| 
0
 | 
     1  | 
(*  Title: 	ZF/epsilon.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Epsilon induction and recursion
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
124
 | 
     9  | 
Epsilon = Nat + "mono" +
  | 
| 
0
 | 
    10  | 
consts
  | 
| 
 | 
    11  | 
    eclose,rank ::      "i=>i"
  | 
| 
 | 
    12  | 
    transrec    ::      "[i, [i,i]=>i] =>i"
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
rules
  | 
| 
 | 
    15  | 
  eclose_def	"eclose(A) == UN n:nat. nat_rec(n, A, %m r. Union(r))"
  | 
| 
 | 
    16  | 
  transrec_def	"transrec(a,H) == wfrec(Memrel(eclose({a})), a, H)"
 | 
| 
 | 
    17  | 
  rank_def    	"rank(a) == transrec(a, %x f. UN y:x. succ(f`y))"
  | 
| 
 | 
    18  | 
end
  |