| author | schirmer | 
| Fri, 22 Feb 2002 11:26:44 +0100 | |
| changeset 12925 | 99131847fb93 | 
| parent 12858 | 6214f03d6d27 | 
| child 13337 | f75dfc606ac7 | 
| permissions | -rw-r--r-- | 
| 12857 | 1  | 
(* Title: HOL/Bali/Table.thy  | 
| 12854 | 2  | 
ID: $Id$  | 
3  | 
Author: David von Oheimb  | 
|
| 12858 | 4  | 
License: GPL (GNU GENERAL PUBLIC LICENSE)  | 
| 12854 | 5  | 
*)  | 
6  | 
header {* Abstract tables and their implementation as lists *}
 | 
|
7  | 
||
8  | 
theory Table = Basis:  | 
|
9  | 
||
10  | 
text {*
 | 
|
11  | 
design issues:  | 
|
12  | 
\begin{itemize}
 | 
|
13  | 
\item definition of table: infinite map vs. list vs. finite set  | 
|
14  | 
list chosen, because:  | 
|
15  | 
  \begin{itemize} 
 | 
|
16  | 
\item[+] a priori finite  | 
|
17  | 
\item[+] lookup is more operational than for finite set  | 
|
18  | 
\item[-] not very abstract, but function table converts it to abstract  | 
|
19  | 
mapping  | 
|
20  | 
  \end{itemize}
 | 
|
21  | 
\item coding of lookup result: Some/None vs. value/arbitrary  | 
|
22  | 
Some/None chosen, because:  | 
|
23  | 
  \begin{itemize}
 | 
|
24  | 
\item[++] makes definedness check possible (applies also to finite set),  | 
|
25  | 
which is important for the type standard, hiding/overriding, etc.  | 
|
26  | 
(though it may perhaps be possible at least for the operational semantics  | 
|
27  | 
to treat programs as infinite, i.e. where classes, fields, methods etc.  | 
|
28  | 
of any name are considered to be defined)  | 
|
29  | 
\item[-] sometimes awkward case distinctions, alleviated by operator 'the'  | 
|
30  | 
  \end{itemize}
 | 
|
31  | 
\end{itemize}
 | 
|
32  | 
*}  | 
|
33  | 
||
34  | 
types ('a, 'b) table    (* table with key type 'a and contents type 'b *)
 | 
|
35  | 
= "'a \<leadsto> 'b"  | 
|
36  | 
      ('a, 'b) tables   (* non-unique table with key 'a and contents 'b *)
 | 
|
37  | 
= "'a \<Rightarrow> 'b set"  | 
|
38  | 
||
39  | 
||
40  | 
section "map of / table of"  | 
|
41  | 
||
42  | 
syntax  | 
|
43  | 
  table_of      :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) table"    (* concrete table *)
 | 
|
44  | 
||
45  | 
translations  | 
|
46  | 
"table_of" == "map_of"  | 
|
47  | 
||
48  | 
(type)"'a \<leadsto> 'b" <= (type)"'a \<Rightarrow> 'b Option.option"  | 
|
49  | 
  (type)"('a, 'b) table" <= (type)"'a \<leadsto> 'b"
 | 
|
50  | 
||
51  | 
(* ### To map *)  | 
|
52  | 
lemma override_find_left[simp]:  | 
|
53  | 
"n k = None \<Longrightarrow> (m ++ n) k = m k"  | 
|
54  | 
by (simp add: override_def)  | 
|
55  | 
||
56  | 
section {* Conditional Override *}
 | 
|
57  | 
constdefs  | 
|
58  | 
cond_override::  | 
|
59  | 
