| 35700 |      1 | (*  Title:      HOL/Nat_Bijection.thy
 | 
|  |      2 |     Author:     Brian Huffman
 | 
|  |      3 |     Author:     Florian Haftmann
 | 
|  |      4 |     Author:     Stefan Richter
 | 
|  |      5 |     Author:     Tobias Nipkow
 | 
|  |      6 |     Author:     Alexander Krauss
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
|  |      9 | header {* Bijections between natural numbers and other types *}
 | 
|  |     10 | 
 | 
|  |     11 | theory Nat_Bijection
 | 
|  |     12 | imports Main Parity
 | 
|  |     13 | begin
 | 
|  |     14 | 
 | 
|  |     15 | subsection {* Type @{typ "nat \<times> nat"} *}
 | 
|  |     16 | 
 | 
|  |     17 | text "Triangle numbers: 0, 1, 3, 6, 10, 15, ..."
 | 
|  |     18 | 
 | 
|  |     19 | definition
 | 
|  |     20 |   triangle :: "nat \<Rightarrow> nat"
 | 
|  |     21 | where
 | 
|  |     22 |   "triangle n = n * Suc n div 2"
 | 
|  |     23 | 
 | 
|  |     24 | lemma triangle_0 [simp]: "triangle 0 = 0"
 | 
|  |     25 | unfolding triangle_def by simp
 | 
|  |     26 | 
 | 
|  |     27 | lemma triangle_Suc [simp]: "triangle (Suc n) = triangle n + Suc n"
 | 
|  |     28 | unfolding triangle_def by simp
 | 
|  |     29 | 
 | 
|  |     30 | definition
 | 
|  |     31 |   prod_encode :: "nat \<times> nat \<Rightarrow> nat"
 | 
|  |     32 | where
 | 
|  |     33 |   "prod_encode = (\<lambda>(m, n). triangle (m + n) + m)"
 | 
|  |     34 | 
 | 
|  |     35 | text {* In this auxiliary function, @{term "triangle k + m"} is an invariant. *}
 | 
|  |     36 | 
 | 
|  |     37 | fun
 | 
|  |     38 |   prod_decode_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat"
 | 
|  |     39 | where
 | 
|  |     40 |   "prod_decode_aux k m =
 | 
|  |     41 |     (if m \<le> k then (m, k - m) else prod_decode_aux (Suc k) (m - Suc k))"
 | 
|  |     42 | 
 | 
|  |     43 | declare prod_decode_aux.simps [simp del]
 | 
|  |     44 | 
 | 
|  |     45 | definition
 | 
|  |     46 |   prod_decode :: "nat \<Rightarrow> nat \<times> nat"
 | 
|  |     47 | where
 | 
|  |     48 |   "prod_decode = prod_decode_aux 0"
 | 
|  |     49 | 
 | 
|  |     50 | lemma prod_encode_prod_decode_aux:
 | 
|  |     51 |   "prod_encode (prod_decode_aux k m) = triangle k + m"
 | 
|  |     52 | apply (induct k m rule: prod_decode_aux.induct)
 | 
|  |     53 | apply (subst prod_decode_aux.simps)
 | 
|  |     54 | apply (simp add: prod_encode_def)
 | 
|  |     55 | done
 | 
|  |     56 | 
 | 
|  |     57 | lemma prod_decode_inverse [simp]: "prod_encode (prod_decode n) = n"
 | 
|  |     58 | unfolding prod_decode_def by (simp add: prod_encode_prod_decode_aux)
 | 
|  |     59 | 
 | 
|  |     60 | lemma prod_decode_triangle_add:
 | 
|  |     61 |   "prod_decode (triangle k + m) = prod_decode_aux k m"
 | 
|  |     62 | apply (induct k arbitrary: m)
 | 
|  |     63 | apply (simp add: prod_decode_def)
 | 
|  |     64 | apply (simp only: triangle_Suc add_assoc)
 | 
|  |     65 | apply (subst prod_decode_aux.simps, simp)
 | 
|  |     66 | done
 | 
|  |     67 | 
 | 
