa{A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ A\ {\isacharampersand}\ B}, and destructions \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ A} and \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ B}. |
703 |
Conjunction allows to treat simultaneous assumptions and conclusions |
|
704 |
uniformly. For example, multiple claims are intermediately |
|
20543 | 705 |
represented as explicit conjunction, but this is refined into |
706 |
separate sub-goals before the user continues the proof; the final |
|
707 |
result is projected into a list of theorems (cf.\ |
|
20537 | 708 |
\secref{sec:tactical-goals}). |
20502 | 709 |
|
20537 | 710 |
The \isa{prop} marker (\isa{{\isacharhash}}) makes arbitrarily complex |
711 |
propositions appear as atomic, without changing the meaning: \isa{{\isasymGamma}\ {\isasymturnstile}\ A} and \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isacharhash}A} are interchangeable. See |
|
712 |
\secref{sec:tactical-goals} for specific operations. |
|
20502 | 713 |
|
20543 | 714 |
The \isa{term} marker turns any well-typed term into a derivable |
715 |
proposition: \isa{{\isasymturnstile}\ TERM\ t} holds unconditionally. Although |
|
716 |
this is logically vacuous, it allows to treat terms and proofs |
|
717 |
uniformly, similar to a type-theoretic framework. |
|
20502 | 718 |
|
20537 | 719 |
The \isa{TYPE} constructor is the canonical representative of |
720 |
the unspecified type \isa{{\isasymalpha}\ itself}; it essentially injects the |
|
721 |
language of types into that of terms. There is specific notation |
|
722 |
\isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} for \isa{TYPE\isactrlbsub {\isasymtau}\ itself\isactrlesub }. |
|
723 |
Although being devoid of any particular meaning, the \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} accounts for the type \isa{{\isasymtau}} within the term |
|
724 |
language. In particular, \isa{TYPE{\isacharparenleft}{\isasymalpha}{\isacharparenright}} may be used as formal |
|
725 |
argument in primitive definitions, in order to circumvent hidden |
|
726 |
polymorphism (cf.\ \secref{sec:terms}). For example, \isa{c\ TYPE{\isacharparenleft}{\isasymalpha}{\isacharparenright}\ {\isasymequiv}\ A{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} defines \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ itself\ {\isasymRightarrow}\ prop} in terms of |
|
727 |
a proposition \isa{A} that depends on an additional type |
|
728 |
argument, which is essentially a predicate on types.% |
|
18537 | 729 |
\end{isamarkuptext}% |
730 |
\isamarkuptrue% |
|
731 |
% |
|
20521 | 732 |
\isadelimmlref |
733 |
% |
|
734 |
\endisadelimmlref |
|
735 |
% |
|
736 |
\isatagmlref |
|
737 |
% |
|
738 |
\begin{isamarkuptext}% |
|
739 |
\begin{mldecls} |
|
740 |
\indexml{Conjunction.intr}\verb|Conjunction.intr: thm -> thm -> thm| \\ |
|
741 |
\indexml{Conjunction.elim}\verb|Conjunction.elim: thm -> thm * thm| \\ |
|
26854
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
742 |
\indexml{Drule.mk\_term}\verb|Drule.mk_term: cterm -> thm| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
743 |
\indexml{Drule.dest\_term}\verb|Drule.dest_term: thm -> cterm| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
744 |
\indexml{Logic.mk\_type}\verb|Logic.mk_type: typ -> term| \\ |
9b4aec46ad78
improved treatment of "_" thanks to underscore.sty;
wenzelm
parents:
24972
diff
changeset
|
745 |
\indexml{Logic.dest\_type}\verb|Logic.dest_type: term -> typ| \\ |
20521 | 746 |
\end{mldecls} |
747 |
||
748 |
\begin{description} |
|
749 |
||
20542 | 750 |
\item \verb|Conjunction.intr| derives \isa{A\ {\isacharampersand}\ B} from \isa{A} and \isa{B}. |
751 |
||
20543 | 752 |
\item \verb|Conjunction.elim| derives \isa{A} and \isa{B} |
20542 | 753 |
from \isa{A\ {\isacharampersand}\ B}. |
754 |
||
20543 | 755 |
