author | wenzelm |
Tue, 03 Mar 2009 19:30:43 +0100 | |
changeset 30229 | 9861257b18e6 |
parent 28262 | aa7ca36d67fd |
child 32010 | cb1a1c94b4cd |
permissions | -rw-r--r-- |
2469 | 1 |
(* Title: ZF/AC/OrdQuant.thy |
2 |
ID: $Id$ |
|
3 |
Authors: Krzysztof Grabczewski and L C Paulson |
|
4 |
*) |
|
5 |
||
13253 | 6 |
header {*Special quantifiers*} |
7 |
||
16417 | 8 |
theory OrdQuant imports Ordinal begin |
2469 | 9 |
|
13253 | 10 |
subsection {*Quantifiers and union operator for ordinals*} |
11 |
||
24893 | 12 |
definition |
2469 | 13 |
(* Ordinal Quantifiers *) |
24893 | 14 |
oall :: "[i, i => o] => o" where |
12620 | 15 |
"oall(A, P) == ALL x. x<A --> P(x)" |
13298 | 16 |
|
24893 | 17 |
definition |
18 |
oex :: "[i, i => o] => o" where |
|
12620 | 19 |
"oex(A, P) == EX x. x<A & P(x)" |
2469 | 20 |
|
24893 | 21 |
definition |
2469 | 22 |
(* Ordinal Union *) |
24893 | 23 |
OUnion :: "[i, i => i] => i" where |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
24 |
"OUnion(i,B) == {z: \<Union>x\<in>i. B(x). Ord(i)}" |
13298 | 25 |
|
2469 | 26 |
syntax |
12620 | 27 |
"@oall" :: "[idt, i, o] => o" ("(3ALL _<_./ _)" 10) |
28 |
"@oex" :: "[idt, i, o] => o" ("(3EX _<_./ _)" 10) |
|
29 |
"@OUNION" :: "[idt, i, i] => i" ("(3UN _<_./ _)" 10) |
|
2469 | 30 |
|
31 |
translations |
|
24893 | 32 |
"ALL x<a. P" == "CONST oall(a, %x. P)" |
33 |
"EX x<a. P" == "CONST oex(a, %x. P)" |
|
34 |
"UN x<a. B" == "CONST OUnion(a, %x. B)" |
|
2469 | 35 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
6093
diff
changeset
|
36 |
syntax (xsymbols) |
12620 | 37 |
"@oall" :: "[idt, i, o] => o" ("(3\<forall>_<_./ _)" 10) |
38 |
"@oex" :: "[idt, i, o] => o" ("(3\<exists>_<_./ _)" 10) |
|
39 |
"@OUNION" :: "[idt, i, i] => i" ("(3\<Union>_<_./ _)" 10) |
|
14565 | 40 |
syntax (HTML output) |
41 |
"@oall" :: "[idt, i, o] => o" ("(3\<forall>_<_./ _)" 10) |
|
42 |
"@oex" :: "[idt, i, o] => o" ("(3\<exists>_<_./ _)" 10) |
|
43 |
"@OUNION" :: "[idt, i, i] => i" ("(3\<Union>_<_./ _)" 10) |
|
12620 | 44 |
|
45 |
||
13302 | 46 |
subsubsection {*simplification of the new quantifiers*} |
12825 | 47 |
|
48 |
||
13169 | 49 |
(*MOST IMPORTANT that this is added to the simpset BEFORE Ord_atomize |
13298 | 50 |
is proved. Ord_atomize would convert this rule to |
12825 | 51 |
x < 0 ==> P(x) == True, which causes dire effects!*) |
52 |
lemma [simp]: "(ALL x<0. P(x))" |
|
13298 | 53 |
by (simp add: oall_def) |
12825 | 54 |
|
55 |
lemma [simp]: "~(EX x<0. P(x))" |
|
13298 | 56 |
by (simp add: oex_def) |
12825 | 57 |
|
58 |
lemma [simp]: "(ALL x<succ(i). P(x)) <-> (Ord(i) --> P(i) & (ALL x<i. P(x)))" |
|
13298 | 59 |
apply (simp add: oall_def le_iff) |
60 |
apply (blast intro: lt_Ord2) |
|
12825 | 61 |
done |
62 |
||
63 |
lemma [simp]: "(EX x<succ(i). P(x)) <-> (Ord(i) & (P(i) | (EX x<i. P(x))))" |
|
13298 | 64 |
apply (simp add: oex_def le_iff) |
65 |
apply (blast intro: lt_Ord2) |
|
12825 | 66 |
done |
67 |
||
13302 | 68 |
subsubsection {*Union over ordinals*} |
13118 | 69 |
|
12620 | 70 |
lemma Ord_OUN [intro,simp]: |
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13149