|  |     68 | lemma prod_encode_inverse [simp]: "prod_decode (prod_encode x) = x"
 | 
|  |     69 | unfolding prod_encode_def
 | 
|  |     70 | apply (induct x)
 | 
|  |     71 | apply (simp add: prod_decode_triangle_add)
 | 
|  |     72 | apply (subst prod_decode_aux.simps, simp)
 | 
|  |     73 | done
 | 
|  |     74 | 
 | 
|  |     75 | lemma inj_prod_encode: "inj_on prod_encode A"
 | 
|  |     76 | by (rule inj_on_inverseI, rule prod_encode_inverse)
 | 
|  |     77 | 
 | 
|  |     78 | lemma inj_prod_decode: "inj_on prod_decode A"
 | 
|  |     79 | by (rule inj_on_inverseI, rule prod_decode_inverse)
 | 
|  |     80 | 
 | 
|  |     81 | lemma surj_prod_encode: "surj prod_encode"
 | 
|  |     82 | by (rule surjI, rule prod_decode_inverse)
 | 
|  |     83 | 
 | 
|  |     84 | lemma surj_prod_decode: "surj prod_decode"
 | 
|  |     85 | by (rule surjI, rule prod_encode_inverse)
 | 
|  |     86 | 
 | 
|  |     87 | lemma bij_prod_encode: "bij prod_encode"
 | 
|  |     88 | by (rule bijI [OF inj_prod_encode surj_prod_encode])
 | 
|  |     89 | 
 | 
|  |     90 | lemma bij_prod_decode: "bij prod_decode"
 | 
|  |     91 | by (rule bijI [OF inj_prod_decode surj_prod_decode])
 | 
|  |     92 | 
 | 
|  |     93 | lemma prod_encode_eq: "prod_encode x = prod_encode y \<longleftrightarrow> x = y"
 | 
|  |     94 | by (rule inj_prod_encode [THEN inj_eq])
 | 
|  |     95 | 
 | 
|  |     96 | lemma prod_decode_eq: "prod_decode x = prod_decode y \<longleftrightarrow> x = y"
 | 
|  |     97 | by (rule inj_prod_decode [THEN inj_eq])
 | 
|  |     98 | 
 | 
|  |     99 | text {* Ordering properties *}
 | 
|  |    100 | 
 | 
|  |    101 | lemma le_prod_encode_1: "a \<le> prod_encode (a, b)"
 | 
|  |    102 | unfolding prod_encode_def by simp
 | 
|  |    103 | 
 | 
|  |    104 | lemma le_prod_encode_2: "b \<le> prod_encode (a, b)"
 | 
|  |    105 | unfolding prod_encode_def by (induct b, simp_all)
 | 
|  |    106 | 
 | 
|  |    107 | 
 | 
|  |    108 | subsection {* Type @{typ "nat + nat"} *}
 | 
|  |    109 | 
 | 
|  |    110 | definition
 | 
|  |    111 |   sum_encode  :: "nat + nat \<Rightarrow> nat"
 | 
|  |    112 | where
 | 
|  |    113 |   "sum_encode x = (case x of Inl a \<Rightarrow> 2 * a | Inr b \<Rightarrow> Suc (2 * b))"
 | 
|  |    114 | 
 | 
|  |    115 | definition
 | 
|  |    116 |   sum_decode  :: "nat \<Rightarrow> nat + nat"
 | 
|  |    117 | where
 | 
|  |    118 |   "sum_decode n = (if even n then Inl (n div 2) else Inr (n div 2))"
 | 
|  |    119 | 
 | 
|  |    120 | lemma sum_encode_inverse [simp]: "sum_decode (sum_encode x) = x"
 | 
|  |    121 | unfolding sum_decode_def sum_encode_def
 | 
|  |    122 | by (induct x) simp_all
 | 
|  |    123 | 
 | 
|  |    124 | lemma sum_decode_inverse [simp]: "sum_encode (sum_decode n) = n"
 | 
|  |    125 | unfolding sum_decode_def sum_encode_def numeral_2_eq_2
 | 
|  |    126 | by (simp add: even_nat_div_two_times_two odd_nat_div_two_times_two_plus_one
 | 
|  |    127 |          del: mult_Suc)
 | 
|  |    128 | 
 | 
|  |    129 | lemma inj_sum_encode: "inj_on sum_encode A"