\item \verb|Drule.mk_term| derives \isa{TERM\ t}. |
20542 | 756 |
|
20543 | 757 |
\item \verb|Drule.dest_term| recovers term \isa{t} from \isa{TERM\ t}. |
20542 | 758 |
|
759 |
\item \verb|Logic.mk_type|~\isa{{\isasymtau}} produces the term \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}}. |
|
760 |
||
761 |
\item \verb|Logic.dest_type|~\isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} recovers the type |
|
762 |
\isa{{\isasymtau}}. |
|
20521 | 763 |
|
764 |
\end{description}% |
|
765 |
\end{isamarkuptext}% |
|
766 |
\isamarkuptrue% |
|
767 |
% |
|
768 |
\endisatagmlref |
|
769 |
{\isafoldmlref}% |
|
770 |
% |
|
771 |
\isadelimmlref |
|
772 |
% |
|
773 |
\endisadelimmlref |
|
774 |
% |
|
20491 | 775 |
\isamarkupsection{Rules \label{sec:rules}% |
18537 | 776 |
} |
777 |
\isamarkuptrue% |
|
778 |
% |
|
20929 | 779 |
\isadelimFIXME |
780 |
% |
|
781 |
\endisadelimFIXME |
|
782 |
% |
|
783 |
\isatagFIXME |
|
784 |
% |
|
18537 | 785 |
\begin{isamarkuptext}% |
786 |
FIXME |
|
787 |
||
20491 | 788 |
A \emph{rule} is any Pure theorem in HHF normal form; there is a |
789 |
separate calculus for rule composition, which is modeled after |
|
790 |
Gentzen's Natural Deduction \cite{Gentzen:1935}, but allows |
|
791 |
rules to be nested arbitrarily, similar to \cite{extensions91}. |
|
792 |
||
793 |
Normally, all theorems accessible to the user are proper rules. |
|
794 |
Low-level inferences are occasional required internally, but the |
|
795 |
result should be always presented in canonical form. The higher |
|
796 |
interfaces of Isabelle/Isar will always produce proper rules. It is |
|
797 |
important to maintain this invariant in add-on applications! |
|
798 |
||
799 |
There are two main principles of rule composition: \isa{resolution} (i.e.\ backchaining of rules) and \isa{by{\isacharminus}assumption} (i.e.\ closing a branch); both principles are |
|
20519 | 800 |
combined in the variants of \isa{elim{\isacharminus}resolution} and \isa{dest{\isacharminus}resolution}. Raw \isa{composition} is occasionally |
20491 | 801 |
useful as well, also it is strictly speaking outside of the proper |
802 |
rule calculus. |
|
803 |
||
804 |
Rules are treated modulo general higher-order unification, which is |
|
805 |
unification modulo the equational theory of \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion |
|
806 |
on \isa{{\isasymlambda}}-terms. Moreover, propositions are understood modulo |
|
807 |
the (derived) equivalence \isa{{\isacharparenleft}A\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ B\ x{\isacharparenright}{\isacharparenright}\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ A\ {\isasymLongrightarrow}\ B\ x{\isacharparenright}}. |
|
808 |
||
809 |
This means that any operations within the rule calculus may be |
|
810 |
subject to spontaneous \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-HHF conversions. It is common |
|
811 |
practice not to contract or expand unnecessarily. Some mechanisms |
|
812 |
prefer an one form, others the opposite, so there is a potential |
|
813 |
danger to produce some oscillation! |
|
814 |
||
815 |
Only few operations really work \emph{modulo} HHF conversion, but |
|
816 |
expect a normal form: quantifiers \isa{{\isasymAnd}} before implications |
|
817 |
\isa{{\isasymLongrightarrow}} at each level of nesting. |
|
818 |
||
18537 | 819 |
\glossary{Hereditary Harrop Formula}{The set of propositions in HHF |
820 |
format is defined inductively as \isa{H\ {\isacharequal}\ {\isacharparenleft}{\isasymAnd}x\isactrlsup {\isacharasterisk}{\isachardot}\ H\isactrlsup {\isacharasterisk}\ {\isasymLongrightarrow}\ A{\isacharparenright}}, for variables \isa{x} and atomic propositions \isa{A}. |
|
821 |
Any proposition may be put into HHF form by normalizing with the rule |
|
822 |