diff
changeset
|
71 |
"[| !!x. x<A ==> Ord(B(x)) |] ==> Ord(\<Union>x<A. B(x))" |
13298 | 72 |
by (simp add: OUnion_def ltI Ord_UN) |
12620 | 73 |
|
74 |
lemma OUN_upper_lt: |
|
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13149
diff
changeset
|
75 |
"[| a<A; i < b(a); Ord(\<Union>x<A. b(x)) |] ==> i < (\<Union>x<A. b(x))" |
12620 | 76 |
by (unfold OUnion_def lt_def, blast ) |
77 |
||
78 |
lemma OUN_upper_le: |
|
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13149
diff
changeset
|
79 |
"[| a<A; i\<le>b(a); Ord(\<Union>x<A. b(x)) |] ==> i \<le> (\<Union>x<A. b(x))" |
12820 | 80 |
apply (unfold OUnion_def, auto) |
12620 | 81 |
apply (rule UN_upper_le ) |
13298 | 82 |
apply (auto simp add: lt_def) |
12620 | 83 |
done |
2469 | 84 |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
85 |
lemma Limit_OUN_eq: "Limit(i) ==> (\<Union>x<i. x) = i" |
12620 | 86 |
by (simp add: OUnion_def Limit_Union_eq Limit_is_Ord) |
87 |
||
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
88 |
(* No < version; consider (\<Union>i\<in>nat.i)=nat *) |
12620 | 89 |
lemma OUN_least: |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
90 |
"(!!x. x<A ==> B(x) \<subseteq> C) ==> (\<Union>x<A. B(x)) \<subseteq> C" |
12620 | 91 |
by (simp add: OUnion_def UN_least ltI) |
92 |
||
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
93 |
(* No < version; consider (\<Union>i\<in>nat.i)=nat *) |
12620 | 94 |
lemma OUN_least_le: |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
95 |
"[| Ord(i); !!x. x<A ==> b(x) \<le> i |] ==> (\<Union>x<A. b(x)) \<le> i" |
12620 | 96 |
by (simp add: OUnion_def UN_least_le ltI Ord_0_le) |
97 |
||
98 |
lemma le_implies_OUN_le_OUN: |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
99 |
"[| !!x. x<A ==> c(x) \<le> d(x) |] ==> (\<Union>x<A. c(x)) \<le> (\<Union>x<A. d(x))" |
12620 | 100 |
by (blast intro: OUN_least_le OUN_upper_le le_Ord2 Ord_OUN) |
101 |
||
102 |
lemma OUN_UN_eq: |
|
103 |
"(!!x. x:A ==> Ord(B(x))) |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
104 |
==> (\<Union>z < (\<Union>x\<in>A. B(x)). C(z)) = (\<Union>x\<in>A. \<Union>z < B(x). C(z))" |
13298 | 105 |
by (simp add: OUnion_def) |
12620 | 106 |
|
107 |
lemma OUN_Union_eq: |
|
108 |
"(!!x. x:X ==> Ord(x)) |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
109 |
==> (\<Union>z < Union(X). C(z)) = (\<Union>x\<in>X. \<Union>z < x. C(z))" |
13298 | 110 |
by (simp add: OUnion_def) |
12620 | 111 |
|
12763 | 112 |
(*So that rule_format will get rid of ALL x<A...*) |
113 |
lemma atomize_oall [symmetric, rulify]: |
|
114 |
"(!!x. x<A ==> P(x)) == Trueprop (ALL x<A. P(x))" |
|
115 |
by (simp add: oall_def atomize_all atomize_imp) |
|
116 |
||
13302 | 117 |
subsubsection {*universal quantifier for ordinals*} |
13169 | 118 |
|
119 |
lemma oallI [intro!]: |
|
120 |
"[| !!x. x<A ==> P(x) |] ==> ALL x<A. P(x)" |
|
13298 | 121 |
by (simp add: oall_def) |
13169 | 122 |
|
123 |
lemma ospec: "[| ALL x<A. P(x); x<A |] ==> P(x)" |
|
13298 | 124 |
by (simp add: oall_def) |
13169 | 125 |
|
126 |
