| 
27468
 | 
     1  | 
(*  Title       : HLim.thy
  | 
| 
 | 
     2  | 
    ID          : $Id$
  | 
| 
 | 
     3  | 
    Author      : Jacques D. Fleuriot
  | 
| 
 | 
     4  | 
    Copyright   : 1998  University of Cambridge
  | 
| 
 | 
     5  | 
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
  | 
| 
 | 
     6  | 
*)
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
header{* Limits and Continuity (Nonstandard) *}
 | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
theory HLim
  | 
| 
 | 
    11  | 
imports Star Lim
  | 
| 
 | 
    12  | 
begin
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
text{*Nonstandard Definitions*}
 | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
definition
  | 
| 
 | 
    17  | 
  NSLIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool"
  | 
| 
 | 
    18  | 
            ("((_)/ -- (_)/ --NS> (_))" [60, 0, 60] 60) where
 | 
| 
28562
 | 
    19  | 
  [code del]: "f -- a --NS> L =
  | 
| 
27468
 | 
    20  | 
    (\<forall>x. (x \<noteq> star_of a & x @= star_of a --> ( *f* f) x @= star_of L))"
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
definition
  | 
| 
 | 
    23  | 
  isNSCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where
  | 
| 
 | 
    24  | 
    --{*NS definition dispenses with limit notions*}
 | 
| 
28562
 | 
    25  | 
  [code del]: "isNSCont f a = (\<forall>y. y @= star_of a -->
  | 
| 
27468
 | 
    26  | 
         ( *f* f) y @= star_of (f a))"
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
definition
  | 
| 
 | 
    29  | 
  isNSUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where
  | 
| 
28562
 | 
    30  | 
  [code del]: "isNSUCont f = (\<forall>x y. x @= y --> ( *f* f) x @= ( *f* f) y)"
  | 
| 
27468
 | 
    31  | 
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
subsection {* Limits of Functions *}
 | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma NSLIM_I:
  | 
| 
 | 
    36  | 
  "(\<And>x. \<lbrakk>x \<noteq> star_of a; x \<approx> star_of a\<rbrakk> \<Longrightarrow> starfun f x \<approx> star_of L)
  | 
| 
 | 
    37  | 
   \<Longrightarrow> f -- a --NS> L"
  | 
| 
 | 
    38  | 
by (simp add: NSLIM_def)
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
lemma NSLIM_D:
  | 
| 
 | 
    41  | 
  "\<lbrakk>f -- a --NS> L; x \<noteq> star_of a; x \<approx> star_of a\<rbrakk>
  | 
| 
 | 
    42  | 
   \<Longrightarrow> starfun f x \<approx> star_of L"
  | 
| 
 | 
    43  | 
by (simp add: NSLIM_def)
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
text{*Proving properties of limits using nonstandard definition.
 | 
| 
 | 
    46  | 
      The properties hold for standard limits as well!*}
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma NSLIM_mult:
  | 
| 
 | 
    49  | 
  fixes l m :: "'a::real_normed_algebra"
  | 
| 
 | 
    50  | 
  shows "[| f -- x --NS> l; g -- x --NS> m |]
  | 
| 
 | 
    51  | 
      ==> (%x. f(x) * g(x)) -- x --NS> (l * m)"
  | 
| 
 | 
    52  | 
by (auto simp add: NSLIM_def intro!: approx_mult_HFinite)
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma starfun_scaleR [simp]:
  | 
| 
 | 
    55  | 
  "starfun (\<lambda>x. f x *\<^sub>R g x) = (\<lambda>x. scaleHR (starfun f x) (starfun g x))"
  | 
| 
 | 
