| author | nipkow | 
| Wed, 01 Apr 2009 18:41:15 +0200 | |
| changeset 30840 | 98809b3f5e3c | 
| parent 30663 | 0b6aff7451b2 | 
| child 31077 | 28dd6fd3d184 | 
| permissions | -rw-r--r-- | 
| 11355 | 1 | (* Title: HOL/Library/Nat_Infinity.thy | 
| 27110 | 2 | Author: David von Oheimb, TU Muenchen; Florian Haftmann, TU Muenchen | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 3 | *) | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 4 | |
| 14706 | 5 | header {* Natural numbers with infinity *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 6 | |
| 15131 | 7 | theory Nat_Infinity | 
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
29668diff
changeset | 8 | imports Main | 
| 15131 | 9 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 10 | |
| 27110 | 11 | subsection {* Type definition *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 12 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 13 | text {*
 | 
| 11355 | 14 | We extend the standard natural numbers by a special value indicating | 
| 27110 | 15 | infinity. | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 16 | *} | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 17 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 18 | datatype inat = Fin nat | Infty | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 19 | |
| 21210 | 20 | notation (xsymbols) | 
| 19736 | 21 |   Infty  ("\<infinity>")
 | 
| 22 | ||
| 21210 | 23 | notation (HTML output) | 
| 19736 | 24 |   Infty  ("\<infinity>")
 | 
| 25 | ||
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 26 | |
| 27110 | 27 | subsection {* Constructors and numbers *}
 | 
| 28 | ||
| 29 | instantiation inat :: "{zero, one, number}"
 | |
| 25594 | 30 | begin | 
| 31 | ||
| 32 | definition | |
| 27110 | 33 | "0 = Fin 0" | 
| 25594 | 34 | |
| 35 | definition | |
| 27110 | 36 | [code inline]: "1 = Fin 1" | 
| 25594 | 37 | |
| 38 | definition | |
| 28562 | 39 | [code inline, code del]: "number_of k = Fin (number_of k)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 40 | |
| 25594 | 41 | instance .. | 
| 42 | ||
| 43 | end | |
| 44 | ||
| 27110 | 45 | definition iSuc :: "inat \<Rightarrow> inat" where | 
| 46 | "iSuc i = (case i of Fin n \<Rightarrow> Fin (Suc n) | \<infinity> \<Rightarrow> \<infinity>)" | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 47 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 48 | lemma Fin_0: "Fin 0 = 0" | 
| 27110 | 49 | by (simp add: zero_inat_def) | 
| 50 | ||
| 51 | lemma Fin_1: "Fin 1 = 1" | |
| 52 | by (simp add: one_inat_def) | |
| 53 | ||
| 54 | lemma Fin_number: "Fin (number_of k) = number_of k" | |
| 55 | by (simp add: number_of_inat_def) | |
| 56 | ||
| 57 | lemma one_iSuc: "1 = iSuc 0" | |
| 58 | by (simp add: zero_inat_def one_inat_def iSuc_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 59 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 60 | lemma Infty_ne_i0 [simp]: "\<infinity> \<noteq> 0" | 
| 27110 | 61 | by (simp add: zero_inat_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 62 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 63 | lemma i0_ne_Infty [simp]: "0 \<noteq> \<infinity>" | 
| 27110 | 64 | by (simp add: zero_inat_def) | 
| 65 | ||
| 66 | lemma zero_inat_eq [simp]: | |
| 67 | "number_of k = (0\<Colon>inat) \<longleftrightarrow> number_of k = (0\<Colon>nat)" | |
| 68 | "(0\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (0\<Colon>nat)" | |
| 69 | unfolding zero_inat_def number_of_inat_def by simp_all | |
| 70 | ||
| 71 | lemma one_inat_eq [simp]: | |
| 72 | "number_of k = (1\<Colon>inat) \<longleftrightarrow> number_of k = (1\<Colon>nat)" | |
| 73 | "(1\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (1\<Colon>nat)" | |
| 74 | unfolding one_inat_def number_of_inat_def by simp_all | |
| 75 | ||
| 76 | lemma zero_one_inat_neq [simp]: | |
| 77 | "\<not> 0 = (1\<Colon>inat)" | |
| 78 | "\<not> 1 = (0\<Colon>inat)" | |
