author | wenzelm |
Thu, 04 Jun 2009 18:00:47 +0200 | |
changeset 31432 | 9858f32f9569 |
parent 27704 | 5b1585b48952 |
child 32960 | 69916a850301 |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/Zorn.thy |
516 | 2 |
ID: $Id$ |
1478 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
516 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
6 |
*) |
|
7 |
||
13356 | 8 |
header{*Zorn's Lemma*} |
9 |
||
26056
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
24893
diff
changeset
|
10 |
theory Zorn imports OrderArith AC Inductive_ZF begin |
516 | 11 |
|
13356 | 12 |
text{*Based upon the unpublished article ``Towards the Mechanization of the |
13 |
Proofs of Some Classical Theorems of Set Theory,'' by Abrial and Laffitte.*} |
|
14 |
||
24893 | 15 |
definition |
16 |
Subset_rel :: "i=>i" where |
|
13558 | 17 |
"Subset_rel(A) == {z \<in> A*A . \<exists>x y. z=<x,y> & x<=y & x\<noteq>y}" |
13134 | 18 |
|
24893 | 19 |
definition |
20 |
chain :: "i=>i" where |
|
13558 | 21 |
"chain(A) == {F \<in> Pow(A). \<forall>X\<in>F. \<forall>Y\<in>F. X<=Y | Y<=X}" |
516 | 22 |
|
24893 | 23 |
definition |
24 |
super :: "[i,i]=>i" where |
|
14653 | 25 |
"super(A,c) == {d \<in> chain(A). c<=d & c\<noteq>d}" |
26 |
||
24893 | 27 |
definition |
28 |
maxchain :: "i=>i" where |
|
13558 | 29 |
"maxchain(A) == {c \<in> chain(A). super(A,c)=0}" |
30 |
||
24893 | 31 |
definition |
32 |
increasing :: "i=>i" where |
|
13558 | 33 |
"increasing(A) == {f \<in> Pow(A)->Pow(A). \<forall>x. x<=A --> x<=f`x}" |
516 | 34 |
|
13356 | 35 |
|
13558 | 36 |
text{*Lemma for the inductive definition below*} |
37 |
lemma Union_in_Pow: "Y \<in> Pow(Pow(A)) ==> Union(Y) \<in> Pow(A)" |
|
13356 | 38 |
by blast |
39 |
||
40 |
||
13558 | 41 |
text{*We could make the inductive definition conditional on |
13356 | 42 |
@{term "next \<in> increasing(S)"} |
516 | 43 |
but instead we make this a side-condition of an introduction rule. Thus |
44 |
the induction rule lets us assume that condition! Many inductive proofs |
|
13356 | 45 |
are therefore unconditional.*} |
516 | 46 |
consts |
13134 | 47 |
"TFin" :: "[i,i]=>i" |
516 | 48 |
|
49 |
inductive |
|
50 |
domains "TFin(S,next)" <= "Pow(S)" |
|
13134 | 51 |
intros |
13558 | 52 |
nextI: "[| x \<in> TFin(S,next); next \<in> increasing(S) |] |
53 |
==> next`x \<in> TFin(S,next)" |
|
516 | 54 |
|
13558 | 55 |
Pow_UnionI: "Y \<in> Pow(TFin(S,next)) ==> Union(Y) \<in> TFin(S,next)" |
516 | 56 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1478
diff
changeset
|
57 |
monos Pow_mono |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1478
diff
changeset
|
58 |
con_defs increasing_def |
13134 | 59 |
type_intros CollectD1 [THEN apply_funtype] Union_in_Pow |
60 |
||
61 |
||
13356 | 62 |
subsection{*Mathematical Preamble *} |
13134 | 63 |
|
13558 | 64 |
lemma Union_lemma0: "(\<forall>x\<in>C. x<=A | B<=x) ==> Union(C)<=A | B<=Union(C)" |
13269 | 65 |
by blast |
13134 | 66 |
|
13356 | 67 |
lemma Inter_lemma0: |
13558 | 68 |
