| author | haftmann | 
| Tue, 30 Nov 2010 17:19:11 +0100 | |
| changeset 40822 | 98a5faa5aec0 | 
| parent 35762 | af3ff2ba4c54 | 
| child 45608 | 13b101cee425 | 
| permissions | -rw-r--r-- | 
| 
9654
 
9754ba005b64
X-symbols for ordinal, cardinal, integer arithmetic
 
paulson 
parents: 
9492 
diff
changeset
 | 
1  | 
(* Title: ZF/Arith.thy  | 
| 1478 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 3  | 
Copyright 1992 University of Cambridge  | 
4  | 
*)  | 
|
5  | 
||
| 13163 | 6  | 
(*"Difference" is subtraction of natural numbers.  | 
7  | 
There are no negative numbers; we have  | 
|
8  | 
m #- n = 0 iff m<=n and m #- n = succ(k) iff m>n.  | 
|
9  | 
Also, rec(m, 0, %z w.z) is pred(m).  | 
|
10  | 
*)  | 
|
11  | 
||
| 13328 | 12  | 
header{*Arithmetic Operators and Their Definitions*} 
 | 
13  | 
||
| 16417 | 14  | 
theory Arith imports Univ begin  | 
| 6070 | 15  | 
|
| 13328 | 16  | 
text{*Proofs about elementary arithmetic: addition, multiplication, etc.*}
 | 
17  | 
||
| 24893 | 18  | 
definition  | 
19  | 
pred :: "i=>i" (*inverse of succ*) where  | 
|
| 13361 | 20  | 
"pred(y) == nat_case(0, %x. x, y)"  | 
| 6070 | 21  | 
|
| 24893 | 22  | 
definition  | 
23  | 
natify :: "i=>i" (*coerces non-nats to nats*) where  | 
|
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
24  | 
"natify == Vrecursor(%f a. if a = succ(pred(a)) then succ(f`pred(a))  | 
| 
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
25  | 
else 0)"  | 
| 6070 | 26  | 
|
| 0 | 27  | 
consts  | 
| 13163 | 28  | 
raw_add :: "[i,i]=>i"  | 
29  | 
raw_diff :: "[i,i]=>i"  | 
|
30  | 
raw_mult :: "[i,i]=>i"  | 
|
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
31  | 
|
| 
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
32  | 
primrec  | 
| 
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
33  | 
"raw_add (0, n) = n"  | 
| 
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
34  | 
"raw_add (succ(m), n) = succ(raw_add(m, n))"  | 
| 0 | 35  | 
|
| 6070 | 36  | 
primrec  | 
| 13163 | 37  | 
raw_diff_0: "raw_diff(m, 0) = m"  | 
38  | 
raw_diff_succ: "raw_diff(m, succ(n)) =  | 
|
39  | 
nat_case(0, %x. x, raw_diff(m, n))"  | 
|
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
40  | 
|
| 
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
41  | 
primrec  | 
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
42  | 
"raw_mult(0, n) = 0"  | 
| 
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
43  | 
"raw_mult(succ(m), n) = raw_add (n, raw_mult(m, n))"  | 
| 13163 | 44  | 
|
| 24893 | 45  | 
definition  | 
46  | 
add :: "[i,i]=>i" (infixl "#+" 65) where  | 
|
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
47  | 
"m #+ n == raw_add (natify(m), natify(n))"  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
48  | 
|
| 24893 | 49  | 
definition  | 
50  | 
diff :: "[i,i]=>i" (infixl "#-" 65) where  | 
|
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
51  | 
"m #- n == raw_diff (natify(m), natify(n))"  | 
| 0 | 52  | 
|
| 24893 | 53  | 
definition  | 
54  | 
mult :: "[i,i]=>i" (infixl "#*" 70) where  | 
|
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
55  | 
"m #* n == raw_mult (natify(m), natify(n))"  | 
| 
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
56  | 
|
| 24893 | 57  | 
definition  | 
58  | 
raw_div :: "[i,i]=>i" where  | 
|
| 13163 | 59  | 
"raw_div (m, n) ==  | 
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
60  | 
transrec(m, %j f. if j<n | n=0 then 0 else succ(f`(j#-n)))"  | 