| 79 | unfolding zero_inat_def one_inat_def by simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 80 | |
| 27110 | 81 | lemma Infty_ne_i1 [simp]: "\<infinity> \<noteq> 1" | 
| 82 | by (simp add: one_inat_def) | |
| 83 | ||
| 84 | lemma i1_ne_Infty [simp]: "1 \<noteq> \<infinity>" | |
| 85 | by (simp add: one_inat_def) | |
| 86 | ||
| 87 | lemma Infty_ne_number [simp]: "\<infinity> \<noteq> number_of k" | |
| 88 | by (simp add: number_of_inat_def) | |
| 89 | ||
| 90 | lemma number_ne_Infty [simp]: "number_of k \<noteq> \<infinity>" | |
| 91 | by (simp add: number_of_inat_def) | |
| 92 | ||
| 93 | lemma iSuc_Fin: "iSuc (Fin n) = Fin (Suc n)" | |
| 94 | by (simp add: iSuc_def) | |
| 95 | ||
| 96 | lemma iSuc_number_of: "iSuc (number_of k) = Fin (Suc (number_of k))" | |
| 97 | by (simp add: iSuc_Fin number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 98 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 99 | lemma iSuc_Infty [simp]: "iSuc \<infinity> = \<infinity>" | 
| 27110 | 100 | by (simp add: iSuc_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 101 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 102 | lemma iSuc_ne_0 [simp]: "iSuc n \<noteq> 0" | 
| 27110 | 103 | by (simp add: iSuc_def zero_inat_def split: inat.splits) | 
| 104 | ||
| 105 | lemma zero_ne_iSuc [simp]: "0 \<noteq> iSuc n" | |
| 106 | by (rule iSuc_ne_0 [symmetric]) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 107 | |
| 27110 | 108 | lemma iSuc_inject [simp]: "iSuc m = iSuc n \<longleftrightarrow> m = n" | 
| 109 | by (simp add: iSuc_def split: inat.splits) | |
| 110 | ||
| 111 | lemma number_of_inat_inject [simp]: | |
| 112 | "(number_of k \<Colon> inat) = number_of l \<longleftrightarrow> (number_of k \<Colon> nat) = number_of l" | |
| 113 | by (simp add: number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 114 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 115 | |
| 27110 | 116 | subsection {* Addition *}
 | 
| 117 | ||
| 118 | instantiation inat :: comm_monoid_add | |
| 119 | begin | |
| 120 | ||
| 121 | definition | |
| 122 | [code del]: "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | Fin m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | Fin n \<Rightarrow> Fin (m + n)))" | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 123 | |
| 27110 | 124 | lemma plus_inat_simps [simp, code]: | 
| 125 | "Fin m + Fin n = Fin (m + n)" | |
| 126 | "\<infinity> + q = \<infinity>" | |
| 127 | "q + \<infinity> = \<infinity>" | |
| 128 | by (simp_all add: plus_inat_def split: inat.splits) | |
| 129 | ||
| 130 | instance proof | |
| 131 | fix n m q :: inat | |
| 132 | show "n + m + q = n + (m + q)" | |
| 133 | by (cases n, auto, cases m, auto, cases q, auto) | |
| 134 | show "n + m = m + n" | |
| 135 | by (cases n, auto, cases m, auto) | |
| 136 | show "0 + n = n" | |
| 137 | by (cases n) (simp_all add: zero_inat_def) | |
| 26089 | 138 | qed | 
| 139 | ||
| 27110 | 140 | end | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 141 | |
| 27110 | 142 | lemma plus_inat_0 [simp]: | 
| 143 | "0 + (q\<Colon>inat) = q" | |
| 144 | "(q\<Colon>inat) + 0 = q" | |
| 145 | by (simp_all add: plus_inat_def zero_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 146 | |
| 27110 | 147 | lemma plus_inat_number [simp]: | 
| 29012 | 148 | "(number_of k \<Colon> inat) + number_of l = (if k < Int.Pls then number_of l | 
| 149 | else if l < Int.Pls then number_of k else number_of (k + l))" | |
| 27110 | 150 | unfolding number_of_inat_def plus_inat_simps nat_arith(1) if_distrib [symmetric, of _ Fin] .. | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 151 | |
| 27110 | 152 | lemma iSuc_number [simp]: | 
| 153 | "iSuc (number_of k) = (if neg (number_of k \<Colon> int) then 1 else number_of (Int.succ k))" | |
| 154 | unfolding iSuc_number_of | |
| 155 | unfolding one_inat_def number_of_inat_def Suc_nat_number_of if_distrib [symmetric] .. | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 156 | |