    56  | 
by transfer (rule refl)
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
lemma NSLIM_scaleR:
  | 
| 
 | 
    59  | 
  "[| f -- x --NS> l; g -- x --NS> m |]
  | 
| 
 | 
    60  | 
      ==> (%x. f(x) *\<^sub>R g(x)) -- x --NS> (l *\<^sub>R m)"
  | 
| 
 | 
    61  | 
by (auto simp add: NSLIM_def intro!: approx_scaleR_HFinite)
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
lemma NSLIM_add:
  | 
| 
 | 
    64  | 
     "[| f -- x --NS> l; g -- x --NS> m |]
  | 
| 
 | 
    65  | 
      ==> (%x. f(x) + g(x)) -- x --NS> (l + m)"
  | 
| 
 | 
    66  | 
by (auto simp add: NSLIM_def intro!: approx_add)
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
lemma NSLIM_const [simp]: "(%x. k) -- x --NS> k"
  | 
| 
 | 
    69  | 
by (simp add: NSLIM_def)
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
lemma NSLIM_minus: "f -- a --NS> L ==> (%x. -f(x)) -- a --NS> -L"
  | 
| 
 | 
    72  | 
by (simp add: NSLIM_def)
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
lemma NSLIM_diff:
  | 
| 
 | 
    75  | 
  "\<lbrakk>f -- x --NS> l; g -- x --NS> m\<rbrakk> \<Longrightarrow> (\<lambda>x. f x - g x) -- x --NS> (l - m)"
  | 
| 
 | 
    76  | 
by (simp only: diff_def NSLIM_add NSLIM_minus)
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
lemma NSLIM_add_minus: "[| f -- x --NS> l; g -- x --NS> m |] ==> (%x. f(x) + -g(x)) -- x --NS> (l + -m)"
  | 
| 
 | 
    79  | 
by (simp only: NSLIM_add NSLIM_minus)
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
lemma NSLIM_inverse:
  | 
| 
 | 
    82  | 
  fixes L :: "'a::real_normed_div_algebra"
  | 
| 
 | 
    83  | 
  shows "[| f -- a --NS> L;  L \<noteq> 0 |]
  | 
| 
 | 
    84  | 
      ==> (%x. inverse(f(x))) -- a --NS> (inverse L)"
  | 
| 
 | 
    85  | 
apply (simp add: NSLIM_def, clarify)
  | 
| 
 | 
    86  | 
apply (drule spec)
  | 
| 
 | 
    87  | 
apply (auto simp add: star_of_approx_inverse)
  | 
| 
 | 
    88  | 
done
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
lemma NSLIM_zero:
  | 
| 
 | 
    91  | 
  assumes f: "f -- a --NS> l" shows "(%x. f(x) - l) -- a --NS> 0"
  | 
| 
 | 
    92  | 
proof -
  | 
| 
 | 
    93  | 
  have "(\<lambda>x. f x - l) -- a --NS> l - l"
  | 
| 
 | 
    94  | 
    by (rule NSLIM_diff [OF f NSLIM_const])
  | 
| 
 | 
    95  | 
  thus ?thesis by simp
  | 
| 
 | 
    96  | 
qed
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
lemma NSLIM_zero_cancel: "(%x. f(x) - l) -- x --NS> 0 ==> f -- x --NS> l"
  | 
| 
 | 
    99  | 
apply (drule_tac g = "%x. l" and m = l in NSLIM_add)
  | 
| 
 | 
   100  | 
apply (auto simp add: diff_minus add_assoc)
  | 
| 
 | 
   101  | 
done
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
lemma NSLIM_const_not_eq:
  | 
| 
 | 
   104  | 
  fixes a :: "'a::real_normed_algebra_1"
  | 
| 
 | 
   105  | 
  shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --NS> L"
  | 
| 
 | 
   106  | 
apply (simp add: NSLIM_def)
  | 
| 
 | 
   107  | 
apply (rule_tac x="star_of a + of_hypreal epsilon" in exI)
  | 
| 
 | 
   108  | 
apply (simp add: hypreal_epsilon_not_zero approx_def)
  | 
| 
 | 
   109  | 
done
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
lemma NSLIM_not_zero:
  | 
| 
 | 
   112  | 
  fixes a :: "'a::real_normed_algebra_1"