| 
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
61  | 
|
| 24893 | 62  | 
definition  | 
63  | 
raw_mod :: "[i,i]=>i" where  | 
|
| 13163 | 64  | 
"raw_mod (m, n) ==  | 
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
65  | 
transrec(m, %j f. if j<n | n=0 then j else f`(j#-n))"  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
66  | 
|
| 24893 | 67  | 
definition  | 
68  | 
div :: "[i,i]=>i" (infixl "div" 70) where  | 
|
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
69  | 
"m div n == raw_div (natify(m), natify(n))"  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
70  | 
|
| 24893 | 71  | 
definition  | 
72  | 
mod :: "[i,i]=>i" (infixl "mod" 70) where  | 
|
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
73  | 
"m mod n == raw_mod (natify(m), natify(n))"  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
74  | 
|
| 24893 | 75  | 
notation (xsymbols)  | 
76  | 
mult (infixr "#\<times>" 70)  | 
|
| 9964 | 77  | 
|
| 24893 | 78  | 
notation (HTML output)  | 
79  | 
mult (infixr "#\<times>" 70)  | 
|
| 13163 | 80  | 
|
81  | 
declare rec_type [simp]  | 
|
82  | 
nat_0_le [simp]  | 
|
83  | 
||
84  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
85  | 
lemma zero_lt_lemma: "[| 0<k; k \<in> nat |] ==> \<exists>j\<in>nat. k = succ(j)"  | 
| 13163 | 86  | 
apply (erule rev_mp)  | 
87  | 
apply (induct_tac "k", auto)  | 
|
88  | 
done  | 
|
89  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
90  | 
(* [| 0 < k; k \<in> nat; !!j. [| j \<in> nat; k = succ(j) |] ==> Q |] ==> Q *)  | 
| 13163 | 91  | 
lemmas zero_lt_natE = zero_lt_lemma [THEN bexE, standard]  | 
92  | 
||
93  | 
||
| 13356 | 94  | 
subsection{*@{text natify}, the Coercion to @{term nat}*}
 | 
| 13163 | 95  | 
|
96  | 
lemma pred_succ_eq [simp]: "pred(succ(y)) = y"  | 
|
97  | 
by (unfold pred_def, auto)  | 
|
98  | 
||
99  | 
lemma natify_succ: "natify(succ(x)) = succ(natify(x))"  | 
|
100  | 
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)  | 
|
101  | 
||
102  | 
lemma natify_0 [simp]: "natify(0) = 0"  | 
|
103  | 
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)  | 
|
104  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
105  | 
lemma natify_non_succ: "\<forall>z. x ~= succ(z) ==> natify(x) = 0"  | 
| 13163 | 106  | 
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)  | 
107  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
108  | 
lemma natify_in_nat [iff,TC]: "natify(x) \<in> nat"  | 
| 13163 | 109  | 
apply (rule_tac a=x in eps_induct)  | 
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
110  | 
apply (case_tac "\<exists>z. x = succ(z)")  | 
| 13163 | 111  | 
apply (auto simp add: natify_succ natify_non_succ)  | 
112  | 
done  | 
|
113  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
114  | 
lemma natify_ident [simp]: "n \<in> nat ==> natify(n) = n"  | 
| 13163 | 115  | 
apply (induct_tac "n")  | 
116  | 
apply (auto simp add: natify_succ)  | 
|
117  | 
done  | 
|
118  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
119  | 
lemma natify_eqE: "[|natify(x) = y; x \<in> nat|] ==> x=y"  | 
| 13163 | 120  | 
by auto  | 
121  | 
||
122  | 
||
123  | 
(*** Collapsing rules: to remove natify from arithmetic expressions ***)  | 
|
124  | 
||
125  | 
lemma natify_idem [simp]: "natify(natify(x)) = natify(x)"  | 
|
126  | 
by simp  | 
|
127  | 
||
128  | 
(** Addition **)  | 
|
129  | 
||
130  | 
lemma add_natify1 [simp]: "natify(m) #+ n = m #+ n"  | 