  "('b \<Rightarrow>'b \<Rightarrow> bool) \<Rightarrow> ('a, 'b)table \<Rightarrow> ('a, 'b)table \<Rightarrow> ('a, 'b) table"
 | 
|
60  | 
||
61  | 
(* when merging tables old and new, only override an entry of table old when  | 
|
62  | 
the condition cond holds *)  | 
|
63  | 
"cond_override cond old new \<equiv>  | 
|
64  | 
\<lambda> k.  | 
|
65  | 
(case new k of  | 
|
66  | 
None \<Rightarrow> old k  | 
|
67  | 
| Some new_val \<Rightarrow> (case old k of  | 
|
68  | 
None \<Rightarrow> Some new_val  | 
|
69  | 
| Some old_val \<Rightarrow> (if cond new_val old_val  | 
|
70  | 
then Some new_val  | 
|
71  | 
else Some old_val)))"  | 
|
72  | 
||
73  | 
lemma cond_override_empty1[simp]: "cond_override c empty t = t"  | 
|
74  | 
by (simp add: cond_override_def expand_fun_eq)  | 
|
75  | 
||
76  | 
lemma cond_override_empty2[simp]: "cond_override c t empty = t"  | 
|
77  | 
by (simp add: cond_override_def expand_fun_eq)  | 
|
78  | 
||
79  | 
lemma cond_override_None[simp]:  | 
|
80  | 
"old k = None \<Longrightarrow> (cond_override c old new) k = new k"  | 
|
81  | 
by (simp add: cond_override_def)  | 
|
82  | 
||
83  | 
lemma cond_override_override:  | 
|
84  | 
"\<lbrakk>old k = Some ov;new k = Some nv; C nv ov\<rbrakk>  | 
|
85  | 
\<Longrightarrow> (cond_override C old new) k = Some nv"  | 
|
86  | 
by (auto simp add: cond_override_def)  | 
|
87  | 
||
88  | 
lemma cond_override_noOverride:  | 
|
89  | 
"\<lbrakk>old k = Some ov;new k = Some nv; \<not> (C nv ov)\<rbrakk>  | 
|
90  | 
\<Longrightarrow> (cond_override C old new) k = Some ov"  | 
|
91  | 
by (auto simp add: cond_override_def)  | 
|
92  | 
||
93  | 
lemma dom_cond_override: "dom (cond_override C s t) \<subseteq> dom s \<union> dom t"  | 
|
94  | 
by (auto simp add: cond_override_def dom_def)  | 
|
95  | 
||
96  | 
lemma finite_dom_cond_override:  | 
|
97  | 
"\<lbrakk> finite (dom s); finite (dom t) \<rbrakk> \<Longrightarrow> finite (dom (cond_override C s t))"  | 
|
98  | 
apply (rule_tac B="dom s \<union> dom t" in finite_subset)  | 
|
99  | 
apply (rule dom_cond_override)  | 
|
100  | 
by (rule finite_UnI)  | 
|
101  | 
||
102  | 
section {* Filter on Tables *}
 | 
|
103  | 
||
104  | 
constdefs  | 
|
105  | 
filter_tab:: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a, 'b) table \<Rightarrow> ('a, 'b) table"
 | 
|
106  | 
"filter_tab c t \<equiv> \<lambda> k. (case t k of  | 
|
107  | 
None \<Rightarrow> None  | 
|
108  | 
| Some x \<Rightarrow> if c k x then Some x else None)"  | 
|
109  | 
||
110  | 
lemma filter_tab_empty[simp]: "filter_tab c empty = empty"  | 
|
111  | 
by (simp add: filter_tab_def empty_def)  | 
|
112  | 
||
113  | 