  | 
| 
 | 
   113  | 
  shows "k \<noteq> 0 \<Longrightarrow> \<not> (\<lambda>x. k) -- a --NS> 0"
  | 
| 
 | 
   114  | 
by (rule NSLIM_const_not_eq)
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
lemma NSLIM_const_eq:
  | 
| 
 | 
   117  | 
  fixes a :: "'a::real_normed_algebra_1"
  | 
| 
 | 
   118  | 
  shows "(\<lambda>x. k) -- a --NS> L \<Longrightarrow> k = L"
  | 
| 
 | 
   119  | 
apply (rule ccontr)
  | 
| 
 | 
   120  | 
apply (blast dest: NSLIM_const_not_eq)
  | 
| 
 | 
   121  | 
done
  | 
| 
 | 
   122  | 
  | 
| 
 | 
   123  | 
lemma NSLIM_unique:
  | 
| 
 | 
   124  | 
  fixes a :: "'a::real_normed_algebra_1"
  | 
| 
 | 
   125  | 
  shows "\<lbrakk>f -- a --NS> L; f -- a --NS> M\<rbrakk> \<Longrightarrow> L = M"
  | 
| 
 | 
   126  | 
apply (drule (1) NSLIM_diff)
  | 
| 
 | 
   127  | 
apply (auto dest!: NSLIM_const_eq)
  | 
| 
 | 
   128  | 
done
  | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
lemma NSLIM_mult_zero:
  | 
| 
 | 
   131  | 
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
  | 
| 
 | 
   132  | 
  shows "[| f -- x --NS> 0; g -- x --NS> 0 |] ==> (%x. f(x)*g(x)) -- x --NS> 0"
  | 
| 
 | 
   133  | 
by (drule NSLIM_mult, auto)
  | 
| 
 | 
   134  | 
  | 
| 
 | 
   135  | 
lemma NSLIM_self: "(%x. x) -- a --NS> a"
  | 
| 
 | 
   136  | 
by (simp add: NSLIM_def)
  | 
| 
 | 
   137  | 
  | 
| 
 | 
   138  | 
subsubsection {* Equivalence of @{term LIM} and @{term NSLIM} *}
 | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
lemma LIM_NSLIM:
  | 
| 
 | 
   141  | 
  assumes f: "f -- a --> L" shows "f -- a --NS> L"
  | 
| 
 | 
   142  | 
proof (rule NSLIM_I)
  | 
| 
 | 
   143  | 
  fix x
  | 
| 
 | 
   144  | 
  assume neq: "x \<noteq> star_of a"
  | 
| 
 | 
   145  | 
  assume approx: "x \<approx> star_of a"
  | 
| 
 | 
   146  | 
  have "starfun f x - star_of L \<in> Infinitesimal"
  | 
| 
 | 
   147  | 
  proof (rule InfinitesimalI2)
  | 
| 
 | 
   148  | 
    fix r::real assume r: "0 < r"
  | 
| 
 | 
   149  | 
    from LIM_D [OF f r]
  | 
| 
 | 
   150  | 
    obtain s where s: "0 < s" and
  | 
| 
 | 
   151  | 
      less_r: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < s\<rbrakk> \<Longrightarrow> norm (f x - L) < r"
  | 
| 
 | 
   152  | 
      by fast
  | 
| 
 | 
   153  | 
    from less_r have less_r':
  | 
| 
 | 
   154  | 
       "\<And>x. \<lbrakk>x \<noteq> star_of a; hnorm (x - star_of a) < star_of s\<rbrakk>
  | 
| 
 | 
   155  | 
        \<Longrightarrow> hnorm (starfun f x - star_of L) < star_of r"
  | 
| 
 | 
   156  | 
      by transfer
  | 
| 
 | 
   157  | 
    from approx have "x - star_of a \<in> Infinitesimal"
  | 
| 
 | 
   158  | 
      by (unfold approx_def)
  | 
| 
 | 
   159  | 
    hence "hnorm (x - star_of a) < star_of s"
  | 
| 
 | 
   160  | 
      using s by (rule InfinitesimalD2)
  | 
| 
 | 
   161  | 
    with neq show "hnorm (starfun f x - star_of L) < star_of r"
  | 
| 
 | 
   162  | 
      by (rule less_r')
  | 
| 
 | 
   163  | 
  qed
  | 
| 
 | 
   164  | 
  thus "starfun f x \<approx> star_of L"
  | 
| 
 | 
   165  | 
    by (unfold approx_def)
  | 
| 
 | 
   166  | 
qed
  | 
| 
 | 
   167  | 
  | 
| 
 | 
   168  | 
lemma NSLIM_LIM:
  | 
| 
 | 
   169  | 