 | 
|  |    130 | by (rule inj_on_inverseI, rule sum_encode_inverse)
 | 
|  |    131 | 
 | 
|  |    132 | lemma inj_sum_decode: "inj_on sum_decode A"
 | 
|  |    133 | by (rule inj_on_inverseI, rule sum_decode_inverse)
 | 
|  |    134 | 
 | 
|  |    135 | lemma surj_sum_encode: "surj sum_encode"
 | 
|  |    136 | by (rule surjI, rule sum_decode_inverse)
 | 
|  |    137 | 
 | 
|  |    138 | lemma surj_sum_decode: "surj sum_decode"
 | 
|  |    139 | by (rule surjI, rule sum_encode_inverse)
 | 
|  |    140 | 
 | 
|  |    141 | lemma bij_sum_encode: "bij sum_encode"
 | 
|  |    142 | by (rule bijI [OF inj_sum_encode surj_sum_encode])
 | 
|  |    143 | 
 | 
|  |    144 | lemma bij_sum_decode: "bij sum_decode"
 | 
|  |    145 | by (rule bijI [OF inj_sum_decode surj_sum_decode])
 | 
|  |    146 | 
 | 
|  |    147 | lemma sum_encode_eq: "sum_encode x = sum_encode y \<longleftrightarrow> x = y"
 | 
|  |    148 | by (rule inj_sum_encode [THEN inj_eq])
 | 
|  |    149 | 
 | 
|  |    150 | lemma sum_decode_eq: "sum_decode x = sum_decode y \<longleftrightarrow> x = y"
 | 
|  |    151 | by (rule inj_sum_decode [THEN inj_eq])
 | 
|  |    152 | 
 | 
|  |    153 | 
 | 
|  |    154 | subsection {* Type @{typ "int"} *}
 | 
|  |    155 | 
 | 
|  |    156 | definition
 | 
|  |    157 |   int_encode :: "int \<Rightarrow> nat"
 | 
|  |    158 | where
 | 
|  |    159 |   "int_encode i = sum_encode (if 0 \<le> i then Inl (nat i) else Inr (nat (- i - 1)))"
 | 
|  |    160 | 
 | 
|  |    161 | definition
 | 
|  |    162 |   int_decode :: "nat \<Rightarrow> int"
 | 
|  |    163 | where
 | 
|  |    164 |   "int_decode n = (case sum_decode n of Inl a \<Rightarrow> int a | Inr b \<Rightarrow> - int b - 1)"
 | 
|  |    165 | 
 | 
|  |    166 | lemma int_encode_inverse [simp]: "int_decode (int_encode x) = x"
 | 
|  |    167 | unfolding int_decode_def int_encode_def by simp
 | 
|  |    168 | 
 | 
|  |    169 | lemma int_decode_inverse [simp]: "int_encode (int_decode n) = n"
 | 
|  |    170 | unfolding int_decode_def int_encode_def using sum_decode_inverse [of n]
 | 
|  |    171 | by (cases "sum_decode n", simp_all)
 | 
|  |    172 | 
 | 
|  |    173 | lemma inj_int_encode: "inj_on int_encode A"
 | 
|  |    174 | by (rule inj_on_inverseI, rule int_encode_inverse)
 | 
|  |    175 | 
 | 
|  |    176 | lemma inj_int_decode: "inj_on int_decode A"
 | 
|  |    177 | by (rule inj_on_inverseI, rule int_decode_inverse)
 | 
|  |    178 | 
 | 
|  |    179 | lemma surj_int_encode: "surj int_encode"
 | 
|  |    180 | by (rule surjI, rule int_decode_inverse)
 | 
|  |    181 | 
 | 
|  |    182 | lemma surj_int_decode: "surj int_decode"
 | 
|  |    183 | by (rule surjI, rule int_encode_inverse)
 | 
|  |    184 | 
 | 
|  |    185 | lemma bij_int_encode: "bij int_encode"
 | 
|  |    186 | by (rule bijI [OF inj_int_encode surj_int_encode])
 | 
|  |    187 | 
 | 
|  |    188 | lemma bij_int_decode: "bij int_decode"
 | 
|  |    189 | by (rule bijI [OF inj_int_decode surj_int_decode])
 | 
|  |    190 | 
 | 
