| author | wenzelm | 
| Mon, 11 Sep 2000 20:41:44 +0200 | |
| changeset 9927 | 7a9652294fe0 | 
| parent 9211 | 6236c5285bd8 | 
| permissions | -rw-r--r-- | 
| 1461 | 1  | 
(* Title: ZF/domrange  | 
| 0 | 2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 4  | 
Copyright 1991 University of Cambridge  | 
5  | 
||
6  | 
Converse, domain, range of a relation or function  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
(*** converse ***)  | 
|
10  | 
||
| 9211 | 11  | 
Goalw [converse_def] "<a,b>: converse(r) <-> <b,a>:r";  | 
12  | 
by (Blast_tac 1) ;  | 
|
13  | 
qed "converse_iff";  | 
|
| 687 | 14  | 
|
| 9211 | 15  | 
Goalw [converse_def] "<a,b>:r ==> <b,a>:converse(r)";  | 
16  | 
by (Blast_tac 1) ;  | 
|
17  | 
qed "converseI";  | 
|
| 0 | 18  | 
|
| 9211 | 19  | 
Goalw [converse_def] "<a,b> : converse(r) ==> <b,a> : r";  | 
20  | 
by (Blast_tac 1) ;  | 
|
21  | 
qed "converseD";  | 
|
| 0 | 22  | 
|
| 9211 | 23  | 
val [major,minor]= Goalw [converse_def]  | 
| 0 | 24  | 
"[| yx : converse(r); \  | 
25  | 
\ !!x y. [| yx=<y,x>; <x,y>:r |] ==> P \  | 
|
| 9211 | 26  | 
\ |] ==> P";  | 
27  | 
by (rtac (major RS ReplaceE) 1);  | 
|
28  | 
by (REPEAT (eresolve_tac [exE, conjE, minor] 1));  | 
|
29  | 
by (hyp_subst_tac 1);  | 
|
30  | 
by (assume_tac 1) ;  | 
|
31  | 
qed "converseE";  | 
|
| 0 | 32  | 
|
| 2469 | 33  | 
Addsimps [converse_iff];  | 
34  | 
AddSIs [converseI];  | 
|
35  | 
AddSEs [converseD,converseE];  | 
|
| 0 | 36  | 
|
| 9180 | 37  | 
Goal "r<=Sigma(A,B) ==> converse(converse(r)) = r";  | 
38  | 
by (Blast_tac 1) ;  | 
|
39  | 
qed "converse_converse";  | 
|
40  | 
||
41  | 
Goal "r<=A*B ==> converse(r)<=B*A";  | 
|
42  | 
by (Blast_tac 1) ;  | 
|
43  | 
qed "converse_type";  | 
|
| 0 | 44  | 
|
| 9180 | 45  | 
Goal "converse(A*B) = B*A";  | 
46  | 
by (Blast_tac 1) ;  | 
|
47  | 
qed "converse_prod";  | 
|
| 0 | 48  | 
|
| 9180 | 49  | 
Goal "converse(0) = 0";  | 
50  | 
by (Blast_tac 1) ;  | 
|
51  | 
qed "converse_empty";  | 
|
| 2469 | 52  | 
|
53  | 
Addsimps [converse_prod, converse_empty];  | 
|
| 0 | 54  | 
|
| 9211 | 55  | 
Goal "A <= Sigma(X,Y) ==> converse(A) <= converse(B) <-> A <= B";  | 
56  | 
by (Blast_tac 1) ;  | 
|
57  | 
qed "converse_subset_iff";  | 
|
| 5202 | 58  | 
|
59  | 
||
| 0 | 60  | 
(*** domain ***)  | 
61  | 
||
| 9211 | 62  | 
Goalw [domain_def] "a: domain(r) <-> (EX y. <a,y>: r)";  | 
63  | 
by (Blast_tac 1) ;  | 
|
64  | 
qed "domain_iff";  | 
|
| 0 | 65  | 
|
| 9180 | 66  | 
Goal "<a,b>: r ==> a: domain(r)";  | 
67  | 
by (etac (exI RS (domain_iff RS iffD2)) 1) ;  | 
|
68  | 
qed "domainI";  | 
|
| 0 | 69  | 
|
| 9180 | 70  | 
val prems= Goal  | 
71  | 
"[| a : domain(r); !!y. <a,y>: r ==> P |] ==> P";  | 
|
72  | 
by (rtac (domain_iff RS iffD1 RS exE) 1);  | 
|
73  | 
by (REPEAT (ares_tac prems 1)) ;  | 
|
74  | 
qed "domainE";  | 
|
| 0 | 75  | 
|
| 2469 | 76  | 
AddIs [domainI];  | 
77  | 
AddSEs [domainE];  | 
|
| 0 | 78  | 
|
| 9180 | 79  | 
Goal "domain(Sigma(A,B)) <= A";  | 
80  | 
by (Blast_tac 1) ;  | 
|
81  | 
qed "domain_subset";  | 
|