|
131  | 
by (simp add: add_def)  | 
|
132  | 
||
133  | 
lemma add_natify2 [simp]: "m #+ natify(n) = m #+ n"  | 
|
134  | 
by (simp add: add_def)  | 
|
135  | 
||
136  | 
(** Multiplication **)  | 
|
137  | 
||
138  | 
lemma mult_natify1 [simp]: "natify(m) #* n = m #* n"  | 
|
139  | 
by (simp add: mult_def)  | 
|
140  | 
||
141  | 
lemma mult_natify2 [simp]: "m #* natify(n) = m #* n"  | 
|
142  | 
by (simp add: mult_def)  | 
|
143  | 
||
144  | 
(** Difference **)  | 
|
145  | 
||
146  | 
lemma diff_natify1 [simp]: "natify(m) #- n = m #- n"  | 
|
147  | 
by (simp add: diff_def)  | 
|
148  | 
||
149  | 
lemma diff_natify2 [simp]: "m #- natify(n) = m #- n"  | 
|
150  | 
by (simp add: diff_def)  | 
|
151  | 
||
152  | 
(** Remainder **)  | 
|
153  | 
||
154  | 
lemma mod_natify1 [simp]: "natify(m) mod n = m mod n"  | 
|
155  | 
by (simp add: mod_def)  | 
|
156  | 
||
157  | 
lemma mod_natify2 [simp]: "m mod natify(n) = m mod n"  | 
|
158  | 
by (simp add: mod_def)  | 
|
159  | 
||
160  | 
||
161  | 
(** Quotient **)  | 
|
162  | 
||
163  | 
lemma div_natify1 [simp]: "natify(m) div n = m div n"  | 
|
164  | 
by (simp add: div_def)  | 
|
165  | 
||
166  | 
lemma div_natify2 [simp]: "m div natify(n) = m div n"  | 
|
167  | 
by (simp add: div_def)  | 
|
168  | 
||
169  | 
||
| 13356 | 170  | 
subsection{*Typing rules*}
 | 
| 13163 | 171  | 
|
172  | 
(** Addition **)  | 
|
173  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
174  | 
lemma raw_add_type: "[| m\<in>nat; n\<in>nat |] ==> raw_add (m, n) \<in> nat"  | 
| 13163 | 175  | 
by (induct_tac "m", auto)  | 
176  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
177  | 
lemma add_type [iff,TC]: "m #+ n \<in> nat"  | 
| 13163 | 178  | 
by (simp add: add_def raw_add_type)  | 
179  | 
||
180  | 
(** Multiplication **)  | 
|
181  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
182  | 
lemma raw_mult_type: "[| m\<in>nat; n\<in>nat |] ==> raw_mult (m, n) \<in> nat"  | 
| 13163 | 183  | 
apply (induct_tac "m")  | 
184  | 
apply (simp_all add: raw_add_type)  | 
|
185  | 
done  | 
|
186  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
187  | 
lemma mult_type [iff,TC]: "m #* n \<in> nat"  | 
| 13163 | 188  | 
by (simp add: mult_def raw_mult_type)  | 
189  | 
||
190  | 
||
191  | 
(** Difference **)  | 
|
192  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
193  | 
lemma raw_diff_type: "[| m\<in>nat; n\<in>nat |] ==> raw_diff (m, n) \<in> nat"  | 
| 13173 | 194  | 
by (induct_tac "n", auto)  | 
| 13163 | 195  | 
|
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
196  | 
lemma diff_type [iff,TC]: "m #- n \<in> nat"  | 
| 13163 | 197  | 
by (simp add: diff_def raw_diff_type)  | 
198  | 
||
199  | 
lemma diff_0_eq_0 [simp]: "0 #- n = 0"  | 
|
200  | 
apply (unfold diff_def)  | 
|
201  | 
apply (rule natify_in_nat [THEN nat_induct], auto)  | 
|
202  | 
done  | 
|
203  | 
||
204  | 
(*Must simplify BEFORE the induction: else we get a critical pair*)  | 
|
205  | 
lemma diff_succ_succ [simp]: "succ(m) #- succ(n) = m #- n"  | 
|
206  | 
apply (simp add: natify_succ diff_def)  | 
|
| 13784 | 207  | 
apply (rule_tac x1 = n in natify_in_nat [THEN nat_induct], auto)  | 
| 13163 | 208  | 
done  | 
209  | 
||
210  | 
(*This defining property is no longer wanted*)  | 
|
211  | 
declare raw_diff_succ [simp del]  | 
|
212  | 
||
213  | 
(*Natify has weakened this law, compared with the older approach*)  | 
|
214  | 