lemma filter_tab_True[simp]: "filter_tab (\<lambda>x y. True) t = t"  | 
|
114  | 
by (simp add: expand_fun_eq filter_tab_def)  | 
|
115  | 
||
116  | 
lemma filter_tab_False[simp]: "filter_tab (\<lambda>x y. False) t = empty"  | 
|
117  | 
by (simp add: expand_fun_eq filter_tab_def empty_def)  | 
|
118  | 
||
119  | 
lemma filter_tab_ran_subset: "ran (filter_tab c t) \<subseteq> ran t"  | 
|
120  | 
by (auto simp add: filter_tab_def ran_def)  | 
|
121  | 
||
122  | 
lemma filter_tab_range_subset: "range (filter_tab c t) \<subseteq> range t \<union> {None}"
 | 
|
123  | 
apply (auto simp add: filter_tab_def)  | 
|
124  | 
apply (drule sym, blast)  | 
|
125  | 
done  | 
|
126  | 
||
127  | 
lemma finite_range_filter_tab:  | 
|
128  | 
"finite (range t) \<Longrightarrow> finite (range (filter_tab c t))"  | 
|
129  | 
apply (rule_tac B="range t \<union> {None} " in finite_subset)
 | 
|
130  | 
apply (rule filter_tab_range_subset)  | 
|
131  | 
apply (auto intro: finite_UnI)  | 
|
132  | 
done  | 
|
133  | 
||
134  | 
lemma filter_tab_SomeD[dest!]:  | 
|
135  | 
"filter_tab c t k = Some x \<Longrightarrow> (t k = Some x) \<and> c k x"  | 
|
136  | 
by (auto simp add: filter_tab_def)  | 
|
137  | 
||
138  | 
lemma filter_tab_SomeI: "\<lbrakk>t k = Some x;C k x\<rbrakk> \<Longrightarrow>filter_tab C t k = Some x"  | 
|
139  | 
by (simp add: filter_tab_def)  | 
|
140  | 
||
141  | 
lemma filter_tab_all_True:  | 
|
142  | 
"\<forall> k y. t k = Some y \<longrightarrow> p k y \<Longrightarrow>filter_tab p t = t"  | 
|
143  | 
apply (auto simp add: filter_tab_def expand_fun_eq)  | 
|
144  | 
done  | 
|
145  | 
||
146  | 
lemma filter_tab_all_True_Some:  | 
|
147  | 
"\<lbrakk>\<forall> k y. t k = Some y \<longrightarrow> p k y; t k = Some v\<rbrakk> \<Longrightarrow> filter_tab p t k = Some v"  | 
|
148  | 
by (auto simp add: filter_tab_def expand_fun_eq)  | 
|
149  | 
||
| 
12925
 
99131847fb93
Added check for field/method access to operational semantics and proved the acesses valid.
 
schirmer 
parents: 
12858 
diff
changeset
 | 
150  | 
lemma filter_tab_all_False:  | 
| 
 
99131847fb93
Added check for field/method access to operational semantics and proved the acesses valid.
 
schirmer 
parents: 
12858 
diff
changeset
 | 
151  | 
"\<forall> k y. t k = Some y \<longrightarrow> \<not> p k y \<Longrightarrow>filter_tab p t = empty"  | 
| 
 
99131847fb93
Added check for field/method access to operational semantics and proved the acesses valid.
 
schirmer 
parents: 
12858 
diff
changeset
 | 
152  | 
by (auto simp add: filter_tab_def expand_fun_eq)  | 
| 
 
99131847fb93
Added check for field/method access to operational semantics and proved the acesses valid.