"[| c \<in> C; \<forall>x\<in>C. A<=x | x<=B |] ==> A <= Inter(C) | Inter(C) <= B" |
13269 | 69 |
by blast |
13134 | 70 |
|
71 |
||
13356 | 72 |
subsection{*The Transfinite Construction *} |
13134 | 73 |
|
13558 | 74 |
lemma increasingD1: "f \<in> increasing(A) ==> f \<in> Pow(A)->Pow(A)" |
13134 | 75 |
apply (unfold increasing_def) |
76 |
apply (erule CollectD1) |
|
77 |
done |
|
78 |
||
13558 | 79 |
lemma increasingD2: "[| f \<in> increasing(A); x<=A |] ==> x <= f`x" |
13269 | 80 |
by (unfold increasing_def, blast) |
13134 | 81 |
|
82 |
lemmas TFin_UnionI = PowI [THEN TFin.Pow_UnionI, standard] |
|
83 |
||
84 |
lemmas TFin_is_subset = TFin.dom_subset [THEN subsetD, THEN PowD, standard] |
|
85 |
||
86 |
||
13558 | 87 |
text{*Structural induction on @{term "TFin(S,next)"} *} |
13134 | 88 |
lemma TFin_induct: |
13558 | 89 |
"[| n \<in> TFin(S,next); |
90 |
!!x. [| x \<in> TFin(S,next); P(x); next \<in> increasing(S) |] ==> P(next`x); |
|
91 |
!!Y. [| Y <= TFin(S,next); \<forall>y\<in>Y. P(y) |] ==> P(Union(Y)) |
|
13134 | 92 |
|] ==> P(n)" |
13356 | 93 |
by (erule TFin.induct, blast+) |
13134 | 94 |
|
95 |
||
13356 | 96 |
subsection{*Some Properties of the Transfinite Construction *} |
13134 | 97 |
|
13558 | 98 |
lemmas increasing_trans = subset_trans [OF _ increasingD2, |
13134 | 99 |
OF _ _ TFin_is_subset] |
100 |
||
13558 | 101 |
text{*Lemma 1 of section 3.1*} |
13134 | 102 |
lemma TFin_linear_lemma1: |
13558 | 103 |
"[| n \<in> TFin(S,next); m \<in> TFin(S,next); |
104 |
\<forall>x \<in> TFin(S,next) . x<=m --> x=m | next`x<=m |] |
|
13134 | 105 |
==> n<=m | next`m<=n" |
106 |
apply (erule TFin_induct) |
|
107 |
apply (erule_tac [2] Union_lemma0) (*or just Blast_tac*) |
|
108 |
(*downgrade subsetI from intro! to intro*) |
|
109 |
apply (blast dest: increasing_trans) |
|
110 |
done |
|
111 |
||
13558 | 112 |
text{*Lemma 2 of section 3.2. Interesting in its own right! |
113 |
Requires @{term "next \<in> increasing(S)"} in the second induction step.*} |
|
13134 | 114 |
lemma TFin_linear_lemma2: |
13558 | 115 |
"[| m \<in> TFin(S,next); next \<in> increasing(S) |] |
116 |
==> \<forall>n \<in> TFin(S,next). n<=m --> n=m | next`n <= m" |
|
13134 | 117 |
apply (erule TFin_induct) |
118 |
apply (rule impI [THEN ballI]) |
|
13558 | 119 |
txt{*case split using @{text TFin_linear_lemma1}*} |
13784 | 120 |
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], |
13134 | 121 |
assumption+) |
122 |
apply (blast del: subsetI |
|
13558 | 123 |
intro: increasing_trans subsetI, blast) |
124 |
txt{*second induction step*} |
|
13134 | 125 |
apply (rule impI [THEN ballI]) |
126 |
apply (rule Union_lemma0 [THEN disjE]) |
|
127 |
apply (erule_tac [3] disjI2) |
|
13558 | 128 |
prefer 2 apply blast |
13134 | 129 |
apply (rule ballI) |
13558 | 130 |
apply (drule bspec, assumption) |
131 |
apply (drule subsetD, assumption) |
|
13784 | 132 |
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], |
13558 | 133 |
assumption+, blast) |
13134 | 134 |