lemma diff_0 [simp]: "m #- 0 = natify(m)"  | 
|
215  | 
by (simp add: diff_def)  | 
|
216  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
217  | 
lemma diff_le_self: "m\<in>nat ==> (m #- n) le m"  | 
| 13163 | 218  | 
apply (subgoal_tac " (m #- natify (n)) le m")  | 
| 13784 | 219  | 
apply (rule_tac [2] m = m and n = "natify (n) " in diff_induct)  | 
| 13163 | 220  | 
apply (erule_tac [6] leE)  | 
221  | 
apply (simp_all add: le_iff)  | 
|
222  | 
done  | 
|
223  | 
||
224  | 
||
| 13356 | 225  | 
subsection{*Addition*}
 | 
| 13163 | 226  | 
|
227  | 
(*Natify has weakened this law, compared with the older approach*)  | 
|
228  | 
lemma add_0_natify [simp]: "0 #+ m = natify(m)"  | 
|
229  | 
by (simp add: add_def)  | 
|
230  | 
||
231  | 
lemma add_succ [simp]: "succ(m) #+ n = succ(m #+ n)"  | 
|
232  | 
by (simp add: natify_succ add_def)  | 
|
233  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
234  | 
lemma add_0: "m \<in> nat ==> 0 #+ m = m"  | 
| 13163 | 235  | 
by simp  | 
236  | 
||
237  | 
(*Associative law for addition*)  | 
|
238  | 
lemma add_assoc: "(m #+ n) #+ k = m #+ (n #+ k)"  | 
|
239  | 
apply (subgoal_tac "(natify(m) #+ natify(n)) #+ natify(k) =  | 
|
240  | 
natify(m) #+ (natify(n) #+ natify(k))")  | 
|
241  | 
apply (rule_tac [2] n = "natify(m)" in nat_induct)  | 
|
242  | 
apply auto  | 
|
243  | 
done  | 
|
244  | 
||
245  | 
(*The following two lemmas are used for add_commute and sometimes  | 
|
246  | 
elsewhere, since they are safe for rewriting.*)  | 
|
247  | 
lemma add_0_right_natify [simp]: "m #+ 0 = natify(m)"  | 
|
248  | 
apply (subgoal_tac "natify(m) #+ 0 = natify(m)")  | 
|
249  | 
apply (rule_tac [2] n = "natify(m)" in nat_induct)  | 
|
250  | 
apply auto  | 
|
251  | 
done  | 
|
252  | 
||
253  | 
lemma add_succ_right [simp]: "m #+ succ(n) = succ(m #+ n)"  | 
|
254  | 
apply (unfold add_def)  | 
|
255  | 
apply (rule_tac n = "natify(m) " in nat_induct)  | 
|
256  | 
apply (auto simp add: natify_succ)  | 
|
257  | 
done  | 
|
258  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
259  | 
lemma add_0_right: "m \<in> nat ==> m #+ 0 = m"  | 
| 13163 | 260  | 
by auto  | 
261  | 
||
262  | 
(*Commutative law for addition*)  | 
|
263  | 
lemma add_commute: "m #+ n = n #+ m"  | 
|
264  | 
apply (subgoal_tac "natify(m) #+ natify(n) = natify(n) #+ natify(m) ")  | 
|
265  | 
apply (rule_tac [2] n = "natify(m) " in nat_induct)  | 
|
266  | 
apply auto  | 
|
267  | 
done  | 
|
268  | 
||
269  | 
(*for a/c rewriting*)  | 
|
270  | 
lemma add_left_commute: "m#+(n#+k)=n#+(m#+k)"  | 
|
271  | 
apply (rule add_commute [THEN trans])  | 
|
272  | 
apply (rule add_assoc [THEN trans])  | 
|
273  | 
apply (rule add_commute [THEN subst_context])  | 
|
274  | 
done  | 
|
275  | 
||
276  | 
(*Addition is an AC-operator*)  | 
|
277  | 
lemmas add_ac = add_assoc add_commute add_left_commute  | 
|
278  | 
||
279  | 
(*Cancellation law on the left*)  | 
|
280  | 
lemma raw_add_left_cancel:  | 
|
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
281  | 
"[| raw_add(k, m) = raw_add(k, n); k\<in>nat |] ==> m=n"  | 
| 13163 | 282  | 
apply (erule rev_mp)  | 
283  | 
apply (induct_tac "k", auto)  | 
|
284  | 
done  | 
|
285  | 
||
286  | 
lemma add_left_cancel_natify: "k #+ m = k #+ n ==> natify(m) = natify(n)"  | 
|
287  | 
apply (unfold add_def)  | 
|
288  | 
apply (drule raw_add_left_cancel, auto)  | 
|
289  | 
done  | 
|
290  | 
||
291  | 
lemma add_left_cancel:  | 
|
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