 
schirmer 
parents: 
12858 
diff
changeset
 | 
153  | 
|
| 12854 | 154  | 
lemma filter_tab_None: "t k = None \<Longrightarrow> filter_tab p t k = None"  | 
155  | 
apply (simp add: filter_tab_def expand_fun_eq)  | 
|
156  | 
done  | 
|
157  | 
||
158  | 
lemma filter_tab_dom_subset: "dom (filter_tab C t) \<subseteq> dom t"  | 
|
159  | 
by (auto simp add: filter_tab_def dom_def)  | 
|
160  | 
||
161  | 
lemma filter_tab_eq: "\<lbrakk>a=b\<rbrakk> \<Longrightarrow> filter_tab C a = filter_tab C b"  | 
|
162  | 
by (auto simp add: expand_fun_eq filter_tab_def)  | 
|
163  | 
||
164  | 
lemma finite_dom_filter_tab:  | 
|
165  | 
"finite (dom t) \<Longrightarrow> finite (dom (filter_tab C t))"  | 
|
166  | 
apply (rule_tac B="dom t" in finite_subset)  | 
|
167  | 
by (rule filter_tab_dom_subset)  | 
|
168  | 
||
169  | 
||
170  | 
lemma filter_tab_weaken:  | 
|
171  | 
"\<lbrakk>\<forall> a \<in> t k: \<exists> b \<in> s k: P a b;  | 
|
172  | 
\<And> k x y. \<lbrakk>t k = Some x;s k = Some y\<rbrakk> \<Longrightarrow> cond k x \<longrightarrow> cond k y  | 
|
173  | 
\<rbrakk> \<Longrightarrow> \<forall> a \<in> filter_tab cond t k: \<exists> b \<in> filter_tab cond s k: P a b"  | 
|
174  | 
apply (auto simp add: filter_tab_def)  | 
|
175  | 
done  | 
|
176  | 
||
177  | 
lemma cond_override_filter:  | 
|
178  | 
"\<lbrakk>\<And> k old new. \<lbrakk>s k = Some new; t k = Some old\<rbrakk>  | 
|
179  | 
\<Longrightarrow> (\<not> overC new old \<longrightarrow> \<not> filterC k new) \<and>  | 
|
180  | 
(overC new old \<longrightarrow> filterC k old \<longrightarrow> filterC k new)  | 
|
181  | 
\<rbrakk> \<Longrightarrow>  | 
|
182  | 
cond_override overC (filter_tab filterC t) (filter_tab filterC s)  | 
|
183  | 
= filter_tab filterC (cond_override overC t s)"  | 
|
184  | 
by (auto simp add: expand_fun_eq cond_override_def filter_tab_def )  | 
|
185  | 
||
| 
12925
 
99131847fb93
Added check for field/method access to operational semantics and proved the acesses valid.
 
schirmer 
parents: 
12858 
diff
changeset
 | 
186  | 
|
| 12854 | 187  | 
section {* Misc. *}
 | 
188  | 
||
189  | 
lemma Ball_set_table: "(\<forall> (x,y)\<in> set l. P x y) \<Longrightarrow> \<forall> x. \<forall> y\<in> map_of l x: P x y"  | 
|
190  | 
apply (erule make_imp)  | 
|
191  | 
apply (induct l)  | 
|
192  | 
apply simp  | 
|
193  | 
apply (simp (no_asm))  | 
|
194  | 
apply auto  | 
|
195  | 
done  | 
|
196  | 
||
197  | 
lemma Ball_set_tableD:  | 
|
198  | 
"\<lbrakk>(\<forall> (x,y)\<in> set l. P x y); x \<in> o2s (table_of l xa)\<rbrakk> \<Longrightarrow> P xa x"  | 
|
199  | 
apply (frule Ball_set_table)  | 
|
200  | 
by auto  | 
|
201  | 
||
202  | 
declare map_of_SomeD [elim]  | 
|
203  | 
||
204  | 
lemma table_of_Some_in_set:  | 
|
205  | 
"table_of l k = Some x \<Longrightarrow> (k,x) \<in> set l"  | 
|
206  | 
by auto  | 
|