| 27110 | 157 | lemma iSuc_plus_1: | 
| 158 | "iSuc n = n + 1" | |
| 159 | by (cases n) (simp_all add: iSuc_Fin one_inat_def) | |
| 160 | ||
| 161 | lemma plus_1_iSuc: | |
| 162 | "1 + q = iSuc q" | |
| 163 | "q + 1 = iSuc q" | |
| 164 | unfolding iSuc_plus_1 by (simp_all add: add_ac) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 165 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 166 | |
| 29014 | 167 | subsection {* Multiplication *}
 | 
| 168 | ||
| 169 | instantiation inat :: comm_semiring_1 | |
| 170 | begin | |
| 171 | ||
| 172 | definition | |
| 173 | times_inat_def [code del]: | |
| 174 | "m * n = (case m of \<infinity> \<Rightarrow> if n = 0 then 0 else \<infinity> | Fin m \<Rightarrow> | |
| 175 | (case n of \<infinity> \<Rightarrow> if m = 0 then 0 else \<infinity> | Fin n \<Rightarrow> Fin (m * n)))" | |
| 176 | ||
| 177 | lemma times_inat_simps [simp, code]: | |
| 178 | "Fin m * Fin n = Fin (m * n)" | |
| 179 | "\<infinity> * \<infinity> = \<infinity>" | |
| 180 | "\<infinity> * Fin n = (if n = 0 then 0 else \<infinity>)" | |
| 181 | "Fin m * \<infinity> = (if m = 0 then 0 else \<infinity>)" | |
| 182 | unfolding times_inat_def zero_inat_def | |
| 183 | by (simp_all split: inat.split) | |
| 184 | ||
| 185 | instance proof | |
| 186 | fix a b c :: inat | |
| 187 | show "(a * b) * c = a * (b * c)" | |
| 188 | unfolding times_inat_def zero_inat_def | |
| 189 | by (simp split: inat.split) | |
| 190 | show "a * b = b * a" | |
| 191 | unfolding times_inat_def zero_inat_def | |
| 192 | by (simp split: inat.split) | |
| 193 | show "1 * a = a" | |
| 194 | unfolding times_inat_def zero_inat_def one_inat_def | |
| 195 | by (simp split: inat.split) | |
| 196 | show "(a + b) * c = a * c + b * c" | |
| 197 | unfolding times_inat_def zero_inat_def | |
| 198 | by (simp split: inat.split add: left_distrib) | |
| 199 | show "0 * a = 0" | |
| 200 | unfolding times_inat_def zero_inat_def | |
| 201 | by (simp split: inat.split) | |
| 202 | show "a * 0 = 0" | |
| 203 | unfolding times_inat_def zero_inat_def | |
| 204 | by (simp split: inat.split) | |
| 205 | show "(0::inat) \<noteq> 1" | |
| 206 | unfolding zero_inat_def one_inat_def | |
| 207 | by simp | |
| 208 | qed | |
| 209 | ||
| 210 | end | |
| 211 | ||
| 212 | lemma mult_iSuc: "iSuc m * n = n + m * n" | |
| 29667 | 213 | unfolding iSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 214 | |
| 215 | lemma mult_iSuc_right: "m * iSuc n = m + m * n" | |
| 29667 | 216 | unfolding iSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 217 | |
| 29023 | 218 | lemma of_nat_eq_Fin: "of_nat n = Fin n" | 
| 219 | apply (induct n) | |
| 220 | apply (simp add: Fin_0) | |
| 221 | apply (simp add: plus_1_iSuc iSuc_Fin) | |
| 222 | done | |
| 223 | ||
| 224 | instance inat :: semiring_char_0 | |
| 225 | by default (simp add: of_nat_eq_Fin) | |
| 226 | ||
| 29014 | 227 | |
| 27110 | 228 | subsection {* Ordering *}
 | 
| 229 | ||
| 230 | instantiation inat :: ordered_ab_semigroup_add | |
| 231 | begin | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 232 | |
| 27110 | 233 | definition | 
| 234 | [code del]: "m \<le> n = (case n of Fin n1 \<Rightarrow> (case m of Fin m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False) | |
| 235 | | \<infinity> \<Rightarrow> True)" | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 236 | |
| 27110 | 237 | definition | 
| 238 | [code del]: "m < n = (case m of Fin m1 \<Rightarrow> (case n of Fin n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True) | |
| 239 | | \<infinity> \<Rightarrow> False)" | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 240 | |
| 27110 | 241 | lemma inat_ord_simps [simp]: | 
| 242 | "Fin m \<le> Fin n \<longleftrightarrow> m \<le> n" | |
| 243 | "Fin m < Fin n \<longleftrightarrow> m < n" | |
| 244 | "q \<le> \<infinity>" | |
| 245 | "q < \<infinity> \<longleftrightarrow> q \<noteq> \<infinity>" | |
