author | nipkow |
Fri, 21 Jul 2000 18:11:54 +0200 | |
changeset 9404 | 99476cf93dad |
parent 6 | 8ce8c4d13d4d |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: ZF/pair |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1992 University of Cambridge |
|
5 |
||
6 |
Ordered pairs in Zermelo-Fraenkel Set Theory |
|
7 |
*) |
|
8 |
||
9 |
(** Lemmas for showing that <a,b> uniquely determines a and b **) |
|
10 |
||
11 |
val doubleton_iff = prove_goal ZF.thy |
|
12 |
"{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)" |
|
13 |
(fn _=> [ (resolve_tac [extension RS iff_trans] 1), |
|
14 |
(fast_tac upair_cs 1) ]); |
|
15 |
||
16 |
val Pair_iff = prove_goalw ZF.thy [Pair_def] |
|
17 |
"<a,b> = <c,d> <-> a=c & b=d" |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
18 |
(fn _=> [ (simp_tac (FOL_ss addsimps [doubleton_iff]) 1), |
0 | 19 |
(fast_tac FOL_cs 1) ]); |
20 |
||
21 |
val Pair_inject = standard (Pair_iff RS iffD1 RS conjE); |
|
22 |
||
23 |
val Pair_inject1 = prove_goal ZF.thy "<a,b> = <c,d> ==> a=c" |
|
24 |
(fn [major]=> |
|
25 |
[ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]); |
|
26 |
||
27 |
val Pair_inject2 = prove_goal ZF.thy "<a,b> = <c,d> ==> b=d" |
|
28 |
(fn [major]=> |
|
29 |
[ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]); |
|
30 |
||
31 |
val Pair_neq_0 = prove_goalw ZF.thy [Pair_def] "<a,b>=0 ==> P" |
|
32 |
(fn [major]=> |
|
33 |
[ (rtac (major RS equalityD1 RS subsetD RS emptyE) 1), |
|
34 |
(rtac consI1 1) ]); |
|
35 |
||
36 |
val Pair_neq_fst = prove_goalw ZF.thy [Pair_def] "<a,b>=a ==> P" |
|
37 |
(fn [major]=> |
|
38 |
[ (rtac (consI1 RS mem_anti_sym RS FalseE) 1), |
|
39 |
(rtac (major RS subst) 1), |
|
40 |
(rtac consI1 1) ]); |
|
41 |
||
42 |
val Pair_neq_snd = prove_goalw ZF.thy [Pair_def] "<a,b>=b ==> P" |
|
43 |
(fn [major]=> |
|
44 |
[ (rtac (consI1 RS consI2 RS mem_anti_sym RS FalseE) 1), |
|
45 |
(rtac (major RS subst) 1), |
|
46 |
(rtac (consI1 RS consI2) 1) ]); |
|
47 |
||
48 |
||
49 |
(*** Sigma: Disjoint union of a family of sets |
|
50 |
Generalizes Cartesian product ***) |
|
51 |
||
52 |
val SigmaI = prove_goalw ZF.thy [Sigma_def] |
|
53 |
"[| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)" |
|
54 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[singletonI,UN_I]) 1)) ]); |
|
55 |
||
56 |
(*The general elimination rule*) |
|
57 |
val SigmaE = prove_goalw ZF.thy [Sigma_def] |
|
58 |
"[| c: Sigma(A,B); \ |
|
59 |
\ !!x y.[| x:A; y:B(x); c=<x,y> |] ==> P \ |
|
60 |
\ |] ==> P" |
|
61 |
(fn major::prems=> |
|
62 |
[ (cut_facts_tac [major] 1), |
|
63 |
(REPEAT (eresolve_tac [UN_E, singletonE] 1 ORELSE ares_tac prems 1)) ]); |
|
64 |
||
65 |
(** Elimination of <a,b>:A*B -- introduces no eigenvariables **) |
|
66 |
val SigmaD1 = prove_goal ZF.thy "<a,b> : Sigma(A,B) ==> a : A" |
|
67 |
(fn [major]=> |
|
68 |
[ (rtac (major RS SigmaE) 1), |
|
69 |
(REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]); |
|
70 |
||
71 |
val SigmaD2 = prove_goal ZF.thy "<a,b> : Sigma(A,B) ==> b : B(a)" |
|
72 |