207  | 
||
208  | 
lemma set_get_eq:  | 
|
209  | 
"unique l \<Longrightarrow> (k, the (table_of l k)) \<in> set l = (table_of l k \<noteq> None)"  | 
|
210  | 
apply safe  | 
|
211  | 
apply (fast dest!: weak_map_of_SomeI)  | 
|
212  | 
apply auto  | 
|
213  | 
done  | 
|
214  | 
||
215  | 
lemma inj_Pair_const2: "inj (\<lambda>k. (k, C))"  | 
|
216  | 
apply (rule injI)  | 
|
217  | 
apply auto  | 
|
218  | 
done  | 
|
219  | 
||
220  | 
lemma table_of_mapconst_SomeI:  | 
|
221  | 
"\<lbrakk>table_of t k = Some y'; snd y=y'; fst y=c\<rbrakk> \<Longrightarrow>  | 
|
222  | 
table_of (map (\<lambda>(k,x). (k,c,x)) t) k = Some y"  | 
|
223  | 
apply (induct t)  | 
|
224  | 
apply auto  | 
|
225  | 
done  | 
|
226  | 
||
227  | 
lemma table_of_mapconst_NoneI:  | 
|
228  | 
"\<lbrakk>table_of t k = None\<rbrakk> \<Longrightarrow>  | 
|
229  | 
table_of (map (\<lambda>(k,x). (k,c,x)) t) k = None"  | 
|
230  | 
apply (induct t)  | 
|
231  | 
apply auto  | 
|
232  | 
done  | 
|
233  | 
||
234  | 
lemmas table_of_map2_SomeI = inj_Pair_const2 [THEN map_of_mapk_SomeI, standard]  | 
|
235  | 
||
236  | 
lemma table_of_map_SomeI [rule_format (no_asm)]: "table_of t k = Some x \<longrightarrow>  | 
|
237  | 
table_of (map (\<lambda>(k,x). (k, f x)) t) k = Some (f x)"  | 
|
238  | 
apply (induct_tac "t")  | 
|
239  | 
apply auto  | 
|
240  | 
done  | 
|
241  | 
||
242  | 
lemma table_of_remap_SomeD [rule_format (no_asm)]:  | 
|
243  | 
"table_of (map (\<lambda>((k,k'),x). (k,(k',x))) t) k = Some (k',x) \<longrightarrow>  | 
|
244  | 
table_of t (k, k') = Some x"  | 
|
245  | 
apply (induct_tac "t")  | 
|
246  | 
apply auto  | 
|
247  | 
done  | 
|
248  | 
||
249  | 
lemma table_of_mapf_Some [rule_format (no_asm)]: "\<forall>x y. f x = f y \<longrightarrow> x = y \<Longrightarrow>  | 
|
250  | 
table_of (map (\<lambda>(k,x). (k,f x)) t) k = Some (f x) \<longrightarrow> table_of t k = Some x"  | 
|
251  | 
apply (induct_tac "t")  | 
|
252  | 
apply auto  | 
|
253  | 
done  | 
|
254  | 
||
255  | 
lemma table_of_mapf_SomeD [rule_format (no_asm), dest!]:  | 
|
256  | 
"table_of (map (\<lambda>(k,x). (k, f x)) t) k = Some z \<longrightarrow> (\<exists>y\<in>table_of t k: z=f y)"  | 
|
257  | 
apply (induct_tac "t")  | 
|
258  | 
apply auto  | 
|
259  | 
done  | 
|
260  | 
||
261  | 
lemma table_of_mapf_NoneD [rule_format (no_asm), dest!]:  | 
|
262  | 
"table_of (map (\<lambda>(k,x). (k, f x)) t) k = None \<longrightarrow> (table_of t k = None)"  | 
|
263  | 
apply (induct_tac "t")  | 
|
264  | 
apply auto  | 
|
265  | 
done  | 
|
266  | 
||
267  | 
lemma table_of_mapkey_SomeD [rule_format (no_asm), dest!]:  | 
|
268  | 
"table_of (map (\<lambda>(k,x). ((k,C),x)) t) (k,D) = Some x \<longrightarrow> C = D \<and> table_of t k = Some x"  | 
|
269  | 
apply (induct_tac "t")  | 
|
270  | 
apply auto  | 
|
271  | 
done  | 
|
272  | 