lemma oallE: |
|
127 |
"[| ALL x<A. P(x); P(x) ==> Q; ~x<A ==> Q |] ==> Q" |
|
13298 | 128 |
by (simp add: oall_def, blast) |
13169 | 129 |
|
130 |
lemma rev_oallE [elim]: |
|
131 |
"[| ALL x<A. P(x); ~x<A ==> Q; P(x) ==> Q |] ==> Q" |
|
13298 | 132 |
by (simp add: oall_def, blast) |
13169 | 133 |
|
134 |
||
135 |
(*Trival rewrite rule; (ALL x<a.P)<->P holds only if a is not 0!*) |
|
136 |
lemma oall_simp [simp]: "(ALL x<a. True) <-> True" |
|
13170 | 137 |
by blast |
13169 | 138 |
|
139 |
(*Congruence rule for rewriting*) |
|
140 |
lemma oall_cong [cong]: |
|
13298 | 141 |
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] |
13289
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
142 |
==> oall(a, %x. P(x)) <-> oall(a', %x. P'(x))" |
13169 | 143 |
by (simp add: oall_def) |
144 |
||
145 |
||
13302 | 146 |
subsubsection {*existential quantifier for ordinals*} |
13169 | 147 |
|
148 |
lemma oexI [intro]: |
|
149 |
"[| P(x); x<A |] ==> EX x<A. P(x)" |
|
13298 | 150 |
apply (simp add: oex_def, blast) |
13169 | 151 |
done |
152 |
||
153 |
(*Not of the general form for such rules; ~EX has become ALL~ *) |
|
154 |
lemma oexCI: |
|
155 |
"[| ALL x<A. ~P(x) ==> P(a); a<A |] ==> EX x<A. P(x)" |
|
13298 | 156 |
apply (simp add: oex_def, blast) |
13169 | 157 |
done |
158 |
||
159 |
lemma oexE [elim!]: |
|
160 |
"[| EX x<A. P(x); !!x. [| x<A; P(x) |] ==> Q |] ==> Q" |
|
13298 | 161 |
apply (simp add: oex_def, blast) |
13169 | 162 |
done |
163 |
||
164 |
lemma oex_cong [cong]: |
|
13298 | 165 |
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] |
13289
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
166 |
==> oex(a, %x. P(x)) <-> oex(a', %x. P'(x))" |
13169 | 167 |
apply (simp add: oex_def cong add: conj_cong) |
168 |
done |
|
169 |
||
170 |
||
13302 | 171 |
subsubsection {*Rules for Ordinal-Indexed Unions*} |
13169 | 172 |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
173 |
lemma OUN_I [intro]: "[| a<i; b: B(a) |] ==> b: (\<Union>z<i. B(z))" |
13170 | 174 |
by (unfold OUnion_def lt_def, blast) |
13169 | 175 |
|
176 |
lemma OUN_E [elim!]: |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
177 |
"[| b : (\<Union>z<i. B(z)); !!a.[| b: B(a); a<i |] ==> R |] ==> R" |
13170 | 178 |
apply (unfold OUnion_def lt_def, blast) |
13169 | 179 |
done |
180 |
||
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
181 |
lemma OUN_iff: "b : (\<Union>x<i. B(x)) <-> (EX x<i. b : B(x))" |
13170 | 182 |
by (unfold OUnion_def oex_def lt_def, blast) |
13169 | 183 |
|
184 |
lemma OUN_cong [cong]: |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
185 |
"[| i=j; !!x. x<j ==> C(x)=D(x) |] ==> (\<Union>x<i. C(x)) = (\<Union>x<j. D(x))" |
13169 | 186 |
by (simp add: OUnion_def lt_def OUN_iff) |
187 |
||
13298 | 188 |
lemma lt_induct: |
13169 | 189 |
"[| i<k; !!x.[| x<k; ALL y<x. P(y) |] ==> P(x) |] ==> P(i)" |
190 |
apply (simp add: lt_def oall_def) |
|
13298 | 191 |
apply (erule conjE) |
192 |
apply (erule Ord_induct, assumption, blast) |
|
13169 | 193 |
done |
194 |
||
13253 | 195 |
|
196 |
subsection {*Quantification over a class*} |