| 0 | 82  | 
|
83  | 
(*** range ***)  | 
|
84  | 
||
| 9211 | 85  | 
Goalw [range_def] "<a,b>: r ==> b : range(r)";  | 
86  | 
by (etac (converseI RS domainI) 1) ;  | 
|
87  | 
qed "rangeI";  | 
|
| 0 | 88  | 
|
| 9211 | 89  | 
val major::prems= Goalw [range_def]  | 
90  | 
"[| b : range(r); !!x. <x,b>: r ==> P |] ==> P";  | 
|
91  | 
by (rtac (major RS domainE) 1);  | 
|
92  | 
by (resolve_tac prems 1);  | 
|
93  | 
by (etac converseD 1) ;  | 
|
94  | 
qed "rangeE";  | 
|
| 0 | 95  | 
|
| 2469 | 96  | 
AddIs [rangeI];  | 
97  | 
AddSEs [rangeE];  | 
|
98  | 
||
| 9211 | 99  | 
Goalw [range_def] "range(A*B) <= B";  | 
100  | 
by (stac converse_prod 1);  | 
|
101  | 
by (rtac domain_subset 1) ;  | 
|
102  | 
qed "range_subset";  | 
|
| 0 | 103  | 
|
104  | 
||
105  | 
(*** field ***)  | 
|
106  | 
||
| 9211 | 107  | 
Goalw [field_def] "<a,b>: r ==> a : field(r)";  | 
108  | 
by (Blast_tac 1) ;  | 
|
109  | 
qed "fieldI1";  | 
|
| 0 | 110  | 
|
| 9211 | 111  | 
Goalw [field_def] "<a,b>: r ==> b : field(r)";  | 
112  | 
by (Blast_tac 1) ;  | 
|
113  | 
qed "fieldI2";  | 
|
| 0 | 114  | 
|
| 9211 | 115  | 
val [prem]= Goalw [field_def]  | 
116  | 
"(~ <c,a>:r ==> <a,b>: r) ==> a : field(r)";  | 
|
117  | 
by (blast_tac (claset() addIs [prem]) 1) ;  | 
|
118  | 
qed "fieldCI";  | 
|
119  | 
||
120  | 
val major::prems= Goalw [field_def]  | 
|
| 0 | 121  | 
"[| a : field(r); \  | 
122  | 
\ !!x. <a,x>: r ==> P; \  | 
|
| 9211 | 123  | 
\ !!x. <x,a>: r ==> P |] ==> P";  | 
124  | 
by (rtac (major RS UnE) 1);  | 
|
125  | 
by (REPEAT (eresolve_tac (prems@[domainE,rangeE]) 1)) ;  | 
|
126  | 
qed "fieldE";  | 
|
| 0 | 127  | 
|
| 2469 | 128  | 
AddIs [fieldCI];  | 
129  | 
AddSEs [fieldE];  | 
|
| 0 | 130  | 
|
| 9180 | 131  | 
Goal "field(A*B) <= A Un B";  | 
132  | 
by (Blast_tac 1) ;  | 
|
133  | 
qed "field_subset";  | 
|
| 2469 | 134  | 
|
| 9211 | 135  | 
Goalw [field_def] "domain(r) <= field(r)";  | 
136  | 
by (rtac Un_upper1 1) ;  | 
|
137  | 
qed "domain_subset_field";  | 
|
| 0 | 138  | 
|
| 9211 | 139  | 
Goalw [field_def] "range(r) <= field(r)";  | 
140  | 
by (rtac Un_upper2 1) ;  | 
|
141  | 
qed "range_subset_field";  | 
|
| 0 | 142  | 
|
| 9180 | 143  | 
Goal "r <= Sigma(A,B) ==> r <= domain(r)*range(r)";  | 
144  | 
by (Blast_tac 1) ;  | 
|
145  | 
qed "domain_times_range";  | 
|
| 0 | 146  | 
|
| 9180 | 147  | 
Goal "r <= Sigma(A,B) ==> r <= field(r)*field(r)";  | 
148  | 
by (Blast_tac 1) ;  | 
|
149  | 
qed "field_times_field";  | 
|
| 0 | 150  | 
|
151  | 
||
152  | 
(*** Image of a set under a function/relation ***)  | 
|
153  | 
||
| 9180 | 154  | 
Goalw [image_def] "b : r``A <-> (EX x:A. <x,b>:r)";  | 
155  | 
by (Blast_tac 1);  | 
|
156  | 
qed "image_iff";  | 
|
| 0 | 157  | 
|
| 9180 | 158  | 
Goal "b : r``{a} <-> <a,b>:r";
 | 
159  | 
by (rtac (image_iff RS iff_trans) 1);  | 
|
160  | 
by (Blast_tac 1) ;  | 
|
161  | 
qed "image_singleton_iff";  | 
|
| 0 | 162  | 
|
| 9211 | 163  | 
Goalw [image_def] "[| <a,b>: r; a:A |] ==> b : r``A";  | 
164  | 
by (Blast_tac 1) ;  | 
|
165  | 
qed "imageI";  | 