lemma table_of_mapkey_SomeD2 [rule_format (no_asm), dest!]:  | 
|
273  | 
"table_of (map (\<lambda>(k,x). ((k,C),x)) t) ek = Some x  | 
|
274  | 
\<longrightarrow> C = snd ek \<and> table_of t (fst ek) = Some x"  | 
|
275  | 
apply (induct_tac "t")  | 
|
276  | 
apply auto  | 
|
277  | 
done  | 
|
278  | 
||
279  | 
lemma table_append_Some_iff: "table_of (xs@ys) k = Some z =  | 
|
280  | 
(table_of xs k = Some z \<or> (table_of xs k = None \<and> table_of ys k = Some z))"  | 
|
281  | 
apply (simp only: map_of_override [THEN sym])  | 
|
282  | 
apply (rule override_Some_iff)  | 
|
283  | 
done  | 
|
284  | 
||
285  | 
lemma table_of_filter_unique_SomeD [rule_format (no_asm)]:  | 
|
286  | 
"table_of (filter P xs) k = Some z \<Longrightarrow> unique xs \<longrightarrow> table_of xs k = Some z"  | 
|
287  | 
apply (induct xs)  | 
|
288  | 
apply (auto del: map_of_SomeD intro!: map_of_SomeD)  | 
|
289  | 
done  | 
|
290  | 
||
291  | 
||
292  | 
consts  | 
|
293  | 
  Un_tables      :: "('a, 'b) tables set \<Rightarrow> ('a, 'b) tables"
 | 
|
294  | 
  overrides_t    :: "('a, 'b) tables     \<Rightarrow> ('a, 'b) tables \<Rightarrow>
 | 
|
295  | 
                     ('a, 'b) tables"             (infixl "\<oplus>\<oplus>" 100)
 | 
|
296  | 
  hidings_entails:: "('a, 'b) tables \<Rightarrow> ('a, 'c) tables \<Rightarrow> 
 | 
|
297  | 
                     ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> bool"   ("_ hidings _ entails _" 20)
 | 
|
298  | 
(* variant for unique table: *)  | 
|
299  | 
  hiding_entails :: "('a, 'b) table  \<Rightarrow> ('a, 'c) table  \<Rightarrow> 
 | 
|
300  | 
                     ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> bool"   ("_ hiding _ entails _"  20)
 | 
|
301  | 
(* variant for a unique table and conditional overriding: *)  | 
|
302  | 
  cond_hiding_entails :: "('a, 'b) table  \<Rightarrow> ('a, 'c) table  
 | 
|
303  | 
                          \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> bool"  
 | 
|
304  | 
                          ("_ hiding _ under _ entails _"  20)
 | 
|
305  | 
||
306  | 
defs  | 
|
307  | 
Un_tables_def: "Un_tables ts\<spacespace>\<spacespace>\<equiv> \<lambda>k. \<Union>t\<in>ts. t k"  | 
|
308  | 
  overrides_t_def:     "s \<oplus>\<oplus> t        \<equiv> \<lambda>k. if t k = {} then s k else t k"
 | 
|
309  | 
hidings_entails_def: "t hidings s entails R \<equiv> \<forall>k. \<forall>x\<in>t k. \<forall>y\<in>s k. R x y"  | 
|
310  | 
hiding_entails_def: "t hiding s entails R \<equiv> \<forall>k. \<forall>x\<in>t k: \<forall>y\<in>s k: R x y"  | 
|
311  | 
cond_hiding_entails_def: "t hiding s under C entails R  | 
|
312  | 
\<equiv> \<forall>k. \<forall>x\<in>t k: \<forall>y\<in>s k: C x y \<longrightarrow> R x y"  | 
|
313  | 
||
314  | 
section "Untables"  | 
|
315  | 
||
316  | 