| 246 | "\<infinity> \<le> q \<longleftrightarrow> q = \<infinity>" | |
| 247 | "\<infinity> < q \<longleftrightarrow> False" | |
| 248 | by (simp_all add: less_eq_inat_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 249 | |
| 27110 | 250 | lemma inat_ord_code [code]: | 
| 251 | "Fin m \<le> Fin n \<longleftrightarrow> m \<le> n" | |
| 252 | "Fin m < Fin n \<longleftrightarrow> m < n" | |
| 253 | "q \<le> \<infinity> \<longleftrightarrow> True" | |
| 254 | "Fin m < \<infinity> \<longleftrightarrow> True" | |
| 255 | "\<infinity> \<le> Fin n \<longleftrightarrow> False" | |
| 256 | "\<infinity> < q \<longleftrightarrow> False" | |
| 257 | by simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 258 | |
| 27110 | 259 | instance by default | 
| 260 | (auto simp add: less_eq_inat_def less_inat_def plus_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 261 | |
| 27110 | 262 | end | 
| 263 | ||
| 29014 | 264 | instance inat :: pordered_comm_semiring | 
| 265 | proof | |
| 266 | fix a b c :: inat | |
| 267 | assume "a \<le> b" and "0 \<le> c" | |
| 268 | thus "c * a \<le> c * b" | |
| 269 | unfolding times_inat_def less_eq_inat_def zero_inat_def | |
| 270 | by (simp split: inat.splits) | |
| 271 | qed | |
| 272 | ||
| 27110 | 273 | lemma inat_ord_number [simp]: | 
| 274 | "(number_of m \<Colon> inat) \<le> number_of n \<longleftrightarrow> (number_of m \<Colon> nat) \<le> number_of n" | |
| 275 | "(number_of m \<Colon> inat) < number_of n \<longleftrightarrow> (number_of m \<Colon> nat) < number_of n" | |
| 276 | by (simp_all add: number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 277 | |
| 27110 | 278 | lemma i0_lb [simp]: "(0\<Colon>inat) \<le> n" | 
| 279 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 280 | |
| 27110 | 281 | lemma i0_neq [simp]: "n \<le> (0\<Colon>inat) \<longleftrightarrow> n = 0" | 
| 282 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 283 | ||
| 284 | lemma Infty_ileE [elim!]: "\<infinity> \<le> Fin m \<Longrightarrow> R" | |
| 285 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 286 | |
| 27110 | 287 | lemma Infty_ilessE [elim!]: "\<infinity> < Fin m \<Longrightarrow> R" | 
| 288 | by simp | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 289 | |
| 27110 | 290 | lemma not_ilessi0 [simp]: "\<not> n < (0\<Colon>inat)" | 
| 291 | by (simp add: zero_inat_def less_inat_def split: inat.splits) | |
| 292 | ||
| 293 | lemma i0_eq [simp]: "(0\<Colon>inat) < n \<longleftrightarrow> n \<noteq> 0" | |
| 294 | by (simp add: zero_inat_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 295 | |
| 27110 | 296 | lemma iSuc_ile_mono [simp]: "iSuc n \<le> iSuc m \<longleftrightarrow> n \<le> m" | 
| 297 | by (simp add: iSuc_def less_eq_inat_def split: inat.splits) | |
| 298 | ||
| 299 | lemma iSuc_mono [simp]: "iSuc n < iSuc m \<longleftrightarrow> n < m" | |
| 300 | by (simp add: iSuc_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 301 | |
| 27110 | 302 | lemma ile_iSuc [simp]: "n \<le> iSuc n" | 
| 303 | by (simp add: iSuc_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 304 | |
| 11355 | 305 | lemma not_iSuc_ilei0 [simp]: "\<not> iSuc n \<le> 0" | 
| 27110 | 306 | by (simp add: zero_inat_def iSuc_def less_eq_inat_def split: inat.splits) | 
| 307 | ||
| 308 | lemma i0_iless_iSuc [simp]: "0 < iSuc n" | |
| 309 | by (simp add: zero_inat_def iSuc_def less_inat_def split: inat.splits) | |
| 310 | ||
| 311 | lemma ileI1: "m < n \<Longrightarrow> iSuc m \<le> n" | |
| 312 | by (simp add: iSuc_def less_eq_inat_def less_inat_def split: inat.splits) | |
| 313 | ||
| 314 | lemma Suc_ile_eq: "Fin (Suc m) \<le> n \<longleftrightarrow> Fin m < n" | |
| 315 | by (cases n) auto | |
| 316 | ||
| 317 | lemma iless_Suc_eq [simp]: "Fin m < iSuc n \<longleftrightarrow> Fin m \<le> n" | |
| 318 | by (auto simp add: iSuc_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 319 | |
| 27110 | 320 | lemma min_inat_simps [simp]: | 
