| author | haftmann | 
| Mon, 21 Jun 2010 09:38:20 +0200 | |
| changeset 37475 | 98c6f9dc58d0 | 
| parent 37473 | 013f78aed840 | 
| child 37595 | 9591362629e3 | 
| permissions | -rw-r--r-- | 
| 35303 | 1 | (* Author: Florian Haftmann, TU Muenchen *) | 
| 2 | ||
| 3 | header {* Lists with elements distinct as canonical example for datatype invariants *}
 | |
| 4 | ||
| 5 | theory Dlist | |
| 37473 | 6 | imports Main Fset | 
| 35303 | 7 | begin | 
| 8 | ||
| 9 | section {* The type of distinct lists *}
 | |
| 10 | ||
| 11 | typedef (open) 'a dlist = "{xs::'a list. distinct xs}"
 | |
| 12 | morphisms list_of_dlist Abs_dlist | |
| 13 | proof | |
| 14 | show "[] \<in> ?dlist" by simp | |
| 15 | qed | |
| 16 | ||
| 36274 | 17 | lemma dlist_ext: | 
| 18 | assumes "list_of_dlist xs = list_of_dlist ys" | |
| 19 | shows "xs = ys" | |
| 20 | using assms by (simp add: list_of_dlist_inject) | |
| 21 | ||
| 36112 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35688diff
changeset | 22 | |
| 35303 | 23 | text {* Formal, totalized constructor for @{typ "'a dlist"}: *}
 | 
| 24 | ||
| 25 | definition Dlist :: "'a list \<Rightarrow> 'a dlist" where | |
| 26 | [code del]: "Dlist xs = Abs_dlist (remdups xs)" | |
| 27 | ||
| 28 | lemma distinct_list_of_dlist [simp]: | |
| 29 | "distinct (list_of_dlist dxs)" | |
| 30 | using list_of_dlist [of dxs] by simp | |
| 31 | ||
| 32 | lemma list_of_dlist_Dlist [simp]: | |
| 33 | "list_of_dlist (Dlist xs) = remdups xs" | |
| 34 | by (simp add: Dlist_def Abs_dlist_inverse) | |
| 35 | ||
| 36112 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35688diff
changeset | 36 | lemma Dlist_list_of_dlist [simp, code abstype]: | 
| 35303 | 37 | "Dlist (list_of_dlist dxs) = dxs" | 
| 38 | by (simp add: Dlist_def list_of_dlist_inverse distinct_remdups_id) | |
| 39 | ||
| 40 | ||
| 41 | text {* Fundamental operations: *}
 | |
| 42 | ||
| 43 | definition empty :: "'a dlist" where | |
| 44 | "empty = Dlist []" | |
| 45 | ||
| 46 | definition insert :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where | |
| 47 | "insert x dxs = Dlist (List.insert x (list_of_dlist dxs))" | |
| 48 | ||
| 49 | definition remove :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where | |
| 50 | "remove x dxs = Dlist (remove1 x (list_of_dlist dxs))" | |
| 51 | ||
| 52 | definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b dlist" where
 | |
| 53 | "map f dxs = Dlist (remdups (List.map f (list_of_dlist dxs)))" | |
| 54 | ||
| 55 | definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
 | |
| 56 | "filter P dxs = Dlist (List.filter P (list_of_dlist dxs))" | |
| 57 | ||
| 58 | ||
| 59 | text {* Derived operations: *}
 | |
| 60 | ||
| 61 | definition null :: "'a dlist \<Rightarrow> bool" where | |
| 62 | "null dxs = List.null (list_of_dlist dxs)" | |
| 63 | ||
| 64 | definition member :: "'a dlist \<Rightarrow> 'a \<Rightarrow> bool" where | |
| 65 | "member dxs = List.member (list_of_dlist dxs)" | |
| 66 | ||
| 67 | definition length :: "'a dlist \<Rightarrow> nat" where | |
| 68 | "length dxs = List.length (list_of_dlist dxs)" | |
| 69 | ||
| 70 | definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
 | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 71 | "fold f dxs = More_List.fold f (list_of_dlist dxs)" | 
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 72 | |
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 73 | definition foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
 | 