lemma Un_tablesI [intro]: "\<And>x. \<lbrakk>t \<in> ts; x \<in> t k\<rbrakk> \<Longrightarrow> x \<in> Un_tables ts k"  | 
|
317  | 
apply (simp add: Un_tables_def)  | 
|
318  | 
apply auto  | 
|
319  | 
done  | 
|
320  | 
||
321  | 
lemma Un_tablesD [dest!]: "\<And>x. x \<in> Un_tables ts k \<Longrightarrow> \<exists>t. t \<in> ts \<and> x \<in> t k"  | 
|
322  | 
apply (simp add: Un_tables_def)  | 
|
323  | 
apply auto  | 
|
324  | 
done  | 
|
325  | 
||
326  | 
lemma Un_tables_empty [simp]: "Un_tables {} = (\<lambda>k. {})"
 | 
|
327  | 
apply (unfold Un_tables_def)  | 
|
328  | 
apply (simp (no_asm))  | 
|
329  | 
done  | 
|
330  | 
||
331  | 
||
332  | 
section "overrides"  | 
|
333  | 
||
334  | 
lemma empty_overrides_t [simp]: "(\<lambda>k. {}) \<oplus>\<oplus> m = m"
 | 
|
335  | 
apply (unfold overrides_t_def)  | 
|
336  | 
apply (simp (no_asm))  | 
|
337  | 
done  | 
|
338  | 
lemma overrides_empty_t [simp]: "m \<oplus>\<oplus> (\<lambda>k. {}) = m"
 | 
|
339  | 
apply (unfold overrides_t_def)  | 
|
340  | 
apply (simp (no_asm))  | 
|
341  | 
done  | 
|
342  | 
||
343  | 
lemma overrides_t_Some_iff:  | 
|
344  | 
 "(x \<in> (s \<oplus>\<oplus> t) k) = (x \<in> t k \<or> t k = {} \<and> x \<in> s k)"
 | 
|
345  | 
by (simp add: overrides_t_def)  | 
|
346  | 
||
347  | 
lemmas overrides_t_SomeD = overrides_t_Some_iff [THEN iffD1, dest!]  | 
|
348  | 
||
349  | 
lemma overrides_t_right_empty [simp]: "n k = {} \<Longrightarrow> (m \<oplus>\<oplus> n) k = m k"  
 | 
|
350  | 
by (simp add: overrides_t_def)  | 
|
351  | 
||
352  | 
lemma overrides_t_find_right [simp]: "n k \<noteq> {} \<Longrightarrow> (m \<oplus>\<oplus> n) k = n k"  
 | 
|
353  | 
by (simp add: overrides_t_def)  | 
|
354  | 
||
355  | 
section "hiding entails"  | 
|
356  | 
||
357  | 
lemma hiding_entailsD:  | 
|
358  | 
"\<lbrakk>t hiding s entails R; t k = Some x; s k = Some y\<rbrakk> \<Longrightarrow> R x y"  | 
|
359  | 
by (simp add: hiding_entails_def)  | 
|
360  | 
||
361  | 
lemma empty_hiding_entails: "empty hiding s entails R"  | 
|
362  | 
by (simp add: hiding_entails_def)  | 
|
363  | 
||
364  | 
lemma hiding_empty_entails: "t hiding empty entails R"  | 
|
365  | 
by (simp add: hiding_entails_def)  | 
|
366  | 
declare empty_hiding_entails [simp] hiding_empty_entails [simp]  | 
|
367  | 
||
368  | 
section "cond hiding entails"  | 
|
369  | 
||
370  | 
lemma cond_hiding_entailsD:  | 
|
371  | 
"\<lbrakk>t hiding s under C entails R; t k = Some x; s k = Some y; C x y\<rbrakk> \<Longrightarrow> R x y"  | 
|
372  | 
by (simp add: cond_hiding_entails_def)  | 
|
373  | 
||
374  | 
lemma empty_cond_hiding_entails[simp]: "empty hiding s under C entails R"  | 
|
375  | 
by (simp add: cond_hiding_entails_def)  | 
|
376  | 
||
377  | 
lemma cond_hiding_empty_entails[simp]: "t hiding empty under C entails R"  | 
|
378  | 
by (simp add: cond_hiding_entails_def)  | 
|
379  | 