apply (erule increasingD2 [THEN subset_trans, THEN disjI1]) |
135 |
apply (blast dest: TFin_is_subset)+ |
|
136 |
done |
|
137 |
||
13558 | 138 |
text{*a more convenient form for Lemma 2*} |
13134 | 139 |
lemma TFin_subsetD: |
13558 | 140 |
"[| n<=m; m \<in> TFin(S,next); n \<in> TFin(S,next); next \<in> increasing(S) |] |
141 |
==> n=m | next`n <= m" |
|
142 |
by (blast dest: TFin_linear_lemma2 [rule_format]) |
|
13134 | 143 |
|
13558 | 144 |
text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*} |
13134 | 145 |
lemma TFin_subset_linear: |
13558 | 146 |
"[| m \<in> TFin(S,next); n \<in> TFin(S,next); next \<in> increasing(S) |] |
147 |
==> n <= m | m<=n" |
|
148 |
apply (rule disjE) |
|
13134 | 149 |
apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2]) |
150 |
apply (assumption+, erule disjI2) |
|
13558 | 151 |
apply (blast del: subsetI |
13134 | 152 |
intro: subsetI increasingD2 [THEN subset_trans] TFin_is_subset) |
153 |
done |
|
154 |
||
155 |
||
13558 | 156 |
text{*Lemma 3 of section 3.3*} |
13134 | 157 |
lemma equal_next_upper: |
13558 | 158 |
"[| n \<in> TFin(S,next); m \<in> TFin(S,next); m = next`m |] ==> n <= m" |
13134 | 159 |
apply (erule TFin_induct) |
160 |
apply (drule TFin_subsetD) |
|
13784 | 161 |
apply (assumption+, force, blast) |
13134 | 162 |
done |
163 |
||
13558 | 164 |
text{*Property 3.3 of section 3.3*} |
165 |
lemma equal_next_Union: |
|
166 |
"[| m \<in> TFin(S,next); next \<in> increasing(S) |] |
|
13134 | 167 |
==> m = next`m <-> m = Union(TFin(S,next))" |
168 |
apply (rule iffI) |
|
169 |
apply (rule Union_upper [THEN equalityI]) |
|
170 |
apply (rule_tac [2] equal_next_upper [THEN Union_least]) |
|
171 |
apply (assumption+) |
|
172 |
apply (erule ssubst) |
|
13269 | 173 |
apply (rule increasingD2 [THEN equalityI], assumption) |
13134 | 174 |
apply (blast del: subsetI |
175 |
intro: subsetI TFin_UnionI TFin.nextI TFin_is_subset)+ |
|
176 |
done |
|
177 |
||
178 |
||
13356 | 179 |
subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain*} |
180 |
||
181 |
text{*NOTE: We assume the partial ordering is @{text "\<subseteq>"}, the subset |
|
182 |
relation!*} |
|
13134 | 183 |
|
13558 | 184 |
text{** Defining the "next" operation for Hausdorff's Theorem **} |
13134 | 185 |
|
186 |
lemma chain_subset_Pow: "chain(A) <= Pow(A)" |
|
187 |
apply (unfold chain_def) |
|
188 |
apply (rule Collect_subset) |
|
189 |
done |
|
190 |
||
191 |
lemma super_subset_chain: "super(A,c) <= chain(A)" |
|
192 |
apply (unfold super_def) |
|
193 |
apply (rule Collect_subset) |
|
194 |
done |
|
195 |
||
196 |
lemma maxchain_subset_chain: "maxchain(A) <= chain(A)" |
|
197 |
apply (unfold maxchain_def) |
|
198 |
apply (rule Collect_subset) |
|
199 |
done |
|
200 |
||
13558 | 201 |
lemma choice_super: |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
202 |
"[| ch \<in> (\<Pi> X \<in> Pow(chain(S)) - {0}. X); X \<in> chain(S); X \<notin> maxchain(S) |] |
13558 | 203 |
==> ch ` super(S,X) \<in> super(S,X)" |
13134 | 204 |
apply (erule apply_type) |