|  |    191 | lemma int_encode_eq: "int_encode x = int_encode y \<longleftrightarrow> x = y"
 | 
|  |    192 | by (rule inj_int_encode [THEN inj_eq])
 | 
|  |    193 | 
 | 
|  |    194 | lemma int_decode_eq: "int_decode x = int_decode y \<longleftrightarrow> x = y"
 | 
|  |    195 | by (rule inj_int_decode [THEN inj_eq])
 | 
|  |    196 | 
 | 
|  |    197 | 
 | 
|  |    198 | subsection {* Type @{typ "nat list"} *}
 | 
|  |    199 | 
 | 
|  |    200 | fun
 | 
|  |    201 |   list_encode :: "nat list \<Rightarrow> nat"
 | 
|  |    202 | where
 | 
|  |    203 |   "list_encode [] = 0"
 | 
|  |    204 | | "list_encode (x # xs) = Suc (prod_encode (x, list_encode xs))"
 | 
|  |    205 | 
 | 
|  |    206 | function
 | 
|  |    207 |   list_decode :: "nat \<Rightarrow> nat list"
 | 
|  |    208 | where
 | 
|  |    209 |   "list_decode 0 = []"
 | 
|  |    210 | | "list_decode (Suc n) = (case prod_decode n of (x, y) \<Rightarrow> x # list_decode y)"
 | 
|  |    211 | by pat_completeness auto
 | 
|  |    212 | 
 | 
|  |    213 | termination list_decode
 | 
|  |    214 | apply (relation "measure id", simp_all)
 | 
|  |    215 | apply (drule arg_cong [where f="prod_encode"])
 | 
|  |    216 | apply (simp add: le_imp_less_Suc le_prod_encode_2)
 | 
|  |    217 | done
 | 
|  |    218 | 
 | 
|  |    219 | lemma list_encode_inverse [simp]: "list_decode (list_encode x) = x"
 | 
|  |    220 | by (induct x rule: list_encode.induct) simp_all
 | 
|  |    221 | 
 | 
|  |    222 | lemma list_decode_inverse [simp]: "list_encode (list_decode n) = n"
 | 
|  |    223 | apply (induct n rule: list_decode.induct, simp)
 | 
|  |    224 | apply (simp split: prod.split)
 | 
|  |    225 | apply (simp add: prod_decode_eq [symmetric])
 | 
|  |    226 | done
 | 
|  |    227 | 
 | 
|  |    228 | lemma inj_list_encode: "inj_on list_encode A"
 | 
|  |    229 | by (rule inj_on_inverseI, rule list_encode_inverse)
 | 
|  |    230 | 
 | 
|  |    231 | lemma inj_list_decode: "inj_on list_decode A"
 | 
|  |    232 | by (rule inj_on_inverseI, rule list_decode_inverse)
 | 
|  |    233 | 
 | 
|  |    234 | lemma surj_list_encode: "surj list_encode"
 | 
|  |    235 | by (rule surjI, rule list_decode_inverse)
 | 
|  |    236 | 
 | 
|  |    237 | lemma surj_list_decode: "surj list_decode"
 | 
|  |    238 | by (rule surjI, rule list_encode_inverse)
 | 
|  |    239 | 
 | 
|  |    240 | lemma bij_list_encode: "bij list_encode"
 | 
|  |    241 | by (rule bijI [OF inj_list_encode surj_list_encode])
 | 
|  |    242 | 
 | 
|  |    243 | lemma bij_list_decode: "bij list_decode"
 | 
|  |    244 | by (rule bijI [OF inj_list_decode surj_list_decode])
 | 
|  |    245 | 
 | 
|  |    246 | lemma list_encode_eq: "list_encode x = list_encode y \<longleftrightarrow> x = y"
 | 
|  |    247 | by (rule inj_list_encode [THEN inj_eq])
 | 
|  |    248 | 
 | 
|  |    249 | lemma list_decode_eq: "list_decode x = list_decode y \<longleftrightarrow> x = y"
 | 
|  |    250 | by (rule inj_list_decode [THEN inj_eq])
 | 
|  |    251 | 
 | 
|  |    252 | 
 | 