  assumes f: "f -- a --NS> L" shows "f -- a --> L"
  | 
| 
 | 
   170  | 
proof (rule LIM_I)
  | 
| 
 | 
   171  | 
  fix r::real assume r: "0 < r"
  | 
| 
 | 
   172  | 
  have "\<exists>s>0. \<forall>x. x \<noteq> star_of a \<and> hnorm (x - star_of a) < s
  | 
| 
 | 
   173  | 
        \<longrightarrow> hnorm (starfun f x - star_of L) < star_of r"
  | 
| 
 | 
   174  | 
  proof (rule exI, safe)
  | 
| 
 | 
   175  | 
    show "0 < epsilon" by (rule hypreal_epsilon_gt_zero)
  | 
| 
 | 
   176  | 
  next
  | 
| 
 | 
   177  | 
    fix x assume neq: "x \<noteq> star_of a"
  | 
| 
 | 
   178  | 
    assume "hnorm (x - star_of a) < epsilon"
  | 
| 
 | 
   179  | 
    with Infinitesimal_epsilon
  | 
| 
 | 
   180  | 
    have "x - star_of a \<in> Infinitesimal"
  | 
| 
 | 
   181  | 
      by (rule hnorm_less_Infinitesimal)
  | 
| 
 | 
   182  | 
    hence "x \<approx> star_of a"
  | 
| 
 | 
   183  | 
      by (unfold approx_def)
  | 
| 
 | 
   184  | 
    with f neq have "starfun f x \<approx> star_of L"
  | 
| 
 | 
   185  | 
      by (rule NSLIM_D)
  | 
| 
 | 
   186  | 
    hence "starfun f x - star_of L \<in> Infinitesimal"
  | 
| 
 | 
   187  | 
      by (unfold approx_def)
  | 
| 
 | 
   188  | 
    thus "hnorm (starfun f x - star_of L) < star_of r"
  | 
| 
 | 
   189  | 
      using r by (rule InfinitesimalD2)
  | 
| 
 | 
   190  | 
  qed
  | 
| 
 | 
   191  | 
  thus "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r"
  | 
| 
 | 
   192  | 
    by transfer
  | 
| 
 | 
   193  | 
qed
  | 
| 
 | 
   194  | 
  | 
| 
 | 
   195  | 
theorem LIM_NSLIM_iff: "(f -- x --> L) = (f -- x --NS> L)"
  | 
| 
 | 
   196  | 
by (blast intro: LIM_NSLIM NSLIM_LIM)
  | 
| 
 | 
   197  | 
  | 
| 
 | 
   198  | 
  | 
| 
 | 
   199  | 
subsection {* Continuity *}
 | 
| 
 | 
   200  | 
  | 
| 
 | 
   201  | 
lemma isNSContD:
  | 
| 
 | 
   202  | 
  "\<lbrakk>isNSCont f a; y \<approx> star_of a\<rbrakk> \<Longrightarrow> ( *f* f) y \<approx> star_of (f a)"
  | 
| 
 | 
   203  | 
by (simp add: isNSCont_def)
  | 
| 
 | 
   204  | 
  | 
| 
 | 
   205  | 
lemma isNSCont_NSLIM: "isNSCont f a ==> f -- a --NS> (f a) "
  | 
| 
 | 
   206  | 
by (simp add: isNSCont_def NSLIM_def)
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
lemma NSLIM_isNSCont: "f -- a --NS> (f a) ==> isNSCont f a"
  | 
| 
 | 
   209  | 
apply (simp add: isNSCont_def NSLIM_def, auto)
  | 
| 
 | 
   210  | 
apply (case_tac "y = star_of a", auto)
  | 
| 
 | 
   211  | 
done
  | 
| 
 | 
   212  | 
  | 
| 
 | 
   213  | 
text{*NS continuity can be defined using NS Limit in
 | 
| 
 | 
   214  | 
    similar fashion to standard def of continuity*}
  | 
| 
 | 
   215  | 
lemma isNSCont_NSLIM_iff: "(isNSCont f a) = (f -- a --NS> (f a))"
  | 
| 
 | 
   216  | 
by (blast intro: isNSCont_NSLIM NSLIM_isNSCont)
  | 
| 
 | 
   217  | 
  | 
| 
 | 
   218  | 
text{*Hence, NS continuity can be given
 | 
| 
 | 
   219  | 
  in terms of standard limit*}
  | 
| 
 | 
   220  | 
lemma isNSCont_LIM_iff: "(isNSCont f a) = (f -- a --> (f a))"
  | 
| 
 | 
   221  | 
by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff)
  | 
| 
 | 
   222  | 
  | 
| 
 | 
   223  | 
text{*Moreover, it's trivial now that NS continuity
 | 
| 
 | 
   224  | 
  is equivalent to standard continuity*}