13269 | 205 |
apply (unfold super_def maxchain_def, blast) |
13134 | 206 |
done |
207 |
||
208 |
lemma choice_not_equals: |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
209 |
"[| ch \<in> (\<Pi> X \<in> Pow(chain(S)) - {0}. X); X \<in> chain(S); X \<notin> maxchain(S) |] |
13558 | 210 |
==> ch ` super(S,X) \<noteq> X" |
13134 | 211 |
apply (rule notI) |
13784 | 212 |
apply (drule choice_super, assumption, assumption) |
13134 | 213 |
apply (simp add: super_def) |
214 |
done |
|
215 |
||
13558 | 216 |
text{*This justifies Definition 4.4*} |
13134 | 217 |
lemma Hausdorff_next_exists: |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
218 |
"ch \<in> (\<Pi> X \<in> Pow(chain(S))-{0}. X) ==> |
13558 | 219 |
\<exists>next \<in> increasing(S). \<forall>X \<in> Pow(S). |
220 |
next`X = if(X \<in> chain(S)-maxchain(S), ch`super(S,X), X)" |
|
221 |
apply (rule_tac x="\<lambda>X\<in>Pow(S). |
|
222 |
if X \<in> chain(S) - maxchain(S) then ch ` super(S, X) else X" |
|
13175
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
223 |
in bexI) |
13558 | 224 |
apply force |
13134 | 225 |
apply (unfold increasing_def) |
226 |
apply (rule CollectI) |
|
227 |
apply (rule lam_type) |
|
228 |
apply (simp (no_asm_simp)) |
|
13558 | 229 |
apply (blast dest: super_subset_chain [THEN subsetD] |
230 |
chain_subset_Pow [THEN subsetD] choice_super) |
|
231 |
txt{*Now, verify that it increases*} |
|
13134 | 232 |
apply (simp (no_asm_simp) add: Pow_iff subset_refl) |
233 |
apply safe |
|
234 |
apply (drule choice_super) |
|
235 |
apply (assumption+) |
|
13269 | 236 |
apply (simp add: super_def, blast) |
13134 | 237 |
done |
238 |
||
13558 | 239 |
text{*Lemma 4*} |
13134 | 240 |
lemma TFin_chain_lemma4: |
13558 | 241 |
"[| c \<in> TFin(S,next); |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
242 |
ch \<in> (\<Pi> X \<in> Pow(chain(S))-{0}. X); |
13558 | 243 |
next \<in> increasing(S); |
244 |
\<forall>X \<in> Pow(S). next`X = |
|
245 |
if(X \<in> chain(S)-maxchain(S), ch`super(S,X), X) |] |
|
246 |
==> c \<in> chain(S)" |
|
13134 | 247 |
apply (erule TFin_induct) |
13558 | 248 |
apply (simp (no_asm_simp) add: chain_subset_Pow [THEN subsetD, THEN PowD] |
13134 | 249 |
choice_super [THEN super_subset_chain [THEN subsetD]]) |
250 |
apply (unfold chain_def) |
|
13269 | 251 |
apply (rule CollectI, blast, safe) |
13558 | 252 |
apply (rule_tac m1=B and n1=Ba in TFin_subset_linear [THEN disjE], fast+) |
253 |
txt{*@{text "Blast_tac's"} slow*} |
|
13134 | 254 |
done |
255 |
||
13558 | 256 |
theorem Hausdorff: "\<exists>c. c \<in> maxchain(S)" |
13134 | 257 |
apply (rule AC_Pi_Pow [THEN exE]) |
13269 | 258 |
apply (rule Hausdorff_next_exists [THEN bexE], assumption) |
13134 | 259 |
apply (rename_tac ch "next") |
13558 | 260 |
apply (subgoal_tac "Union (TFin (S,next)) \<in> chain (S) ") |
13134 | 261 |
prefer 2 |
262 |
apply (blast intro!: TFin_chain_lemma4 subset_refl [THEN TFin_UnionI]) |
|
263 |
apply (rule_tac x = "Union (TFin (S,next))" in exI) |