||
380  | 
lemma hidings_entailsD: "\<lbrakk>t hidings s entails R; x \<in> t k; y \<in> s k\<rbrakk> \<Longrightarrow> R x y"  | 
|
381  | 
by (simp add: hidings_entails_def)  | 
|
382  | 
||
383  | 
lemma hidings_empty_entails: "t hidings (\<lambda>k. {}) entails R"
 | 
|
384  | 
apply (unfold hidings_entails_def)  | 
|
385  | 
apply (simp (no_asm))  | 
|
386  | 
done  | 
|
387  | 
||
388  | 
lemma empty_hidings_entails:  | 
|
389  | 
  "(\<lambda>k. {}) hidings s entails R"apply (unfold hidings_entails_def)
 | 
|
390  | 
by (simp (no_asm))  | 
|
391  | 
declare empty_hidings_entails [intro!] hidings_empty_entails [intro!]  | 
|
392  | 
||
393  | 
||
394  | 
||
395  | 
(*###TO Map?*)  | 
|
396  | 
consts  | 
|
397  | 
  atleast_free :: "('a ~=> 'b) => nat => bool"
 | 
|
398  | 
primrec  | 
|
399  | 
"atleast_free m 0 = True"  | 
|
400  | 
atleast_free_Suc:  | 
|
401  | 
"atleast_free m (Suc n) = (? a. m a = None & (!b. atleast_free (m(a|->b)) n))"  | 
|
402  | 
||
403  | 
lemma atleast_free_weaken [rule_format (no_asm)]:  | 
|
404  | 
"!m. atleast_free m (Suc n) \<longrightarrow> atleast_free m n"  | 
|
405  | 
apply (induct_tac "n")  | 
|
406  | 
apply (simp (no_asm))  | 
|
407  | 
apply clarify  | 
|
408  | 
apply (simp (no_asm))  | 
|
409  | 
apply (drule atleast_free_Suc [THEN iffD1])  | 
|
410  | 
apply fast  | 
|
411  | 
done  | 
|
412  | 
||
413  | 
lemma atleast_free_SucI:  | 
|
414  | 
"[| h a = None; !obj. atleast_free (h(a|->obj)) n |] ==> atleast_free h (Suc n)"  | 
|
415  | 
by force  | 
|
416  | 
||
417  | 
declare fun_upd_apply [simp del]  | 
|
418  | 
lemma atleast_free_SucD_lemma [rule_format (no_asm)]:  | 
|
419  | 
" !m a. m a = None --> (!c. atleast_free (m(a|->c)) n) -->  | 
|
420  | 
(!b d. a ~= b --> atleast_free (m(b|->d)) n)"  | 
|
421  | 
apply (induct_tac "n")  | 
|
422  | 
apply auto  | 
|
423  | 
apply (rule_tac x = "a" in exI)  | 
|
424  | 
apply (rule conjI)  | 
|
425  | 
apply (force simp add: fun_upd_apply)  | 
|
426  | 
apply (erule_tac V = "m a = None" in thin_rl)  | 
|
427  | 
apply clarify  | 
|
428  | 
apply (subst fun_upd_twist)  | 
|
429  | 
apply (erule not_sym)  | 
|
430  | 
apply (rename_tac "ba")  | 
|
431  | 
apply (drule_tac x = "ba" in spec)  | 
|
432  | 
apply clarify  | 
|
433  | 
apply (tactic "smp_tac 2 1")  | 
|
434  | 
apply (erule (1) notE impE)  | 
|
435  | 
apply (case_tac "aa = b")  | 
|
436  | 
apply fast+  | 
|
437  | 
done  | 
|
438  | 
declare fun_upd_apply [simp]  | 
|
439  | 
||
440  | 
lemma atleast_free_SucD [rule_format (no_asm)]: "atleast_free h (Suc n) ==> atleast_free (h(a|->b)) n"  | 
|
441  | 
apply auto  | 
|
442  | 
apply (case_tac "aa = a")  | 
|
443  | 
apply auto  | 
|
444  | 
apply (erule atleast_free_SucD_lemma)  | 
|
445  | 
apply auto  | 
|
446  | 
done  | 
|
447  | 
||
448  | 
declare atleast_free_Suc [simp del]  | 
|
449  | 
end  |