292  | 
"[| i = j; i #+ m = j #+ n; m\<in>nat; n\<in>nat |] ==> m = n"  | 
| 13163 | 293  | 
by (force dest!: add_left_cancel_natify)  | 
294  | 
||
295  | 
(*Thanks to Sten Agerholm*)  | 
|
296  | 
lemma add_le_elim1_natify: "k#+m le k#+n ==> natify(m) le natify(n)"  | 
|
297  | 
apply (rule_tac P = "natify(k) #+m le natify(k) #+n" in rev_mp)  | 
|
298  | 
apply (rule_tac [2] n = "natify(k) " in nat_induct)  | 
|
299  | 
apply auto  | 
|
300  | 
done  | 
|
301  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
302  | 
lemma add_le_elim1: "[| k#+m le k#+n; m \<in> nat; n \<in> nat |] ==> m le n"  | 
| 13163 | 303  | 
by (drule add_le_elim1_natify, auto)  | 
304  | 
||
305  | 
lemma add_lt_elim1_natify: "k#+m < k#+n ==> natify(m) < natify(n)"  | 
|
306  | 
apply (rule_tac P = "natify(k) #+m < natify(k) #+n" in rev_mp)  | 
|
307  | 
apply (rule_tac [2] n = "natify(k) " in nat_induct)  | 
|
308  | 
apply auto  | 
|
309  | 
done  | 
|
310  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
311  | 
lemma add_lt_elim1: "[| k#+m < k#+n; m \<in> nat; n \<in> nat |] ==> m < n"  | 
| 13163 | 312  | 
by (drule add_lt_elim1_natify, auto)  | 
313  | 
||
| 15201 | 314  | 
lemma zero_less_add: "[| n \<in> nat; m \<in> nat |] ==> 0 < m #+ n <-> (0<m | 0<n)"  | 
315  | 
by (induct_tac "n", auto)  | 
|
316  | 
||
| 13163 | 317  | 
|
| 13356 | 318  | 
subsection{*Monotonicity of Addition*}
 | 
| 13163 | 319  | 
|
320  | 
(*strict, in 1st argument; proof is by rule induction on 'less than'.  | 
|
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
321  | 
Still need j\<in>nat, for consider j = omega. Then we can have i<omega,  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
322  | 
which is the same as i\<in>nat, but natify(j)=0, so the conclusion fails.*)  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
323  | 
lemma add_lt_mono1: "[| i<j; j\<in>nat |] ==> i#+k < j#+k"  | 
| 13163 | 324  | 
apply (frule lt_nat_in_nat, assumption)  | 
325  | 
apply (erule succ_lt_induct)  | 
|
326  | 
apply (simp_all add: leI)  | 
|
327  | 
done  | 
|
328  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
329  | 
text{*strict, in second argument*}
 | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
330  | 
lemma add_lt_mono2: "[| i<j; j\<in>nat |] ==> k#+i < k#+j"  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
331  | 
by (simp add: add_commute [of k] add_lt_mono1)  | 
| 13163 | 332  | 
|
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
333  | 
text{*A [clumsy] way of lifting < monotonicity to @{text "\<le>"} monotonicity*}
 | 
| 13163 | 334  | 
lemma Ord_lt_mono_imp_le_mono:  | 
335  | 
assumes lt_mono: "!!i j. [| i<j; j:k |] ==> f(i) < f(j)"  | 
|
336  | 
and ford: "!!i. i:k ==> Ord(f(i))"  | 
|
337  | 
and leij: "i le j"  | 
|
338  | 
and jink: "j:k"  | 
|
339  | 
shows "f(i) le f(j)"  | 
|
340  | 
apply (insert leij jink)  | 
|
341  | 
apply (blast intro!: leCI lt_mono ford elim!: leE)  | 
|
342  | 
done  | 
|
343  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
344  | 
text{*@{text "\<le>"} monotonicity, 1st argument*}
 | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
345  | 
lemma add_le_mono1: "[| i le j; j\<in>nat |] ==> i#+k le j#+k"  | 
| 13163 | 346  | 
apply (rule_tac f = "%j. j#+k" in Ord_lt_mono_imp_le_mono, typecheck)  | 
347  | 
apply (blast intro: add_lt_mono1 add_type [THEN nat_into_Ord])+  | 
|
348  | 
done  | 
|
349  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