|
264 |
apply (rule classical) |
|
265 |
apply (subgoal_tac "next ` Union (TFin (S,next)) = Union (TFin (S,next))") |
|
266 |
apply (rule_tac [2] equal_next_Union [THEN iffD2, symmetric]) |
|
267 |
apply (rule_tac [2] subset_refl [THEN TFin_UnionI]) |
|
13269 | 268 |
prefer 2 apply assumption |
13134 | 269 |
apply (rule_tac [2] refl) |
13558 | 270 |
apply (simp add: subset_refl [THEN TFin_UnionI, |
13134 | 271 |
THEN TFin.dom_subset [THEN subsetD, THEN PowD]]) |
272 |
apply (erule choice_not_equals [THEN notE]) |
|
273 |
apply (assumption+) |
|
274 |
done |
|
275 |
||
276 |
||
13558 | 277 |
subsection{*Zorn's Lemma: If All Chains in S Have Upper Bounds In S, |
278 |
then S contains a Maximal Element*} |
|
13356 | 279 |
|
13558 | 280 |
text{*Used in the proof of Zorn's Lemma*} |
281 |
lemma chain_extend: |
|
282 |
"[| c \<in> chain(A); z \<in> A; \<forall>x \<in> c. x<=z |] ==> cons(z,c) \<in> chain(A)" |
|
13356 | 283 |
by (unfold chain_def, blast) |
13134 | 284 |
|
13558 | 285 |
lemma Zorn: "\<forall>c \<in> chain(S). Union(c) \<in> S ==> \<exists>y \<in> S. \<forall>z \<in> S. y<=z --> y=z" |
13134 | 286 |
apply (rule Hausdorff [THEN exE]) |
287 |
apply (simp add: maxchain_def) |
|
288 |
apply (rename_tac c) |
|
289 |
apply (rule_tac x = "Union (c)" in bexI) |
|
13269 | 290 |
prefer 2 apply blast |
13134 | 291 |
apply safe |
292 |
apply (rename_tac z) |
|
293 |
apply (rule classical) |
|
13558 | 294 |
apply (subgoal_tac "cons (z,c) \<in> super (S,c) ") |
13134 | 295 |
apply (blast elim: equalityE) |
13269 | 296 |
apply (unfold super_def, safe) |
13134 | 297 |
apply (fast elim: chain_extend) |
298 |
apply (fast elim: equalityE) |
|
299 |
done |
|
300 |
||
27704 | 301 |
text {* Alternative version of Zorn's Lemma *} |
302 |
||
303 |
theorem Zorn2: |
|
304 |
"\<forall>c \<in> chain(S). \<exists>y \<in> S. \<forall>x \<in> c. x <= y ==> \<exists>y \<in> S. \<forall>z \<in> S. y<=z --> y=z" |
|
305 |
apply (cut_tac Hausdorff maxchain_subset_chain) |
|
306 |
apply (erule exE) |
|
307 |
apply (drule subsetD, assumption) |
|
308 |
apply (drule bspec, assumption, erule bexE) |
|
309 |
apply (rule_tac x = y in bexI) |
|
310 |
prefer 2 apply assumption |
|
311 |
apply clarify |
|
312 |
apply rule apply assumption |
|
313 |
apply rule |
|
314 |
apply (rule ccontr) |
|
315 |
apply (frule_tac z=z in chain_extend) |
|
316 |
apply (assumption, blast) |
|
317 |
apply (unfold maxchain_def super_def) |
|
318 |
apply (blast elim!: equalityCE) |
|
319 |
done |
|
320 |
||
13134 | 321 |
|
13356 | 322 |
subsection{*Zermelo's Theorem: Every Set can be Well-Ordered*} |
13134 | 323 |
|
13558 | 324 |
text{*Lemma 5*} |
13134 | 325 |
lemma TFin_well_lemma5: |
13558 | 326 |
"[| n \<in> TFin(S,next); Z <= TFin(S,next); z:Z; ~ Inter(Z) \<in> Z |] |
327 |
==> \<forall>m \<in> Z. n <= m" |
|
13134 | 328 |
apply (erule TFin_induct) |
13558 | 329 |
prefer 2 apply blast txt{*second induction step is easy*} |
13134 | 330 |
apply (rule ballI) |
13558 | 331 |