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 74 | "foldr f dxs = List.foldr f (list_of_dlist dxs)" | 
| 35303 | 75 | |
| 76 | ||
| 77 | section {* Executable version obeying invariant *}
 | |
| 78 | ||
| 79 | lemma list_of_dlist_empty [simp, code abstract]: | |
| 80 | "list_of_dlist empty = []" | |
| 81 | by (simp add: empty_def) | |
| 82 | ||
| 83 | lemma list_of_dlist_insert [simp, code abstract]: | |
| 84 | "list_of_dlist (insert x dxs) = List.insert x (list_of_dlist dxs)" | |
| 85 | by (simp add: insert_def) | |
| 86 | ||
| 87 | lemma list_of_dlist_remove [simp, code abstract]: | |
| 88 | "list_of_dlist (remove x dxs) = remove1 x (list_of_dlist dxs)" | |
| 89 | by (simp add: remove_def) | |
| 90 | ||
| 91 | lemma list_of_dlist_map [simp, code abstract]: | |
| 92 | "list_of_dlist (map f dxs) = remdups (List.map f (list_of_dlist dxs))" | |
| 93 | by (simp add: map_def) | |
| 94 | ||
| 95 | lemma list_of_dlist_filter [simp, code abstract]: | |
| 96 | "list_of_dlist (filter P dxs) = List.filter P (list_of_dlist dxs)" | |
| 97 | by (simp add: filter_def) | |
| 98 | ||
| 99 | ||
| 36980 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 100 | text {* Explicit executable conversion *}
 | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 101 | |
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 102 | definition dlist_of_list [simp]: | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 103 | "dlist_of_list = Dlist" | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 104 | |
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 105 | lemma [code abstract]: | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 106 | "list_of_dlist (dlist_of_list xs) = remdups xs" | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 107 | by simp | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 108 | |
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 109 | |
| 37106 | 110 | section {* Induction principle and case distinction *}
 | 
| 111 | ||
| 112 | lemma dlist_induct [case_names empty insert, induct type: dlist]: | |
| 113 | assumes empty: "P empty" | |
| 114 | assumes insrt: "\<And>x dxs. \<not> member dxs x \<Longrightarrow> P dxs \<Longrightarrow> P (insert x dxs)" | |
| 115 | shows "P dxs" | |
| 116 | proof (cases dxs) | |
| 117 | case (Abs_dlist xs) | |
| 118 | then have "distinct xs" and dxs: "dxs = Dlist xs" by (simp_all add: Dlist_def distinct_remdups_id) | |
| 119 | from `distinct xs` have "P (Dlist xs)" | |
| 120 | proof (induct xs rule: distinct_induct) | |
| 121 | case Nil from empty show ?case by (simp add: empty_def) | |
| 122 | next | |
| 123 | case (insert x xs) | |
| 124 | then have "\<not> member (Dlist xs) x" and "P (Dlist xs)" | |
| 125 | by (simp_all add: member_def mem_iff) | |
| 126 | with insrt have "P (insert x (Dlist xs))" . | |
| 127 | with insert show ?case by (simp add: insert_def distinct_remdups_id) | |
| 128 | qed | |
| 129 | with dxs show "P dxs" by simp | |
| 130 | qed | |
| 131 | ||
| 132 | lemma dlist_case [case_names empty insert, cases type: dlist]: | |
| 133 | assumes empty: "dxs = empty \<Longrightarrow> P" | |
| 134 | assumes insert: "\<And>x dys. \<not> member dys x \<Longrightarrow> dxs = insert x dys \<Longrightarrow> P" | |
| 135 | shows P | |
| 136 | proof (cases dxs) | |
| 137 | case (Abs_dlist xs) | |
| 138 | then have dxs: "dxs = Dlist xs" and distinct: "distinct xs" | |
| 139 | by (simp_all add: Dlist_def distinct_remdups_id) | |
| 140 | show P proof (cases xs) | |
| 141 | case Nil with dxs have "dxs = empty" by (simp add: empty_def) | |