|
197 |
||
24893 | 198 |
definition |
199 |
"rall" :: "[i=>o, i=>o] => o" where |
|
13253 | 200 |
"rall(M, P) == ALL x. M(x) --> P(x)" |
201 |
||
24893 | 202 |
definition |
203 |
"rex" :: "[i=>o, i=>o] => o" where |
|
13253 | 204 |
"rex(M, P) == EX x. M(x) & P(x)" |
205 |
||
206 |
syntax |
|
207 |
"@rall" :: "[pttrn, i=>o, o] => o" ("(3ALL _[_]./ _)" 10) |
|
208 |
"@rex" :: "[pttrn, i=>o, o] => o" ("(3EX _[_]./ _)" 10) |
|
209 |
||
210 |
syntax (xsymbols) |
|
211 |
"@rall" :: "[pttrn, i=>o, o] => o" ("(3\<forall>_[_]./ _)" 10) |
|
212 |
"@rex" :: "[pttrn, i=>o, o] => o" ("(3\<exists>_[_]./ _)" 10) |
|
14565 | 213 |
syntax (HTML output) |
214 |
"@rall" :: "[pttrn, i=>o, o] => o" ("(3\<forall>_[_]./ _)" 10) |
|
215 |
"@rex" :: "[pttrn, i=>o, o] => o" ("(3\<exists>_[_]./ _)" 10) |
|
13253 | 216 |
|
217 |
translations |
|
24893 | 218 |
"ALL x[M]. P" == "CONST rall(M, %x. P)" |
219 |
"EX x[M]. P" == "CONST rex(M, %x. P)" |
|
13253 | 220 |
|
13298 | 221 |
|
222 |
subsubsection{*Relativized universal quantifier*} |
|
13253 | 223 |
|
224 |
lemma rallI [intro!]: "[| !!x. M(x) ==> P(x) |] ==> ALL x[M]. P(x)" |
|
225 |
by (simp add: rall_def) |
|
226 |
||
227 |
lemma rspec: "[| ALL x[M]. P(x); M(x) |] ==> P(x)" |
|
228 |
by (simp add: rall_def) |
|
229 |
||
230 |
(*Instantiates x first: better for automatic theorem proving?*) |
|
13298 | 231 |
lemma rev_rallE [elim]: |
13253 | 232 |
"[| ALL x[M]. P(x); ~ M(x) ==> Q; P(x) ==> Q |] ==> Q" |
13298 | 233 |
by (simp add: rall_def, blast) |
13253 | 234 |
|
235 |
lemma rallE: "[| ALL x[M]. P(x); P(x) ==> Q; ~ M(x) ==> Q |] ==> Q" |
|
236 |
by blast |
|
237 |
||
238 |
(*Trival rewrite rule; (ALL x[M].P)<->P holds only if A is nonempty!*) |
|
239 |
lemma rall_triv [simp]: "(ALL x[M]. P) <-> ((EX x. M(x)) --> P)" |
|
240 |
by (simp add: rall_def) |
|
241 |
||
242 |
(*Congruence rule for rewriting*) |
|
243 |
lemma rall_cong [cong]: |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13302
diff
changeset
|
244 |
"(!!x. M(x) ==> P(x) <-> P'(x)) ==> (ALL x[M]. P(x)) <-> (ALL x[M]. P'(x))" |
13253 | 245 |
by (simp add: rall_def) |
246 |
||
13298 | 247 |
|
248 |
subsubsection{*Relativized existential quantifier*} |
|
13253 | 249 |
|
250 |
lemma rexI [intro]: "[| P(x); M(x) |] ==> EX x[M]. P(x)" |
|
251 |
by (simp add: rex_def, blast) |
|
252 |
||
253 |
(*The best argument order when there is only one M(x)*) |
|
254 |
lemma rev_rexI: "[| M(x); P(x) |] ==> EX x[M]. P(x)" |
|
255 |
by blast |
|
256 |
||
257 |
(*Not of the general form for such rules; ~EX has become ALL~ *) |
|
258 |
lemma rexCI: "[| ALL x[M]. ~P(x) ==> P(a); M(a) |] ==> EX x[M]. P(x)" |
|
259 |
by blast |
|
260 |
||
261 |
lemma rexE [elim!]: "[| EX x[M]. P(x); !!x. [| M(x); P(x) |] ==> Q |] ==> Q" |
|
262 |
by (simp add: rex_def, blast) |
|
263 |
||
264 |
(*We do not even have (EX x[M]. True) <-> True unless A is nonempty!!*) |
|
265 |
lemma rex_triv [simp]: "(EX x[M]. P) <-> ((EX x. M(x)) & P)" |
|
266 |
by (simp add: rex_def) |
|
267 |
||
268 |
lemma rex_cong [cong]: |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13302