apply (rule bspec [THEN TFin_subsetD, THEN disjE], auto) |
13134 | 332 |
apply (subgoal_tac "m = Inter (Z) ") |
333 |
apply blast+ |
|
334 |
done |
|
335 |
||
13558 | 336 |
text{*Well-ordering of @{term "TFin(S,next)"} *} |
337 |
lemma well_ord_TFin_lemma: "[| Z <= TFin(S,next); z \<in> Z |] ==> Inter(Z) \<in> Z" |
|
13134 | 338 |
apply (rule classical) |
339 |
apply (subgoal_tac "Z = {Union (TFin (S,next))}") |
|
340 |
apply (simp (no_asm_simp) add: Inter_singleton) |
|
341 |
apply (erule equal_singleton) |
|
342 |
apply (rule Union_upper [THEN equalityI]) |
|
13269 | 343 |
apply (rule_tac [2] subset_refl [THEN TFin_UnionI, THEN TFin_well_lemma5, THEN bspec], blast+) |
13134 | 344 |
done |
345 |
||
13558 | 346 |
text{*This theorem just packages the previous result*} |
13134 | 347 |
lemma well_ord_TFin: |
13558 | 348 |
"next \<in> increasing(S) |
349 |
==> well_ord(TFin(S,next), Subset_rel(TFin(S,next)))" |
|
13134 | 350 |
apply (rule well_ordI) |
351 |
apply (unfold Subset_rel_def linear_def) |
|
13558 | 352 |
txt{*Prove the well-foundedness goal*} |
13134 | 353 |
apply (rule wf_onI) |
13269 | 354 |
apply (frule well_ord_TFin_lemma, assumption) |
355 |
apply (drule_tac x = "Inter (Z) " in bspec, assumption) |
|
13134 | 356 |
apply blast |
13558 | 357 |
txt{*Now prove the linearity goal*} |
13134 | 358 |
apply (intro ballI) |
359 |
apply (case_tac "x=y") |
|
13269 | 360 |
apply blast |
13558 | 361 |
txt{*The @{term "x\<noteq>y"} case remains*} |
13134 | 362 |
apply (rule_tac n1=x and m1=y in TFin_subset_linear [THEN disjE], |
13269 | 363 |
assumption+, blast+) |
13134 | 364 |
done |
365 |
||
13558 | 366 |
text{** Defining the "next" operation for Zermelo's Theorem **} |
13134 | 367 |
|
368 |
lemma choice_Diff: |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
369 |
"[| ch \<in> (\<Pi> X \<in> Pow(S) - {0}. X); X \<subseteq> S; X\<noteq>S |] ==> ch ` (S-X) \<in> S-X" |
13134 | 370 |
apply (erule apply_type) |
371 |
apply (blast elim!: equalityE) |
|
372 |
done |
|
373 |
||
13558 | 374 |
text{*This justifies Definition 6.1*} |
13134 | 375 |
lemma Zermelo_next_exists: |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
376 |
"ch \<in> (\<Pi> X \<in> Pow(S)-{0}. X) ==> |
13558 | 377 |
\<exists>next \<in> increasing(S). \<forall>X \<in> Pow(S). |
13175
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
378 |
next`X = (if X=S then S else cons(ch`(S-X), X))" |
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
379 |
apply (rule_tac x="\<lambda>X\<in>Pow(S). if X=S then S else cons(ch`(S-X), X)" |
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
380 |
in bexI) |
13558 | 381 |
apply force |
13134 | 382 |
apply (unfold increasing_def) |
383 |
apply (rule CollectI) |
|
384 |
apply (rule lam_type) |
|
13558 | 385 |
txt{*Type checking is surprisingly hard!*} |
13134 | 386 |
apply (simp (no_asm_simp) add: Pow_iff cons_subset_iff subset_refl) |
387 |
apply (blast intro!: choice_Diff [THEN DiffD1]) |
|
13558 | 388 |