350  | 
text{*@{text "\<le>"} monotonicity, both arguments*}
 | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
351  | 
lemma add_le_mono: "[| i le j; k le l; j\<in>nat; l\<in>nat |] ==> i#+k le j#+l"  | 
| 13163 | 352  | 
apply (rule add_le_mono1 [THEN le_trans], assumption+)  | 
353  | 
apply (subst add_commute, subst add_commute, rule add_le_mono1, assumption+)  | 
|
354  | 
done  | 
|
355  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
356  | 
text{*Combinations of less-than and less-than-or-equals*}
 | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
357  | 
|
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
358  | 
lemma add_lt_le_mono: "[| i<j; k\<le>l; j\<in>nat; l\<in>nat |] ==> i#+k < j#+l"  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
359  | 
apply (rule add_lt_mono1 [THEN lt_trans2], assumption+)  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
360  | 
apply (subst add_commute, subst add_commute, rule add_le_mono1, assumption+)  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
361  | 
done  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
362  | 
|
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
363  | 
lemma add_le_lt_mono: "[| i\<le>j; k<l; j\<in>nat; l\<in>nat |] ==> i#+k < j#+l"  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
364  | 
by (subst add_commute, subst add_commute, erule add_lt_le_mono, assumption+)  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
365  | 
|
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
366  | 
text{*Less-than: in other words, strict in both arguments*}
 | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
367  | 
lemma add_lt_mono: "[| i<j; k<l; j\<in>nat; l\<in>nat |] ==> i#+k < j#+l"  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
368  | 
apply (rule add_lt_le_mono)  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
369  | 
apply (auto intro: leI)  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
370  | 
done  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
371  | 
|
| 13163 | 372  | 
(** Subtraction is the inverse of addition. **)  | 
373  | 
||
374  | 
lemma diff_add_inverse: "(n#+m) #- n = natify(m)"  | 
|
375  | 
apply (subgoal_tac " (natify(n) #+ m) #- natify(n) = natify(m) ")  | 
|
376  | 
apply (rule_tac [2] n = "natify(n) " in nat_induct)  | 
|
377  | 
apply auto  | 
|
378  | 
done  | 
|
379  | 
||
380  | 
lemma diff_add_inverse2: "(m#+n) #- n = natify(m)"  | 
|
381  | 
by (simp add: add_commute [of m] diff_add_inverse)  | 
|
382  | 
||
383  | 
lemma diff_cancel: "(k#+m) #- (k#+n) = m #- n"  | 
|
384  | 
apply (subgoal_tac "(natify(k) #+ natify(m)) #- (natify(k) #+ natify(n)) =  | 
|
385  | 
natify(m) #- natify(n) ")  | 
|
386  | 
apply (rule_tac [2] n = "natify(k) " in nat_induct)  | 
|
387  | 
apply auto  | 
|
388  | 
done  | 
|
389  | 
||
390  | 
lemma diff_cancel2: "(m#+k) #- (n#+k) = m #- n"  | 
|
391  | 
by (simp add: add_commute [of _ k] diff_cancel)  | 
|
392  | 
||
393  | 
lemma diff_add_0: "n #- (n#+m) = 0"  | 
|
394  | 
apply (subgoal_tac "natify(n) #- (natify(n) #+ natify(m)) = 0")  | 
|
395  | 
apply (rule_tac [2] n = "natify(n) " in nat_induct)  | 
|
396  | 
apply auto  | 
|
397  | 
done  | 
|
398  | 
||
| 13361 | 399  | 
lemma pred_0 [simp]: "pred(0) = 0"  | 
400  | 
by (simp add: pred_def)  | 
|
401  | 
||
402  | 
lemma eq_succ_imp_eq_m1: "[|i = succ(j); i\<in>nat|] ==> j = i #- 1 & j \<in>nat"  | 
|
403  | 
by simp  | 
|