|  |    253 | subsection {* Finite sets of naturals *}
 | 
|  |    254 | 
 | 
|  |    255 | subsubsection {* Preliminaries *}
 | 
|  |    256 | 
 | 
|  |    257 | lemma finite_vimage_Suc_iff: "finite (Suc -` F) \<longleftrightarrow> finite F"
 | 
|  |    258 | apply (safe intro!: finite_vimageI inj_Suc)
 | 
|  |    259 | apply (rule finite_subset [where B="insert 0 (Suc ` Suc -` F)"])
 | 
|  |    260 | apply (rule subsetI, case_tac x, simp, simp)
 | 
|  |    261 | apply (rule finite_insert [THEN iffD2])
 | 
|  |    262 | apply (erule finite_imageI)
 | 
|  |    263 | done
 | 
|  |    264 | 
 | 
|  |    265 | lemma vimage_Suc_insert_0: "Suc -` insert 0 A = Suc -` A"
 | 
|  |    266 | by auto
 | 
|  |    267 | 
 | 
|  |    268 | lemma vimage_Suc_insert_Suc:
 | 
|  |    269 |   "Suc -` insert (Suc n) A = insert n (Suc -` A)"
 | 
|  |    270 | by auto
 | 
|  |    271 | 
 | 
|  |    272 | lemma even_nat_Suc_div_2: "even x \<Longrightarrow> Suc x div 2 = x div 2"
 | 
|  |    273 | by (simp only: numeral_2_eq_2 even_nat_plus_one_div_two)
 | 
|  |    274 | 
 | 
|  |    275 | lemma div2_even_ext_nat:
 | 
|  |    276 |   "\<lbrakk>x div 2 = y div 2; even x = even y\<rbrakk> \<Longrightarrow> (x::nat) = y"
 | 
|  |    277 | apply (rule mod_div_equality [of x 2, THEN subst])
 | 
|  |    278 | apply (rule mod_div_equality [of y 2, THEN subst])
 | 
|  |    279 | apply (case_tac "even x")
 | 
|  |    280 | apply (simp add: numeral_2_eq_2 even_nat_equiv_def)
 | 
|  |    281 | apply (simp add: numeral_2_eq_2 odd_nat_equiv_def)
 | 
|  |    282 | done
 | 
|  |    283 | 
 | 
|  |    284 | subsubsection {* From sets to naturals *}
 | 
|  |    285 | 
 | 
|  |    286 | definition
 | 
|  |    287 |   set_encode :: "nat set \<Rightarrow> nat"
 | 
|  |    288 | where
 | 
|  |    289 |   "set_encode = setsum (op ^ 2)"
 | 
|  |    290 | 
 | 
|  |    291 | lemma set_encode_empty [simp]: "set_encode {} = 0"
 | 
|  |    292 | by (simp add: set_encode_def)
 | 
|  |    293 | 
 | 
|  |    294 | lemma set_encode_insert [simp]:
 | 
|  |    295 |   "\<lbrakk>finite A; n \<notin> A\<rbrakk> \<Longrightarrow> set_encode (insert n A) = 2^n + set_encode A"
 | 
|  |    296 | by (simp add: set_encode_def)
 | 
|  |    297 | 
 | 
|  |    298 | lemma even_set_encode_iff: "finite A \<Longrightarrow> even (set_encode A) \<longleftrightarrow> 0 \<notin> A"
 | 
|  |    299 | unfolding set_encode_def by (induct set: finite, auto)
 | 
|  |    300 | 
 | 
|  |    301 | lemma set_encode_vimage_Suc: "set_encode (Suc -` A) = set_encode A div 2"
 | 
|  |    302 | apply (cases "finite A")
 | 
|  |    303 | apply (erule finite_induct, simp)
 | 
|  |    304 | apply (case_tac x)
 | 
|  |    305 | apply (simp add: even_nat_Suc_div_2 even_set_encode_iff vimage_Suc_insert_0)
 | 
|  |    306 | apply (simp add: finite_vimageI add_commute vimage_Suc_insert_Suc)
 | 
|  |    307 | apply (simp add: set_encode_def finite_vimage_Suc_iff)
 | 
|  |    308 | done
 | 
|  |    309 | 
 | 
|  |    310 | lemmas set_encode_div_2 = set_encode_vimage_Suc [symmetric]
 | 
|  |    311 | 
 | 