txt{*Verify that it increases*} |
389 |
apply (intro allI impI) |
|
13134 | 390 |
apply (simp add: Pow_iff subset_consI subset_refl) |
391 |
done |
|
392 |
||
393 |
||
13558 | 394 |
text{*The construction of the injection*} |
13134 | 395 |
lemma choice_imp_injection: |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
396 |
"[| ch \<in> (\<Pi> X \<in> Pow(S)-{0}. X); |
13558 | 397 |
next \<in> increasing(S); |
398 |
\<forall>X \<in> Pow(S). next`X = if(X=S, S, cons(ch`(S-X), X)) |] |
|
399 |
==> (\<lambda> x \<in> S. Union({y \<in> TFin(S,next). x \<notin> y})) |
|
400 |
\<in> inj(S, TFin(S,next) - {S})" |
|
13134 | 401 |
apply (rule_tac d = "%y. ch` (S-y) " in lam_injective) |
402 |
apply (rule DiffI) |
|
403 |
apply (rule Collect_subset [THEN TFin_UnionI]) |
|
404 |
apply (blast intro!: Collect_subset [THEN TFin_UnionI] elim: equalityE) |
|
13558 | 405 |
apply (subgoal_tac "x \<notin> Union ({y \<in> TFin (S,next) . x \<notin> y}) ") |
13134 | 406 |
prefer 2 apply (blast elim: equalityE) |
13558 | 407 |
apply (subgoal_tac "Union ({y \<in> TFin (S,next) . x \<notin> y}) \<noteq> S") |
13134 | 408 |
prefer 2 apply (blast elim: equalityE) |
13558 | 409 |
txt{*For proving @{text "x \<in> next`Union(...)"}. |
410 |
Abrial and Laffitte's justification appears to be faulty.*} |
|
411 |
apply (subgoal_tac "~ next ` Union ({y \<in> TFin (S,next) . x \<notin> y}) |
|
412 |
<= Union ({y \<in> TFin (S,next) . x \<notin> y}) ") |
|
413 |
prefer 2 |
|
414 |
apply (simp del: Union_iff |
|
415 |
add: Collect_subset [THEN TFin_UnionI, THEN TFin_is_subset] |
|
416 |
Pow_iff cons_subset_iff subset_refl choice_Diff [THEN DiffD2]) |
|
417 |
apply (subgoal_tac "x \<in> next ` Union ({y \<in> TFin (S,next) . x \<notin> y}) ") |
|
418 |
prefer 2 |
|
419 |
apply (blast intro!: Collect_subset [THEN TFin_UnionI] TFin.nextI) |
|
420 |
txt{*End of the lemmas!*} |
|
13134 | 421 |
apply (simp add: Collect_subset [THEN TFin_UnionI, THEN TFin_is_subset]) |
422 |
done |
|
423 |
||
13558 | 424 |
text{*The wellordering theorem*} |
425 |
theorem AC_well_ord: "\<exists>r. well_ord(S,r)" |
|
13134 | 426 |
apply (rule AC_Pi_Pow [THEN exE]) |
13269 | 427 |
apply (rule Zermelo_next_exists [THEN bexE], assumption) |
13134 | 428 |
apply (rule exI) |
429 |
apply (rule well_ord_rvimage) |
|
430 |
apply (erule_tac [2] well_ord_TFin) |
|
13269 | 431 |
apply (rule choice_imp_injection [THEN inj_weaken_type], blast+) |
13134 | 432 |
done |
13558 | 433 |
|
27704 | 434 |
|
435 |
subsection {* Zorn's Lemma for Partial Orders *} |
|
436 |
||
437 |
text {* Reimported from HOL by Clemens Ballarin. *} |
|
438 |
||
439 |
||
440 |
definition Chain :: "i => i" where |
|
441 |
"Chain(r) = {A : Pow(field(r)). ALL a:A. ALL b:A. <a, b> : r | <b, a> : r}" |
|
442 |
||
443 |
lemma mono_Chain: |
|
444 |
"r \<subseteq> s ==> Chain(r) \<subseteq> Chain(s)" |
|
445 |
unfolding Chain_def |
|
446 |
by blast |
|
447 |
||
448 |
theorem Zorn_po: |
|
449 |
assumes po: "Partial_order(r)" |
|
450 |