diff
changeset
|
269 |
"(!!x. M(x) ==> P(x) <-> P'(x)) ==> (EX x[M]. P(x)) <-> (EX x[M]. P'(x))" |
13253 | 270 |
by (simp add: rex_def cong: conj_cong) |
271 |
||
13289
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
272 |
lemma rall_is_ball [simp]: "(\<forall>x[%z. z\<in>A]. P(x)) <-> (\<forall>x\<in>A. P(x))" |
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
273 |
by blast |
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
274 |
|
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
275 |
lemma rex_is_bex [simp]: "(\<exists>x[%z. z\<in>A]. P(x)) <-> (\<exists>x\<in>A. P(x))" |
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
276 |
by blast |
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
277 |
|
13253 | 278 |
lemma atomize_rall: "(!!x. M(x) ==> P(x)) == Trueprop (ALL x[M]. P(x))"; |
279 |
by (simp add: rall_def atomize_all atomize_imp) |
|
280 |
||
281 |
declare atomize_rall [symmetric, rulify] |
|
282 |
||
283 |
lemma rall_simps1: |
|
284 |
"(ALL x[M]. P(x) & Q) <-> (ALL x[M]. P(x)) & ((ALL x[M]. False) | Q)" |
|
285 |
"(ALL x[M]. P(x) | Q) <-> ((ALL x[M]. P(x)) | Q)" |
|
286 |
"(ALL x[M]. P(x) --> Q) <-> ((EX x[M]. P(x)) --> Q)" |
|
13298 | 287 |
"(~(ALL x[M]. P(x))) <-> (EX x[M]. ~P(x))" |
13253 | 288 |
by blast+ |
289 |
||
290 |
lemma rall_simps2: |
|
291 |
"(ALL x[M]. P & Q(x)) <-> ((ALL x[M]. False) | P) & (ALL x[M]. Q(x))" |
|
292 |
"(ALL x[M]. P | Q(x)) <-> (P | (ALL x[M]. Q(x)))" |
|
293 |
"(ALL x[M]. P --> Q(x)) <-> (P --> (ALL x[M]. Q(x)))" |
|
294 |
by blast+ |
|
295 |
||
13289
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
296 |
lemmas rall_simps [simp] = rall_simps1 rall_simps2 |
13253 | 297 |
|
298 |
lemma rall_conj_distrib: |
|
299 |
"(ALL x[M]. P(x) & Q(x)) <-> ((ALL x[M]. P(x)) & (ALL x[M]. Q(x)))" |
|
300 |
by blast |
|
301 |
||
302 |
lemma rex_simps1: |
|
303 |
"(EX x[M]. P(x) & Q) <-> ((EX x[M]. P(x)) & Q)" |
|
304 |
"(EX x[M]. P(x) | Q) <-> (EX x[M]. P(x)) | ((EX x[M]. True) & Q)" |
|
305 |
"(EX x[M]. P(x) --> Q) <-> ((ALL x[M]. P(x)) --> ((EX x[M]. True) & Q))" |
|
306 |
"(~(EX x[M]. P(x))) <-> (ALL x[M]. ~P(x))" |
|
307 |
by blast+ |
|
308 |
||
309 |
lemma rex_simps2: |
|
310 |
"(EX x[M]. P & Q(x)) <-> (P & (EX x[M]. Q(x)))" |
|
311 |
"(EX x[M]. P | Q(x)) <-> ((EX x[M]. True) & P) | (EX x[M]. Q(x))" |
|
312 |
"(EX x[M]. P --> Q(x)) <-> (((ALL x[M]. False) | P) --> (EX x[M]. Q(x)))" |
|
313 |
by blast+ |
|
314 |
||
13289
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
315 |
lemmas rex_simps [simp] = rex_simps1 rex_simps2 |
13253 | 316 |
|
317 |
lemma rex_disj_distrib: |
|
318 |
"(EX x[M]. P(x) | Q(x)) <-> ((EX x[M]. P(x)) | (EX x[M]. Q(x)))" |
|
319 |
by blast |
|
320 |
||
321 |
||
13298 | 322 |
subsubsection{*One-point rule for bounded quantifiers*} |
13253 | 323 |
|
324 |
lemma rex_triv_one_point1 [simp]: "(EX x[M]. x=a) <-> ( M(a))" |
|
325 |
by blast |
|
326 |
||
327 |
lemma rex_triv_one_point2 [simp]: "(EX x[M]. a=x) <-> ( M(a))" |
|
328 |
by blast |
|
329 |
||
330 |
lemma rex_one_point1 [simp]: "(EX x[M]. x=a & P(x)) <-> ( M(a) & P(a))" |