| 321 | "min (Fin m) (Fin n) = Fin (min m n)" | |
| 322 | "min q 0 = 0" | |
| 323 | "min 0 q = 0" | |
| 324 | "min q \<infinity> = q" | |
| 325 | "min \<infinity> q = q" | |
| 326 | by (auto simp add: min_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 327 | |
| 27110 | 328 | lemma max_inat_simps [simp]: | 
| 329 | "max (Fin m) (Fin n) = Fin (max m n)" | |
| 330 | "max q 0 = q" | |
| 331 | "max 0 q = q" | |
| 332 | "max q \<infinity> = \<infinity>" | |
| 333 | "max \<infinity> q = \<infinity>" | |
| 334 | by (simp_all add: max_def) | |
| 335 | ||
| 336 | lemma Fin_ile: "n \<le> Fin m \<Longrightarrow> \<exists>k. n = Fin k" | |
| 337 | by (cases n) simp_all | |
| 338 | ||
| 339 | lemma Fin_iless: "n < Fin m \<Longrightarrow> \<exists>k. n = Fin k" | |
| 340 | by (cases n) simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 341 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 342 | lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j ==> \<exists>j. Fin k < Y j" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 343 | apply (induct_tac k) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 344 | apply (simp (no_asm) only: Fin_0) | 
| 27110 | 345 | apply (fast intro: le_less_trans [OF i0_lb]) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 346 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 347 | apply (drule spec) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 348 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 349 | apply (drule ileI1) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 350 | apply (rule iSuc_Fin [THEN subst]) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 351 | apply (rule exI) | 
| 27110 | 352 | apply (erule (1) le_less_trans) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 353 | done | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 354 | |
| 29337 | 355 | instantiation inat :: "{bot, top}"
 | 
| 356 | begin | |
| 357 | ||
| 358 | definition bot_inat :: inat where | |
| 359 | "bot_inat = 0" | |
| 360 | ||
| 361 | definition top_inat :: inat where | |
| 362 | "top_inat = \<infinity>" | |
| 363 | ||
| 364 | instance proof | |
| 365 | qed (simp_all add: bot_inat_def top_inat_def) | |
| 366 | ||
| 367 | end | |
| 368 | ||
| 26089 | 369 | |
| 27110 | 370 | subsection {* Well-ordering *}
 | 
| 26089 | 371 | |
| 372 | lemma less_FinE: | |
| 373 | "[| n < Fin m; !!k. n = Fin k ==> k < m ==> P |] ==> P" | |
| 374 | by (induct n) auto | |
| 375 | ||
| 376 | lemma less_InftyE: | |
| 377 | "[| n < Infty; !!k. n = Fin k ==> P |] ==> P" | |
| 378 | by (induct n) auto | |
| 379 | ||
| 380 | lemma inat_less_induct: | |
| 381 | assumes prem: "!!n. \<forall>m::inat. m < n --> P m ==> P n" shows "P n" | |
| 382 | proof - | |
| 383 | have P_Fin: "!!k. P (Fin k)" | |
| 384 | apply (rule nat_less_induct) | |
| 385 | apply (rule prem, clarify) | |
| 386 | apply (erule less_FinE, simp) | |
| 387 | done | |
| 388 | show ?thesis | |
| 389 | proof (induct n) | |
| 390 | fix nat | |
| 391 | show "P (Fin nat)" by (rule P_Fin) | |
| 392 | next | |
| 393 | show "P Infty" | |
| 394 | apply (rule prem, clarify) | |
| 395 | apply (erule less_InftyE) | |
| 396 | apply (simp add: P_Fin) | |
| 397 | done | |
| 398 | qed | |
| 399 | qed | |
| 400 | ||
| 401 | instance inat :: wellorder | |
| 402 | proof | |
| 27823 | 403 | fix P and n | 
| 404 | assume hyp: "(\<And>n\<Colon>inat. (\<And>m\<Colon>inat. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)" | |
| 405 | show "P n" by (blast intro: inat_less_induct hyp) | |
| 26089 | 406 | qed | 
| 407 | ||
| 27110 | 408 | |
| 409 | subsection {* Traditional theorem names *}
 | |
| 410 | ||
| 411 | lemmas inat_defs = zero_inat_def one_inat_def number_of_inat_def iSuc_def | |
| 412 | plus_inat_def less_eq_inat_def less_inat_def | |
| 413 | ||
| 414 | lemmas inat_splits = inat.splits | |
| 415 | ||
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 416 | end |