| author | nipkow | 
| Wed, 01 Apr 2009 18:41:15 +0200 | |
| changeset 30840 | 98809b3f5e3c | 
| parent 30663 | 0b6aff7451b2 | 
| child 31727 | 2621a957d417 | 
| permissions | -rw-r--r-- | 
| 13586 | 1 | (* Title: HOL/Library/FuncSet.thy | 
| 2 | Author: Florian Kammueller and Lawrence C Paulson | |
| 3 | *) | |
| 4 | ||
| 14706 | 5 | header {* Pi and Function Sets *}
 | 
| 13586 | 6 | |
| 15131 | 7 | theory FuncSet | 
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
28524diff
changeset | 8 | imports Hilbert_Choice Main | 
| 15131 | 9 | begin | 
| 13586 | 10 | |
| 19736 | 11 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 12 |   Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
 | 
| 19736 | 13 |   "Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
 | 
| 13586 | 14 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 15 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 16 |   extensional :: "'a set => ('a => 'b) set" where
 | 
| 28524 | 17 |   "extensional A = {f. \<forall>x. x~:A --> f x = undefined}"
 | 
| 13586 | 18 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 19 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 20 |   "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
 | 
| 28524 | 21 | "restrict f A = (%x. if x \<in> A then f x else undefined)" | 
| 13586 | 22 | |
| 19536 | 23 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 24 |   funcset :: "['a set, 'b set] => ('a => 'b) set"
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 25 | (infixr "->" 60) where | 
| 19536 | 26 | "A -> B == Pi A (%_. B)" | 
| 27 | ||
| 21210 | 28 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 29 | funcset (infixr "\<rightarrow>" 60) | 
| 19536 | 30 | |
| 13586 | 31 | syntax | 
| 19736 | 32 |   "_Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
 | 
| 33 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
 | |
| 13586 | 34 | |
| 35 | syntax (xsymbols) | |
| 19736 | 36 |   "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 37 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 13586 | 38 | |
| 14565 | 39 | syntax (HTML output) | 
| 19736 | 40 |   "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 41 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 14565 | 42 | |
| 13586 | 43 | translations | 
| 20770 | 44 | "PI x:A. B" == "CONST Pi A (%x. B)" | 
| 45 | "%x:A. f" == "CONST restrict (%x. f) A" | |
| 13586 | 46 | |
| 19736 | 47 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 48 |   "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
 | 
| 19736 | 49 | "compose A g f = (\<lambda>x\<in>A. g (f x))" | 
| 13586 | 50 | |
| 51 | ||
| 52 | subsection{*Basic Properties of @{term Pi}*}
 | |
| 53 | ||
| 54 | lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B" | |
| 14706 | 55 | by (simp add: Pi_def) | 
| 13586 | 56 | |
| 57 | lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B" | |
| 14706 | 58 | by (simp add: Pi_def) | 
| 13586 | 59 | |
| 60 | lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x" | |
| 14706 | 61 | by (simp add: Pi_def) | 
| 13586 | 62 | |
| 63 | lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B" | |
| 14706 | 64 | by (simp add: Pi_def) | 
| 13586 | 65 | |
| 14762 | 66 | lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B" | 
| 19736 | 67 | by (auto simp add: Pi_def) | 
| 14762 | 68 | |
| 13586 | 69 | lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
 | 
| 13593 | 70 | apply (simp add: Pi_def, auto) | 
| 13586 | 71 | txt{*Converse direction requires Axiom of Choice to exhibit a function
 | 
| 72 | picking an element from each non-empty @{term "B x"}*}
 | |
| 13593 | 73 | apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto) | 
| 14706 | 74 | apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto) | 
| 13586 | 75 | done | 
| 76 | ||
| 13593 | 77 | lemma Pi_empty [simp]: "Pi {} B = UNIV"
 | 
| 14706 | 78 | by (simp add: Pi_def) | 
| 13593 | 79 | |
| 80 | lemma Pi_UNIV [simp]: "A -> UNIV = UNIV" | |
| 14706 | 81 | by (simp add: Pi_def) | 
| 13586 | 82 | |
| 83 | text{*Covariance of Pi-sets in their second argument*}
 | |
| 84 | lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C" | |
| 14706 | 85 | by (simp add: Pi_def, blast) | 
| 13586 | 86 | |
| 87 | text{*Contravariance of Pi-sets in their first argument*}
 | |
| 88 | lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B" | |
| 14706 | 89 | by (simp add: Pi_def, blast) | 
| 13586 | 90 | |
| 91 | ||
| 92 | subsection{*Composition With a Restricted Domain: @{term compose}*}
 | |
| 93 | ||
| 14706 | 94 | lemma funcset_compose: | 
| 95 | "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C" | |
| 96 | by (simp add: Pi_def compose_def restrict_def) | |
| 13586 | 97 | |
| 98 | lemma compose_assoc: | |
| 14706 | 99 | "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |] | 
| 13586 | 100 | ==> compose A h (compose A g f) = compose A (compose B h g) f" | 