|
331 |
by blast |
|
332 |
||
333 |
lemma rex_one_point2 [simp]: "(EX x[M]. a=x & P(x)) <-> ( M(a) & P(a))" |
|
334 |
by blast |
|
335 |
||
336 |
lemma rall_one_point1 [simp]: "(ALL x[M]. x=a --> P(x)) <-> ( M(a) --> P(a))" |
|
337 |
by blast |
|
338 |
||
339 |
lemma rall_one_point2 [simp]: "(ALL x[M]. a=x --> P(x)) <-> ( M(a) --> P(a))" |
|
340 |
by blast |
|
341 |
||
342 |
||
13298 | 343 |
subsubsection{*Sets as Classes*} |
344 |
||
24893 | 345 |
definition |
346 |
setclass :: "[i,i] => o" ("##_" [40] 40) where |
|
13362 | 347 |
"setclass(A) == %x. x : A" |
13298 | 348 |
|
13362 | 349 |
lemma setclass_iff [simp]: "setclass(A,x) <-> x : A" |
350 |
by (simp add: setclass_def) |
|
13298 | 351 |
|
13807
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
paulson
parents:
13615
diff
changeset
|
352 |
lemma rall_setclass_is_ball [simp]: "(\<forall>x[##A]. P(x)) <-> (\<forall>x\<in>A. P(x))" |
13298 | 353 |
by auto |
354 |
||
13807
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
paulson
parents:
13615
diff
changeset
|
355 |
lemma rex_setclass_is_bex [simp]: "(\<exists>x[##A]. P(x)) <-> (\<exists>x\<in>A. P(x))" |
13298 | 356 |
by auto |
357 |
||
358 |
||
13169 | 359 |
ML |
360 |
{* |
|
361 |
val Ord_atomize = |
|
24893 | 362 |
atomize ([("OrdQuant.oall", [@{thm ospec}]),("OrdQuant.rall", [@{thm rspec}])]@ |
13298 | 363 |
ZF_conn_pairs, |
13253 | 364 |
ZF_mem_pairs); |
26339 | 365 |
*} |
366 |
declaration {* fn _ => |
|
367 |
Simplifier.map_ss (fn ss => ss setmksimps (map mk_eq o Ord_atomize o gen_all)) |
|
13169 | 368 |
*} |
369 |
||
13462 | 370 |
text {* Setting up the one-point-rule simproc *} |
13253 | 371 |
|
26480 | 372 |
ML {* |
13462 | 373 |
local |
13253 | 374 |
|
24893 | 375 |
val unfold_rex_tac = unfold_tac [@{thm rex_def}]; |
18324 | 376 |
fun prove_rex_tac ss = unfold_rex_tac ss THEN Quantifier1.prove_one_point_ex_tac; |
13253 | 377 |
val rearrange_bex = Quantifier1.rearrange_bex prove_rex_tac; |
378 |
||
24893 | 379 |
val unfold_rall_tac = unfold_tac [@{thm rall_def}]; |
18324 | 380 |
fun prove_rall_tac ss = unfold_rall_tac ss THEN Quantifier1.prove_one_point_all_tac; |
13253 | 381 |
val rearrange_ball = Quantifier1.rearrange_ball prove_rall_tac; |
382 |
||
383 |
in |
|
384 |
||
28262
aa7ca36d67fd
back to dynamic the_context(), because static @{theory} is invalidated if ML environment changes within the same code block;
wenzelm
parents:
26480
diff
changeset
|
385 |
val defREX_regroup = Simplifier.simproc (the_context ()) |
13462 | 386 |
"defined REX" ["EX x[M]. P(x) & Q(x)"] rearrange_bex; |
28262
aa7ca36d67fd
back to dynamic the_context(), because static @{theory} is invalidated if ML environment changes within the same code block;
wenzelm
parents:
26480
diff
changeset
|
387 |
val defRALL_regroup = Simplifier.simproc (the_context ()) |
13462 | 388 |
"defined RALL" ["ALL x[M]. P(x) --> Q(x)"] rearrange_ball; |
13253 | 389 |
|
390 |
end; |
|
13462 | 391 |
|
392 |
Addsimprocs [defRALL_regroup,defREX_regroup]; |
|
13253 | 393 |
*} |
394 |
||
2469 | 395 |
end |