404  | 
||
405  | 
lemma pred_Un_distrib:  | 
|
406  | 
"[|i\<in>nat; j\<in>nat|] ==> pred(i Un j) = pred(i) Un pred(j)"  | 
|
407  | 
apply (erule_tac n=i in natE, simp)  | 
|
408  | 
apply (erule_tac n=j in natE, simp)  | 
|
409  | 
apply (simp add: succ_Un_distrib [symmetric])  | 
|
410  | 
done  | 
|
411  | 
||
412  | 
lemma pred_type [TC,simp]:  | 
|
413  | 
"i \<in> nat ==> pred(i) \<in> nat"  | 
|
414  | 
by (simp add: pred_def split: split_nat_case)  | 
|
415  | 
||
416  | 
lemma nat_diff_pred: "[|i\<in>nat; j\<in>nat|] ==> i #- succ(j) = pred(i #- j)";  | 
|
417  | 
apply (rule_tac m=i and n=j in diff_induct)  | 
|
418  | 
apply (auto simp add: pred_def nat_imp_quasinat split: split_nat_case)  | 
|
419  | 
done  | 
|
420  | 
||
421  | 
lemma diff_succ_eq_pred: "i #- succ(j) = pred(i #- j)";  | 
|
422  | 
apply (insert nat_diff_pred [of "natify(i)" "natify(j)"])  | 
|
423  | 
apply (simp add: natify_succ [symmetric])  | 
|
424  | 
done  | 
|
425  | 
||
426  | 
lemma nat_diff_Un_distrib:  | 
|
427  | 
"[|i\<in>nat; j\<in>nat; k\<in>nat|] ==> (i Un j) #- k = (i#-k) Un (j#-k)"  | 
|
428  | 
apply (rule_tac n=k in nat_induct)  | 
|
429  | 
apply (simp_all add: diff_succ_eq_pred pred_Un_distrib)  | 
|
430  | 
done  | 
|
431  | 
||
432  | 
lemma diff_Un_distrib:  | 
|
433  | 
"[|i\<in>nat; j\<in>nat|] ==> (i Un j) #- k = (i#-k) Un (j#-k)"  | 
|
434  | 
by (insert nat_diff_Un_distrib [of i j "natify(k)"], simp)  | 
|
435  | 
||
436  | 
text{*We actually prove @{term "i #- j #- k = i #- (j #+ k)"}*}
 | 
|
437  | 
lemma diff_diff_left [simplified]:  | 
|
438  | 
"natify(i)#-natify(j)#-k = natify(i) #- (natify(j)#+k)";  | 
|
439  | 
by (rule_tac m="natify(i)" and n="natify(j)" in diff_induct, auto)  | 
|
440  | 
||
| 13163 | 441  | 
|
442  | 
(** Lemmas for the CancelNumerals simproc **)  | 
|
443  | 
||
444  | 
lemma eq_add_iff: "(u #+ m = u #+ n) <-> (0 #+ m = natify(n))"  | 
|
445  | 
apply auto  | 
|
446  | 
apply (blast dest: add_left_cancel_natify)  | 
|
447  | 
apply (simp add: add_def)  | 
|
448  | 
done  | 
|
449  | 
||
450  | 
lemma less_add_iff: "(u #+ m < u #+ n) <-> (0 #+ m < natify(n))"  | 
|
451  | 
apply (auto simp add: add_lt_elim1_natify)  | 
|
452  | 
apply (drule add_lt_mono1)  | 
|
453  | 
apply (auto simp add: add_commute [of u])  | 
|
454  | 
done  | 
|
455  | 
||
456  | 
lemma diff_add_eq: "((u #+ m) #- (u #+ n)) = ((0 #+ m) #- n)"  | 
|
457  | 
by (simp add: diff_cancel)  | 
|
458  | 
||
459  | 
(*To tidy up the result of a simproc. Only the RHS will be simplified.*)  | 
|
460  | 
lemma eq_cong2: "u = u' ==> (t==u) == (t==u')"  | 
|
461  | 
by auto  | 
|
462  | 
||
463  | 
lemma iff_cong2: "u <-> u' ==> (t==u) == (t==u')"  | 
|
464  | 
by auto  | 
|
465  | 
||
466  | 
||
| 13356 | 467  | 
subsection{*Multiplication*}
 | 
| 13163 | 468  | 
|
469  | 
lemma mult_0 [simp]: "0 #* m = 0"  | 
|
470  | 
by (simp add: mult_def)  | 
|
471  | 
||
472  | 
lemma mult_succ [simp]: "succ(m) #* n = n #+ (m #* n)"  | 
|
473  | 
by (simp add: add_def mult_def natify_succ raw_mult_type)  | 
|
474  | 
||
475  | 
(*right annihilation in product*)  | 
|
476  | 
lemma mult_0_right [simp]: "m #* 0 = 0"  | 
|
477  | 
apply (unfold mult_def)  | 
|
478  | 
apply (rule_tac n = "natify(m) " in nat_induct)  | 
|
479  | 
apply auto  | 
|
480  | 
done  | 
|
481  | 
||
482  | 
(*right successor law for multiplication*)  | 
|
483  | 
lemma mult_succ_right [simp]: "m #* succ(n) = m #+ (m #* n)"  | 
|
484  | 