|  |    312 | subsubsection {* From naturals to sets *}
 | 
|  |    313 | 
 | 
|  |    314 | definition
 | 
|  |    315 |   set_decode :: "nat \<Rightarrow> nat set"
 | 
|  |    316 | where
 | 
|  |    317 |   "set_decode x = {n. odd (x div 2 ^ n)}"
 | 
|  |    318 | 
 | 
|  |    319 | lemma set_decode_0 [simp]: "0 \<in> set_decode x \<longleftrightarrow> odd x"
 | 
|  |    320 | by (simp add: set_decode_def)
 | 
|  |    321 | 
 | 
|  |    322 | lemma set_decode_Suc [simp]:
 | 
|  |    323 |   "Suc n \<in> set_decode x \<longleftrightarrow> n \<in> set_decode (x div 2)"
 | 
|  |    324 | by (simp add: set_decode_def div_mult2_eq)
 | 
|  |    325 | 
 | 
|  |    326 | lemma set_decode_zero [simp]: "set_decode 0 = {}"
 | 
|  |    327 | by (simp add: set_decode_def)
 | 
|  |    328 | 
 | 
|  |    329 | lemma set_decode_div_2: "set_decode (x div 2) = Suc -` set_decode x"
 | 
|  |    330 | by auto
 | 
|  |    331 | 
 | 
|  |    332 | lemma set_decode_plus_power_2:
 | 
|  |    333 |   "n \<notin> set_decode z \<Longrightarrow> set_decode (2 ^ n + z) = insert n (set_decode z)"
 | 
|  |    334 |  apply (induct n arbitrary: z, simp_all)
 | 
|  |    335 |   apply (rule set_ext, induct_tac x, simp, simp add: even_nat_Suc_div_2)
 | 
|  |    336 |  apply (rule set_ext, induct_tac x, simp, simp add: add_commute)
 | 
|  |    337 | done
 | 
|  |    338 | 
 | 
|  |    339 | lemma finite_set_decode [simp]: "finite (set_decode n)"
 | 
|  |    340 | apply (induct n rule: nat_less_induct)
 | 
|  |    341 | apply (case_tac "n = 0", simp)
 | 
|  |    342 | apply (drule_tac x="n div 2" in spec, simp)
 | 
|  |    343 | apply (simp add: set_decode_div_2)
 | 
|  |    344 | apply (simp add: finite_vimage_Suc_iff)
 | 
|  |    345 | done
 | 
|  |    346 | 
 | 
|  |    347 | subsubsection {* Proof of isomorphism *}
 | 
|  |    348 | 
 | 
|  |    349 | lemma set_decode_inverse [simp]: "set_encode (set_decode n) = n"
 | 
|  |    350 | apply (induct n rule: nat_less_induct)
 | 
|  |    351 | apply (case_tac "n = 0", simp)
 | 
|  |    352 | apply (drule_tac x="n div 2" in spec, simp)
 | 
|  |    353 | apply (simp add: set_decode_div_2 set_encode_vimage_Suc)
 | 
|  |    354 | apply (erule div2_even_ext_nat)
 | 
|  |    355 | apply (simp add: even_set_encode_iff)
 | 
|  |    356 | done
 | 
|  |    357 | 
 | 
|  |    358 | lemma set_encode_inverse [simp]: "finite A \<Longrightarrow> set_decode (set_encode A) = A"
 | 
|  |    359 | apply (erule finite_induct, simp_all)
 | 
|  |    360 | apply (simp add: set_decode_plus_power_2)
 | 
|  |    361 | done
 | 
|  |    362 | 
 | 
|  |    363 | lemma inj_on_set_encode: "inj_on set_encode (Collect finite)"
 | 
|  |    364 | by (rule inj_on_inverseI [where g="set_decode"], simp)
 | 
|  |    365 | 
 | 
|  |    366 | lemma set_encode_eq:
 | 
|  |    367 |   "\<lbrakk>finite A; finite B\<rbrakk> \<Longrightarrow> set_encode A = set_encode B \<longleftrightarrow> A = B"
 | 
|  |    368 | by (rule iffI, simp add: inj_onD [OF inj_on_set_encode], simp)
 | 
|  |    369 | 
 | 
|  |    370 | end
 |