(fn [major]=> |
|
73 |
[ (rtac (major RS SigmaE) 1), |
|
74 |
(REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]); |
|
75 |
||
76 |
(*Also provable via |
|
77 |
rule_by_tactic (REPEAT_FIRST (etac Pair_inject ORELSE' bound_hyp_subst_tac) |
|
78 |
THEN prune_params_tac) |
|
79 |
(read_instantiate [("c","<a,b>")] SigmaE); *) |
|
80 |
val SigmaE2 = prove_goal ZF.thy |
|
81 |
"[| <a,b> : Sigma(A,B); \ |
|
82 |
\ [| a:A; b:B(a) |] ==> P \ |
|
83 |
\ |] ==> P" |
|
84 |
(fn [major,minor]=> |
|
85 |
[ (rtac minor 1), |
|
86 |
(rtac (major RS SigmaD1) 1), |
|
87 |
(rtac (major RS SigmaD2) 1) ]); |
|
88 |
||
89 |
val Sigma_cong = prove_goalw ZF.thy [Sigma_def] |
|
90 |
"[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> \ |
|
91 |
\ Sigma(A,B) = Sigma(A',B')" |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
92 |
(fn prems=> [ (simp_tac (FOL_ss addsimps prems addcongs [RepFun_cong]) 1) ]); |
0 | 93 |
|
94 |
val Sigma_empty1 = prove_goal ZF.thy "Sigma(0,B) = 0" |
|
95 |
(fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]); |
|
96 |
||
97 |
val Sigma_empty2 = prove_goal ZF.thy "A*0 = 0" |
|
98 |
(fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]); |
|
99 |
||
100 |
||
101 |
(*** Eliminator - split ***) |
|
102 |
||
103 |
val split = prove_goalw ZF.thy [split_def] |
|
104 |
"split(%x y.c(x,y), <a,b>) = c(a,b)" |
|
105 |
(fn _ => |
|
106 |
[ (fast_tac (upair_cs addIs [the_equality] addEs [Pair_inject]) 1) ]); |
|
107 |
||
108 |
val split_type = prove_goal ZF.thy |
|
109 |
"[| p:Sigma(A,B); \ |
|
110 |
\ !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x,y>) \ |
|
111 |
\ |] ==> split(%x y.c(x,y), p) : C(p)" |
|
112 |
(fn major::prems=> |
|
113 |
[ (rtac (major RS SigmaE) 1), |
|
114 |
(etac ssubst 1), |
|
115 |
(REPEAT (ares_tac (prems @ [split RS ssubst]) 1)) ]); |
|
116 |
||
117 |
(*** conversions for fst and snd ***) |
|
118 |
||
119 |
val fst_conv = prove_goalw ZF.thy [fst_def] "fst(<a,b>) = a" |
|
120 |
(fn _=> [ (rtac split 1) ]); |
|
121 |
||
122 |
val snd_conv = prove_goalw ZF.thy [snd_def] "snd(<a,b>) = b" |
|
123 |
(fn _=> [ (rtac split 1) ]); |
|
124 |
||
125 |
||
126 |
(*** split for predicates: result type o ***) |
|
127 |
||
128 |
goalw ZF.thy [fsplit_def] "!!R a b. R(a,b) ==> fsplit(R, <a,b>)"; |
|
129 |
by (REPEAT (ares_tac [refl,exI,conjI] 1)); |
|
130 |
val fsplitI = result(); |
|
131 |
||
132 |
val major::prems = goalw ZF.thy [fsplit_def] |
|
133 |
"[| fsplit(R,z); !!x y. [| z = <x,y>; R(x,y) |] ==> P |] ==> P"; |
|
134 |
by (cut_facts_tac [major] 1); |
|
135 |
by (REPEAT (eresolve_tac (prems@[asm_rl,exE,conjE]) 1)); |
|
136 |
val fsplitE = result(); |
|
137 |
||
138 |
goal ZF.thy "!!R a b. fsplit(R,<a,b>) ==> R(a,b)"; |
|
139 |
by (REPEAT (eresolve_tac [asm_rl,fsplitE,Pair_inject,ssubst] 1)); |
|
140 |
val fsplitD = result(); |
|
141 |
||
142 |
val pair_cs = upair_cs |
|
143 |
addSIs [SigmaI] |
|
144 |
addSEs [SigmaE2, SigmaE, Pair_inject, make_elim succ_inject, |
|
145 |
Pair_neq_0, sym RS Pair_neq_0, succ_neq_0, sym RS succ_neq_0]; |
|
146 |