| 142 | with empty show P . | |
| 143 | next | |
| 144 | case (Cons x xs) | |
| 145 | with dxs distinct have "\<not> member (Dlist xs) x" | |
| 146 | and "dxs = insert x (Dlist xs)" | |
| 147 | by (simp_all add: member_def mem_iff insert_def distinct_remdups_id) | |
| 148 | with insert show P . | |
| 149 | qed | |
| 150 | qed | |
| 151 | ||
| 152 | ||
| 35303 | 153 | section {* Implementation of sets by distinct lists -- canonical! *}
 | 
| 154 | ||
| 155 | definition Set :: "'a dlist \<Rightarrow> 'a fset" where | |
| 156 | "Set dxs = Fset.Set (list_of_dlist dxs)" | |
| 157 | ||
| 158 | definition Coset :: "'a dlist \<Rightarrow> 'a fset" where | |
| 159 | "Coset dxs = Fset.Coset (list_of_dlist dxs)" | |
| 160 | ||
| 161 | code_datatype Set Coset | |
| 162 | ||
| 163 | declare member_code [code del] | |
| 164 | declare is_empty_Set [code del] | |
| 165 | declare empty_Set [code del] | |
| 166 | declare UNIV_Set [code del] | |
| 167 | declare insert_Set [code del] | |
| 168 | declare remove_Set [code del] | |
| 37029 | 169 | declare compl_Set [code del] | 
| 170 | declare compl_Coset [code del] | |
| 35303 | 171 | declare map_Set [code del] | 
| 172 | declare filter_Set [code del] | |
| 173 | declare forall_Set [code del] | |
| 174 | declare exists_Set [code del] | |
| 175 | declare card_Set [code del] | |
| 176 | declare inter_project [code del] | |
| 177 | declare subtract_remove [code del] | |
| 178 | declare union_insert [code del] | |
| 179 | declare Infimum_inf [code del] | |
| 180 | declare Supremum_sup [code del] | |
| 181 | ||
| 182 | lemma Set_Dlist [simp]: | |
| 183 | "Set (Dlist xs) = Fset (set xs)" | |
| 37473 | 184 | by (rule fset_eqI) (simp add: Set_def) | 
| 35303 | 185 | |
| 186 | lemma Coset_Dlist [simp]: | |
| 187 | "Coset (Dlist xs) = Fset (- set xs)" | |
| 37473 | 188 | by (rule fset_eqI) (simp add: Coset_def) | 
| 35303 | 189 | |
| 190 | lemma member_Set [simp]: | |
| 191 | "Fset.member (Set dxs) = List.member (list_of_dlist dxs)" | |
| 192 | by (simp add: Set_def member_set) | |
| 193 | ||
| 194 | lemma member_Coset [simp]: | |
| 195 | "Fset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)" | |
| 196 | by (simp add: Coset_def member_set not_set_compl) | |
| 197 | ||
| 36980 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 198 | lemma Set_dlist_of_list [code]: | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 199 | "Fset.Set xs = Set (dlist_of_list xs)" | 
| 37473 | 200 | by (rule fset_eqI) simp | 
| 36980 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 201 | |
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 202 | lemma Coset_dlist_of_list [code]: | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 203 | "Fset.Coset xs = Coset (dlist_of_list xs)" | 
| 37473 | 204 | by (rule fset_eqI) simp | 
| 36980 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 205 | |
| 35303 | 206 | lemma is_empty_Set [code]: | 
| 207 | "Fset.is_empty (Set dxs) \<longleftrightarrow> null dxs" | |
| 208 | by (simp add: null_def null_empty member_set) | |
| 209 | ||
| 210 | lemma bot_code [code]: | |
| 211 | "bot = Set empty" | |
| 212 | by (simp add: empty_def) | |
| 213 | ||
| 214 | lemma top_code [code]: | |
| 215 | "top = Coset empty" | |
| 216 | by (simp add: empty_def) | |
| 217 | ||
| 218 | lemma insert_code [code]: | |
| 219 | "Fset.insert x (Set dxs) = Set (insert x dxs)" | |
| 220 | "Fset.insert x (Coset dxs) = Coset (remove x dxs)" | |
| 221 | by (simp_all add: insert_def remove_def member_set not_set_compl) | |