  | 
| 
 | 
   225  | 
lemma isNSCont_isCont_iff: "(isNSCont f a) = (isCont f a)"
  | 
| 
 | 
   226  | 
apply (simp add: isCont_def)
  | 
| 
 | 
   227  | 
apply (rule isNSCont_LIM_iff)
  | 
| 
 | 
   228  | 
done
  | 
| 
 | 
   229  | 
  | 
| 
 | 
   230  | 
text{*Standard continuity ==> NS continuity*}
 | 
| 
 | 
   231  | 
lemma isCont_isNSCont: "isCont f a ==> isNSCont f a"
  | 
| 
 | 
   232  | 
by (erule isNSCont_isCont_iff [THEN iffD2])
  | 
| 
 | 
   233  | 
  | 
| 
 | 
   234  | 
text{*NS continuity ==> Standard continuity*}
 | 
| 
 | 
   235  | 
lemma isNSCont_isCont: "isNSCont f a ==> isCont f a"
  | 
| 
 | 
   236  | 
by (erule isNSCont_isCont_iff [THEN iffD1])
  | 
| 
 | 
   237  | 
  | 
| 
 | 
   238  | 
text{*Alternative definition of continuity*}
 | 
| 
 | 
   239  | 
  | 
| 
 | 
   240  | 
(* Prove equivalence between NS limits - *)
  | 
| 
 | 
   241  | 
(* seems easier than using standard def  *)
  | 
| 
 | 
   242  | 
lemma NSLIM_h_iff: "(f -- a --NS> L) = ((%h. f(a + h)) -- 0 --NS> L)"
  | 
| 
 | 
   243  | 
apply (simp add: NSLIM_def, auto)
  | 
| 
 | 
   244  | 
apply (drule_tac x = "star_of a + x" in spec)
  | 
| 
 | 
   245  | 
apply (drule_tac [2] x = "- star_of a + x" in spec, safe, simp)
  | 
| 
 | 
   246  | 
apply (erule mem_infmal_iff [THEN iffD2, THEN Infinitesimal_add_approx_self [THEN approx_sym]])
  | 
| 
 | 
   247  | 
apply (erule_tac [3] approx_minus_iff2 [THEN iffD1])
  | 
| 
 | 
   248  | 
 prefer 2 apply (simp add: add_commute diff_def [symmetric])
  | 
| 
 | 
   249  | 
apply (rule_tac x = x in star_cases)
  | 
| 
 | 
   250  | 
apply (rule_tac [2] x = x in star_cases)
  | 
| 
 | 
   251  | 
apply (auto simp add: starfun star_of_def star_n_minus star_n_add add_assoc approx_refl star_n_zero_num)
  | 
| 
 | 
   252  | 
done
  | 
| 
 | 
   253  | 
  | 
| 
 | 
   254  | 
lemma NSLIM_isCont_iff: "(f -- a --NS> f a) = ((%h. f(a + h)) -- 0 --NS> f a)"
  | 
| 
 | 
   255  | 
by (rule NSLIM_h_iff)
  | 
| 
 | 
   256  | 
  | 
| 
 | 
   257  | 
lemma isNSCont_minus: "isNSCont f a ==> isNSCont (%x. - f x) a"
  | 
| 
 | 
   258  | 
by (simp add: isNSCont_def)
  | 
| 
 | 
   259  | 
  | 
| 
 | 
   260  | 
lemma isNSCont_inverse:
  | 
| 
 | 
   261  | 
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra"
  | 
| 
 | 
   262  | 
  shows "[| isNSCont f x; f x \<noteq> 0 |] ==> isNSCont (%x. inverse (f x)) x"
  | 
| 
 | 
   263  | 
by (auto intro: isCont_inverse simp add: isNSCont_isCont_iff)
  | 
| 
 | 
   264  | 
  | 
| 
 | 
   265  | 
lemma isNSCont_const [simp]: "isNSCont (%x. k) a"
  | 
| 
 | 
   266  | 
by (simp add: isNSCont_def)
  | 
| 
 | 
   267  | 
  | 
| 
 | 
   268  | 
lemma isNSCont_abs [simp]: "isNSCont abs (a::real)"
  | 
| 
 | 
   269  | 
apply (simp add: isNSCont_def)
  | 
| 
 | 
   270  | 
apply (auto intro: approx_hrabs simp add: starfun_rabs_hrabs)
  | 
| 
 | 
   271  | 
done
  | 
| 
 | 
   272  | 
  | 
| 
 | 
   273  | 
  | 
| 
 | 
   274  | 
subsection {* Uniform Continuity *}
 | 
| 
 | 
   275  | 
  | 
| 
 | 
   276  | 
lemma isNSUContD: "[| isNSUCont f; x \<approx> y|] ==> ( *f* f) x \<approx> ( *f* f) y"
  | 
| 
 | 
   277  | 
by (simp add: isNSUCont_def)
  | 
| 
 | 
   278  | 
  | 
| 
 | 
   279  | 