and u: "ALL C:Chain(r). EX u:field(r). ALL a:C. <a, u> : r" |
|
451 |
shows "EX m:field(r). ALL a:field(r). <m, a> : r --> a = m" |
|
452 |
proof - |
|
453 |
have "Preorder(r)" using po by (simp add: partial_order_on_def) |
|
454 |
--{* Mirror r in the set of subsets below (wrt r) elements of A (?). *} |
|
455 |
let ?B = "lam x:field(r). r -`` {x}" let ?S = "?B `` field(r)" |
|
456 |
have "ALL C:chain(?S). EX U:?S. ALL A:C. A \<subseteq> U" |
|
457 |
proof (clarsimp simp: chain_def Subset_rel_def bex_image_simp) |
|
458 |
fix C |
|
459 |
assume 1: "C \<subseteq> ?S" and 2: "ALL A:C. ALL B:C. A \<subseteq> B | B \<subseteq> A" |
|
460 |
let ?A = "{x : field(r). EX M:C. M = ?B`x}" |
|
461 |
have "C = ?B `` ?A" using 1 |
|
462 |
apply (auto simp: image_def) |
|
463 |
apply rule |
|
464 |
apply rule |
|
465 |
apply (drule subsetD) apply assumption |
|
466 |
apply (erule CollectE) |
|
467 |
apply rule apply assumption |
|
468 |
apply (erule bexE) |
|
469 |
apply rule prefer 2 apply assumption |
|
470 |
apply rule |
|
471 |
apply (erule lamE) apply simp |
|
472 |
apply assumption |
|
473 |
||
474 |
apply (thin_tac "C \<subseteq> ?X") |
|
475 |
apply (fast elim: lamE) |
|
476 |
done |
|
477 |
have "?A : Chain(r)" |
|
478 |
proof (simp add: Chain_def subsetI, intro conjI ballI impI) |
|
479 |
fix a b |
|
480 |
assume "a : field(r)" "r -`` {a} : C" "b : field(r)" "r -`` {b} : C" |
|
481 |
hence "r -`` {a} \<subseteq> r -`` {b} | r -`` {b} \<subseteq> r -`` {a}" using 2 by auto |
|
482 |
then show "<a, b> : r | <b, a> : r" |
|
483 |
using `Preorder(r)` `a : field(r)` `b : field(r)` |
|
484 |
by (simp add: subset_vimage1_vimage1_iff) |
|
485 |
qed |
|
486 |
then obtain u where uA: "u : field(r)" "ALL a:?A. <a, u> : r" |
|
487 |
using u |
|
488 |
apply auto |
|
489 |
apply (drule bspec) apply assumption |
|
490 |
apply auto |
|
491 |
done |
|
492 |
have "ALL A:C. A \<subseteq> r -`` {u}" |
|
493 |
proof (auto intro!: vimageI) |
|
494 |
fix a B |
|
495 |
assume aB: "B : C" "a : B" |
|
496 |
with 1 obtain x where "x : field(r)" "B = r -`` {x}" |
|
497 |
apply - |
|
498 |
apply (drule subsetD) apply assumption |
|
499 |
apply (erule imageE) |
|
500 |
apply (erule lamE) |
|
501 |
apply simp |
|
502 |
done |
|
503 |
then show "<a, u> : r" using uA aB `Preorder(r)` |
|
504 |
by (auto simp: preorder_on_def refl_def) (blast dest: trans_onD)+ |
|
505 |
qed |
|
506 |
then show "EX U:field(r). ALL A:C. A \<subseteq> r -`` {U}" |
|
507 |
using `u : field(r)` .. |
|
508 |
qed |
|
509 |
from Zorn2 [OF this] |
|
510 |
obtain m B where "m : field(r)" "B = r -`` {m}" |
|
511 |
"ALL x:field(r). B \<subseteq> r -`` {x} --> B = r -`` {x}" |
|
512 |
by (auto elim!: lamE simp: ball_image_simp) |
|
513 |
then have "ALL a:field(r). <m, a> : r --> a = m" |
|
514 |
using po `Preorder(r)` `m : field(r)` |
|
515 |
by (auto simp: subset_vimage1_vimage1_iff Partial_order_eq_vimage1_vimage1_iff) |
|
516 |
then show ?thesis using `m : field(r)` by blast |
|
517 |
qed |
|
518 |
||
516 | 519 |
end |