| 14706 | 101 | by (simp add: expand_fun_eq Pi_def compose_def restrict_def) | 
| 13586 | 102 | |
| 103 | lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))" | |
| 14706 | 104 | by (simp add: compose_def restrict_def) | 
| 13586 | 105 | |
| 106 | lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C" | |
| 14706 | 107 | by (auto simp add: image_def compose_eq) | 
| 13586 | 108 | |
| 109 | ||
| 110 | subsection{*Bounded Abstraction: @{term restrict}*}
 | |
| 111 | ||
| 112 | lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B" | |
| 14706 | 113 | by (simp add: Pi_def restrict_def) | 
| 13586 | 114 | |
| 115 | lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B" | |
| 14706 | 116 | by (simp add: Pi_def restrict_def) | 
| 13586 | 117 | |
| 118 | lemma restrict_apply [simp]: | |
| 28524 | 119 | "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" | 
| 14706 | 120 | by (simp add: restrict_def) | 
| 13586 | 121 | |
| 14706 | 122 | lemma restrict_ext: | 
| 13586 | 123 | "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" | 
| 14706 | 124 | by (simp add: expand_fun_eq Pi_def Pi_def restrict_def) | 
| 13586 | 125 | |
| 14853 | 126 | lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" | 
| 14706 | 127 | by (simp add: inj_on_def restrict_def) | 
| 13586 | 128 | |
| 129 | lemma Id_compose: | |
| 14706 | 130 | "[|f \<in> A -> B; f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f" | 
| 131 | by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def) | |
| 13586 | 132 | |
| 133 | lemma compose_Id: | |
| 14706 | 134 | "[|g \<in> A -> B; g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g" | 
| 135 | by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def) | |
| 13586 | 136 | |
| 14853 | 137 | lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" | 
| 19736 | 138 | by (auto simp add: restrict_def) | 
| 13586 | 139 | |
| 14745 | 140 | |
| 14762 | 141 | subsection{*Bijections Between Sets*}
 | 
| 142 | ||
| 26106 
be52145f482d
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas
 nipkow parents: 
21404diff
changeset | 143 | text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
 | 
| 14762 | 144 | the theorems belong here, or need at least @{term Hilbert_Choice}.*}
 | 
| 145 | ||
| 146 | lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" | |
| 19736 | 147 | by (auto simp add: bij_betw_def inj_on_Inv Pi_def) | 
| 14762 | 148 | |
| 14853 | 149 | lemma inj_on_compose: | 
| 150 | "[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A" | |
| 151 | by (auto simp add: bij_betw_def inj_on_def compose_eq) | |
| 152 | ||
| 14762 | 153 | lemma bij_betw_compose: | 
| 154 | "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C" | |
| 19736 | 155 | apply (simp add: bij_betw_def compose_eq inj_on_compose) | 
| 156 | apply (auto simp add: compose_def image_def) | |
| 157 | done | |
| 14762 | 158 | |
| 14853 | 159 | lemma bij_betw_restrict_eq [simp]: | 
| 160 | "bij_betw (restrict f A) A B = bij_betw f A B" | |
| 161 | by (simp add: bij_betw_def) | |
| 162 | ||
| 163 | ||
| 164 | subsection{*Extensionality*}
 | |
| 165 | ||
| 28524 | 166 | lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = undefined" | 
| 14853 | 167 | by (simp add: extensional_def) | 
| 168 | ||
| 169 | lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" | |
| 170 | by (simp add: restrict_def extensional_def) | |
| 171 | ||
| 172 | lemma compose_extensional [simp]: "compose A f g \<in> extensional A" | |
| 173 | by (simp add: compose_def) | |
| 174 | ||
| 175 | lemma extensionalityI: | |
| 176 | "[| f \<in> extensional A; g \<in> extensional A; | |
| 177 | !!x. x\<in>A ==> f x = g x |] ==> f = g" | |
| 178 | by (force simp add: expand_fun_eq extensional_def) | |
| 179 | ||
| 180 | lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B -> A" | |
| 181 | by (unfold Inv_def) (fast intro: restrict_in_funcset someI2) | |
| 182 | ||
| 183 | lemma compose_Inv_id: | |
| 184 | "bij_betw f A B ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)" | |
| 185 | apply (simp add: bij_betw_def compose_def) | |
| 186 | apply (rule restrict_ext, auto) | |
| 187 | apply (erule subst) | |
| 188 | apply (simp add: Inv_f_f) | |
| 189 | done | |
| 190 | ||
| 191 | lemma compose_id_Inv: | |
| 192 | "f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)" | |
| 193 | apply (simp add: compose_def) | |
| 194 | apply (rule restrict_ext) | |
| 195 | apply (simp add: f_Inv_f) | |
| 196 | done | |
| 197 | ||
| 14762 | 198 | |
| 14745 | 199 | subsection{*Cardinality*}
 | 
| 200 | ||
| 201 | lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)" | |
| 19736 | 202 | apply (rule card_inj_on_le) | 
| 203 | apply (auto simp add: Pi_def) | |
| 204 | done | |
| 14745 | 205 | |
| 206 | lemma card_bij: | |
| 207 | "[|f \<in> A\<rightarrow>B; inj_on f A; | |
| 208 | g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)" | |
| 19736 | 209 | by (blast intro: card_inj order_antisym) | 
| 14745 | 210 | |
| 13586 | 211 | end |