lemma isUCont_isNSUCont:
  | 
| 
 | 
   280  | 
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
  | 
| 
 | 
   281  | 
  assumes f: "isUCont f" shows "isNSUCont f"
  | 
| 
 | 
   282  | 
proof (unfold isNSUCont_def, safe)
  | 
| 
 | 
   283  | 
  fix x y :: "'a star"
  | 
| 
 | 
   284  | 
  assume approx: "x \<approx> y"
  | 
| 
 | 
   285  | 
  have "starfun f x - starfun f y \<in> Infinitesimal"
  | 
| 
 | 
   286  | 
  proof (rule InfinitesimalI2)
  | 
| 
 | 
   287  | 
    fix r::real assume r: "0 < r"
  | 
| 
 | 
   288  | 
    with f obtain s where s: "0 < s" and
  | 
| 
 | 
   289  | 
      less_r: "\<And>x y. norm (x - y) < s \<Longrightarrow> norm (f x - f y) < r"
  | 
| 
 | 
   290  | 
      by (auto simp add: isUCont_def)
  | 
| 
 | 
   291  | 
    from less_r have less_r':
  | 
| 
 | 
   292  | 
       "\<And>x y. hnorm (x - y) < star_of s
  | 
| 
 | 
   293  | 
        \<Longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"
  | 
| 
 | 
   294  | 
      by transfer
  | 
| 
 | 
   295  | 
    from approx have "x - y \<in> Infinitesimal"
  | 
| 
 | 
   296  | 
      by (unfold approx_def)
  | 
| 
 | 
   297  | 
    hence "hnorm (x - y) < star_of s"
  | 
| 
 | 
   298  | 
      using s by (rule InfinitesimalD2)
  | 
| 
 | 
   299  | 
    thus "hnorm (starfun f x - starfun f y) < star_of r"
  | 
| 
 | 
   300  | 
      by (rule less_r')
  | 
| 
 | 
   301  | 
  qed
  | 
| 
 | 
   302  | 
  thus "starfun f x \<approx> starfun f y"
  | 
| 
 | 
   303  | 
    by (unfold approx_def)
  | 
| 
 | 
   304  | 
qed
  | 
| 
 | 
   305  | 
  | 
| 
 | 
   306  | 
lemma isNSUCont_isUCont:
  | 
| 
 | 
   307  | 
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
  | 
| 
 | 
   308  | 
  assumes f: "isNSUCont f" shows "isUCont f"
  | 
| 
 | 
   309  | 
proof (unfold isUCont_def, safe)
  | 
| 
 | 
   310  | 
  fix r::real assume r: "0 < r"
  | 
| 
 | 
   311  | 
  have "\<exists>s>0. \<forall>x y. hnorm (x - y) < s
  | 
| 
 | 
   312  | 
        \<longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"
  | 
| 
 | 
   313  | 
  proof (rule exI, safe)
  | 
| 
 | 
   314  | 
    show "0 < epsilon" by (rule hypreal_epsilon_gt_zero)
  | 
| 
 | 
   315  | 
  next
  | 
| 
 | 
   316  | 
    fix x y :: "'a star"
  | 
| 
 | 
   317  | 
    assume "hnorm (x - y) < epsilon"
  | 
| 
 | 
   318  | 
    with Infinitesimal_epsilon
  | 
| 
 | 
   319  | 
    have "x - y \<in> Infinitesimal"
  | 
| 
 | 
   320  | 
      by (rule hnorm_less_Infinitesimal)
  | 
| 
 | 
   321  | 
    hence "x \<approx> y"
  | 
| 
 | 
   322  | 
      by (unfold approx_def)
  | 
| 
 | 
   323  | 
    with f have "starfun f x \<approx> starfun f y"
  | 
| 
 | 
   324  | 
      by (simp add: isNSUCont_def)
  | 
| 
 | 
   325  | 
    hence "starfun f x - starfun f y \<in> Infinitesimal"
  | 
| 
 | 
   326  | 
      by (unfold approx_def)
  | 
| 
 | 
   327  | 
    thus "hnorm (starfun f x - starfun f y) < star_of r"
  | 
| 
 | 
   328  | 
      using r by (rule InfinitesimalD2)
  | 
| 
 | 
   329  | 
  qed
  | 
| 
 | 
   330  | 
  thus "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
  | 
| 
 | 
   331  | 
    by transfer
  | 
| 
 | 
   332  | 
qed
  | 
| 
 | 
   333  | 
  | 
| 
 | 
   334  | 
end
  |