| 222 | ||
| 223 | lemma remove_code [code]: | |
| 224 | "Fset.remove x (Set dxs) = Set (remove x dxs)" | |
| 225 | "Fset.remove x (Coset dxs) = Coset (insert x dxs)" | |
| 226 | by (auto simp add: insert_def remove_def member_set not_set_compl) | |
| 227 | ||
| 228 | lemma member_code [code]: | |
| 229 | "Fset.member (Set dxs) = member dxs" | |
| 230 | "Fset.member (Coset dxs) = Not \<circ> member dxs" | |
| 231 | by (simp_all add: member_def) | |
| 232 | ||
| 37029 | 233 | lemma compl_code [code]: | 
| 234 | "- Set dxs = Coset dxs" | |
| 235 | "- Coset dxs = Set dxs" | |
| 37473 | 236 | by (rule fset_eqI, simp add: member_set not_set_compl)+ | 
| 37029 | 237 | |
| 35303 | 238 | lemma map_code [code]: | 
| 239 | "Fset.map f (Set dxs) = Set (map f dxs)" | |
| 37473 | 240 | by (rule fset_eqI) (simp add: member_set) | 
| 35303 | 241 | |
| 242 | lemma filter_code [code]: | |
| 243 | "Fset.filter f (Set dxs) = Set (filter f dxs)" | |
| 37473 | 244 | by (rule fset_eqI) (simp add: member_set) | 
| 35303 | 245 | |
| 246 | lemma forall_Set [code]: | |
| 247 | "Fset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)" | |
| 248 | by (simp add: member_set list_all_iff) | |
| 249 | ||
| 250 | lemma exists_Set [code]: | |
| 251 | "Fset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)" | |
| 252 | by (simp add: member_set list_ex_iff) | |
| 253 | ||
| 254 | lemma card_code [code]: | |
| 255 | "Fset.card (Set dxs) = length dxs" | |
| 256 | by (simp add: length_def member_set distinct_card) | |
| 257 | ||
| 258 | lemma inter_code [code]: | |
| 259 | "inf A (Set xs) = Set (filter (Fset.member A) xs)" | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 260 | "inf A (Coset xs) = foldr Fset.remove xs A" | 
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 261 | by (simp_all only: Set_def Coset_def foldr_def inter_project list_of_dlist_filter) | 
| 35303 | 262 | |
| 263 | lemma subtract_code [code]: | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 264 | "A - Set xs = foldr Fset.remove xs A" | 
| 35303 | 265 | "A - Coset xs = Set (filter (Fset.member A) xs)" | 
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 266 | by (simp_all only: Set_def Coset_def foldr_def subtract_remove list_of_dlist_filter) | 
| 35303 | 267 | |
| 268 | lemma union_code [code]: | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 269 | "sup (Set xs) A = foldr Fset.insert xs A" | 
| 35303 | 270 | "sup (Coset xs) A = Coset (filter (Not \<circ> Fset.member A) xs)" | 
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 271 | by (simp_all only: Set_def Coset_def foldr_def union_insert list_of_dlist_filter) | 
| 35303 | 272 | |
| 273 | context complete_lattice | |
| 274 | begin | |
| 275 | ||
| 276 | lemma Infimum_code [code]: | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 277 | "Infimum (Set As) = foldr inf As top" | 
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 278 | by (simp only: Set_def Infimum_inf foldr_def inf.commute) | 
| 35303 | 279 | |
| 280 | lemma Supremum_code [code]: | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 281 | "Supremum (Set As) = foldr sup As bot" | 
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 282 | by (simp only: Set_def Supremum_sup foldr_def sup.commute) | 
| 35303 | 283 | |
| 284 | end | |
| 285 | ||
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 286 | hide_const (open) member fold foldr empty insert remove map filter null member length fold | 
| 35303 | 287 | |
| 288 | end |