\isa{{\isacharparenleft}A\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ B\ x{\isacharparenright}{\isacharparenright}\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ A\ {\isasymLongrightarrow}\ B\ x{\isacharparenright}}. In Isabelle, the outermost |
|
823 |
quantifier prefix is represented via \seeglossary{schematic |
|
824 |
variables}, such that the top-level structure is merely that of a |
|
825 |
\seeglossary{Horn Clause}}. |
|
826 |
||
20499 | 827 |
\glossary{HHF}{See \seeglossary{Hereditary Harrop Formula}.} |
828 |
||
829 |
||
830 |
\[ |
|
831 |
\infer[\isa{{\isacharparenleft}assumption{\isacharparenright}}]{\isa{C{\isasymvartheta}}} |
|
832 |
{\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ A\ \isactrlvec x{\isacharparenright}\ {\isasymLongrightarrow}\ C} & \isa{A{\isasymvartheta}\ {\isacharequal}\ H\isactrlsub i{\isasymvartheta}}~~\text{(for some~\isa{i})}} |
|
833 |
\] |
|
834 |
||
835 |
||
836 |
\[ |
|
837 |
\infer[\isa{{\isacharparenleft}compose{\isacharparenright}}]{\isa{\isactrlvec A{\isasymvartheta}\ {\isasymLongrightarrow}\ C{\isasymvartheta}}} |
|
838 |
{\isa{\isactrlvec A\ {\isasymLongrightarrow}\ B} & \isa{B{\isacharprime}\ {\isasymLongrightarrow}\ C} & \isa{B{\isasymvartheta}\ {\isacharequal}\ B{\isacharprime}{\isasymvartheta}}} |
|
839 |
\] |
|
840 |
||
841 |
||
842 |
\[ |
|
843 |
\infer[\isa{{\isacharparenleft}{\isasymAnd}{\isacharunderscore}lift{\isacharparenright}}]{\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec A\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ B\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}}}{\isa{\isactrlvec A\ {\isacharquery}\isactrlvec a\ {\isasymLongrightarrow}\ B\ {\isacharquery}\isactrlvec a}} |
|
844 |
\] |
|
845 |
\[ |
|
846 |
\infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}lift{\isacharparenright}}]{\isa{{\isacharparenleft}\isactrlvec H\ {\isasymLongrightarrow}\ \isactrlvec A{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}\isactrlvec H\ {\isasymLongrightarrow}\ B{\isacharparenright}}}{\isa{\isactrlvec A\ {\isasymLongrightarrow}\ B}} |
|
847 |
\] |
|
848 |
||
849 |
The \isa{resolve} scheme is now acquired from \isa{{\isasymAnd}{\isacharunderscore}lift}, |
|
850 |
\isa{{\isasymLongrightarrow}{\isacharunderscore}lift}, and \isa{compose}. |
|
851 |
||
852 |
\[ |
|
853 |
\infer[\isa{{\isacharparenleft}resolution{\isacharparenright}}] |
|
854 |
{\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ \isactrlvec A\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}{\isasymvartheta}\ {\isasymLongrightarrow}\ C{\isasymvartheta}}} |
|
855 |
{\begin{tabular}{l} |
|
856 |
\isa{\isactrlvec A\ {\isacharquery}\isactrlvec a\ {\isasymLongrightarrow}\ B\ {\isacharquery}\isactrlvec a} \\ |
|
857 |
\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ B{\isacharprime}\ \isactrlvec x{\isacharparenright}\ {\isasymLongrightarrow}\ C} \\ |
|
858 |
\isa{{\isacharparenleft}{\isasymlambda}\isactrlvec x{\isachardot}\ B\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}{\isasymvartheta}\ {\isacharequal}\ B{\isacharprime}{\isasymvartheta}} \\ |
|
859 |
\end{tabular}} |
|
860 |
\] |
|
861 |
||
862 |
||
863 |
FIXME \isa{elim{\isacharunderscore}resolution}, \isa{dest{\isacharunderscore}resolution}% |
|
18537 | 864 |
\end{isamarkuptext}% |
865 |
\isamarkuptrue% |
|
866 |
% |
|
20929 | 867 |
\endisatagFIXME |
868 |
{\isafoldFIXME}% |
|
869 |
% |
|
870 |
\isadelimFIXME |
|
871 |
% |
|
872 |
\endisadelimFIXME |
|
873 |
% |
|
18537 | 874 |
\isadelimtheory |
875 |
% |
|
876 |
\endisadelimtheory |
|
877 |
% |
|
878 |
\isatagtheory |
|
879 |
\isacommand{end}\isamarkupfalse% |
|
880 |
% |
|
881 |
\endisatagtheory |
|
882 |
{\isafoldtheory}% |
|
883 |
% |
|
884 |
\isadelimtheory |
|
885 |
% |
|
886 |
\endisadelimtheory |
|
887 |
\isanewline |
|
888 |
\end{isabellebody}% |
|
889 |
%%% Local Variables: |
|
890 |
%%% mode: latex |
|
891 |
%%% TeX-master: "root" |
|
892 |
%%% End: |