|
| 0 | 166  | 
|
| 9211 | 167  | 
val major::prems= Goalw [image_def]  | 
168  | 
"[| b: r``A; !!x.[| <x,b>: r; x:A |] ==> P |] ==> P";  | 
|
169  | 
by (rtac (major RS CollectE) 1);  | 
|
170  | 
by (REPEAT (etac bexE 1 ORELSE ares_tac prems 1)) ;  | 
|
171  | 
qed "imageE";  | 
|
| 0 | 172  | 
|
| 2469 | 173  | 
AddIs [imageI];  | 
174  | 
AddSEs [imageE];  | 
|
175  | 
||
| 9180 | 176  | 
Goal "r <= A*B ==> r``C <= B";  | 
177  | 
by (Blast_tac 1) ;  | 
|
178  | 
qed "image_subset";  | 
|
| 0 | 179  | 
|
180  | 
||
181  | 
(*** Inverse image of a set under a function/relation ***)  | 
|
182  | 
||
| 9211 | 183  | 
Goalw [vimage_def,image_def,converse_def]  | 
184  | 
"a : r-``B <-> (EX y:B. <a,y>:r)";  | 
|
185  | 
by (Blast_tac 1) ;  | 
|
186  | 
qed "vimage_iff";  | 
|
| 0 | 187  | 
|
| 9180 | 188  | 
Goal "a : r-``{b} <-> <a,b>:r";
 | 
189  | 
by (rtac (vimage_iff RS iff_trans) 1);  | 
|
190  | 
by (Blast_tac 1) ;  | 
|
191  | 
qed "vimage_singleton_iff";  | 
|
| 0 | 192  | 
|
| 9211 | 193  | 
Goalw [vimage_def] "[| <a,b>: r; b:B |] ==> a : r-``B";  | 
194  | 
by (Blast_tac 1) ;  | 
|
195  | 
qed "vimageI";  | 
|
| 0 | 196  | 
|
| 9211 | 197  | 
val major::prems= Goalw [vimage_def]  | 
198  | 
"[| a: r-``B; !!x.[| <a,x>: r; x:B |] ==> P |] ==> P";  | 
|
199  | 
by (rtac (major RS imageE) 1);  | 
|
200  | 
by (REPEAT (etac converseD 1 ORELSE ares_tac prems 1)) ;  | 
|
201  | 
qed "vimageE";  | 
|
| 0 | 202  | 
|
| 9211 | 203  | 
Goalw [vimage_def] "r <= A*B ==> r-``C <= A";  | 
204  | 
by (etac (converse_type RS image_subset) 1) ;  | 
|
205  | 
qed "vimage_subset";  | 
|
| 0 | 206  | 
|
207  | 
||
208  | 
(** Theorem-proving for ZF set theory **)  | 
|
209  | 
||
| 2469 | 210  | 
AddIs [vimageI];  | 
211  | 
AddSEs [vimageE];  | 
|
212  | 
||
| 4091 | 213  | 
val ZF_cs = claset() delrules [equalityI];  | 
| 0 | 214  | 
|
215  | 
(** The Union of a set of relations is a relation -- Lemma for fun_Union **)  | 
|
| 
5325
 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 
paulson 
parents: 
5202 
diff
changeset
 | 
216  | 
Goal "(ALL x:S. EX A B. x <= A*B) ==> \  | 
| 0 | 217  | 
\ Union(S) <= domain(Union(S)) * range(Union(S))";  | 
| 2877 | 218  | 
by (Blast_tac 1);  | 
| 760 | 219  | 
qed "rel_Union";  | 
| 0 | 220  | 
|
221  | 
(** The Union of 2 relations is a relation (Lemma for fun_Un) **)  | 
|
| 9180 | 222  | 
Goal "[| r <= A*B; s <= C*D |] ==> (r Un s) <= (A Un C) * (B Un D)";  | 
223  | 
by (Blast_tac 1) ;  | 
|
224  | 
qed "rel_Un";  | 
|
| 0 | 225  | 
|
| 
5325
 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 
paulson 
parents: 
5202 
diff
changeset
 | 
226  | 
Goal "[| <a,c> : r; c~=b |] ==> domain(r-{<a,b>}) = domain(r)";
 | 
| 2877 | 227  | 
by (Blast_tac 1);  | 
| 2469 | 228  | 
qed "domain_Diff_eq";  | 
229  | 
||
| 
5325
 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 
paulson 
parents: 
5202 
diff
changeset
 | 
230  | 
Goal "[| <c,b> : r; c~=a |] ==> range(r-{<a,b>}) = range(r)";
 | 
| 2877 | 231  | 
by (Blast_tac 1);  | 
| 2469 | 232  | 
qed "range_Diff_eq";  | 
233  |