apply (subgoal_tac "natify(m) #* succ (natify(n)) =  | 
|
485  | 
natify(m) #+ (natify(m) #* natify(n))")  | 
|
486  | 
apply (simp (no_asm_use) add: natify_succ add_def mult_def)  | 
|
487  | 
apply (rule_tac n = "natify(m) " in nat_induct)  | 
|
488  | 
apply (simp_all add: add_ac)  | 
|
489  | 
done  | 
|
490  | 
||
491  | 
lemma mult_1_natify [simp]: "1 #* n = natify(n)"  | 
|
492  | 
by auto  | 
|
493  | 
||
494  | 
lemma mult_1_right_natify [simp]: "n #* 1 = natify(n)"  | 
|
495  | 
by auto  | 
|
496  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
497  | 
lemma mult_1: "n \<in> nat ==> 1 #* n = n"  | 
| 13163 | 498  | 
by simp  | 
499  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
500  | 
lemma mult_1_right: "n \<in> nat ==> n #* 1 = n"  | 
| 13163 | 501  | 
by simp  | 
502  | 
||
503  | 
(*Commutative law for multiplication*)  | 
|
504  | 
lemma mult_commute: "m #* n = n #* m"  | 
|
505  | 
apply (subgoal_tac "natify(m) #* natify(n) = natify(n) #* natify(m) ")  | 
|
506  | 
apply (rule_tac [2] n = "natify(m) " in nat_induct)  | 
|
507  | 
apply auto  | 
|
508  | 
done  | 
|
509  | 
||
510  | 
(*addition distributes over multiplication*)  | 
|
511  | 
lemma add_mult_distrib: "(m #+ n) #* k = (m #* k) #+ (n #* k)"  | 
|
512  | 
apply (subgoal_tac "(natify(m) #+ natify(n)) #* natify(k) =  | 
|
513  | 
(natify(m) #* natify(k)) #+ (natify(n) #* natify(k))")  | 
|
514  | 
apply (rule_tac [2] n = "natify(m) " in nat_induct)  | 
|
515  | 
apply (simp_all add: add_assoc [symmetric])  | 
|
516  | 
done  | 
|
517  | 
||
518  | 
(*Distributive law on the left*)  | 
|
519  | 
lemma add_mult_distrib_left: "k #* (m #+ n) = (k #* m) #+ (k #* n)"  | 
|
520  | 
apply (subgoal_tac "natify(k) #* (natify(m) #+ natify(n)) =  | 
|
521  | 
(natify(k) #* natify(m)) #+ (natify(k) #* natify(n))")  | 
|
522  | 
apply (rule_tac [2] n = "natify(m) " in nat_induct)  | 
|
523  | 
apply (simp_all add: add_ac)  | 
|
524  | 
done  | 
|
525  | 
||
526  | 
(*Associative law for multiplication*)  | 
|
527  | 
lemma mult_assoc: "(m #* n) #* k = m #* (n #* k)"  | 
|
528  | 
apply (subgoal_tac "(natify(m) #* natify(n)) #* natify(k) =  | 
|
529  | 
natify(m) #* (natify(n) #* natify(k))")  | 
|
530  | 
apply (rule_tac [2] n = "natify(m) " in nat_induct)  | 
|
531  | 
apply (simp_all add: add_mult_distrib)  | 
|
532  | 
done  | 
|
533  | 
||
534  | 
(*for a/c rewriting*)  | 
|
535  | 
lemma mult_left_commute: "m #* (n #* k) = n #* (m #* k)"  | 
|
536  | 
apply (rule mult_commute [THEN trans])  | 
|
537  | 
apply (rule mult_assoc [THEN trans])  | 
|
538  | 
apply (rule mult_commute [THEN subst_context])  | 
|
539  | 
done  | 
|
540  | 
||
541  | 
lemmas mult_ac = mult_assoc mult_commute mult_left_commute  | 
|
542  | 
||
543  | 
||
544  | 
lemma lt_succ_eq_0_disj:  | 
|
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
545  | 
"[| m\<in>nat; n\<in>nat |]  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
546  | 
==> (m < succ(n)) <-> (m = 0 | (\<exists>j\<in>nat. m = succ(j) & j < n))"  | 
| 13163 | 547  | 
by (induct_tac "m", auto)  | 
548  | 
||
549  | 
lemma less_diff_conv [rule_format]:  | 
|
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
550  | 
"[| j\<in>nat; k\<in>nat |] ==> \<forall>i\<in>nat. (i < j #- k) <-> (i #+ k < j)"  | 
| 13784 | 551  | 
by (erule_tac m = k in diff_induct, auto)  | 
| 13163 | 552  | 
|
553  | 
lemmas nat_typechecks = rec_type nat_0I nat_1I nat_succI Ord_nat  | 
|
554  | 
||
| 0 | 555  | 
end  |